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Abstract

Meta-learning hyperparameter optimization (HPO) algorithms from prior experi-
ments is a promising approach to improve optimization efficiency over objective
functions from a similar distribution. However, existing methods are restricted to
learning from experiments sharing the same set of hyperparameters. In this paper,
we introduce the OPTFORMER, the first text-based Transformer HPO framework
that provides a universal end-to-end interface for jointly learning policy and func-
tion prediction when trained on vast tuning data from the wild, such as Google’s
Vizier database, one of the world’s largest HPO datasets. Our extensive experiments
demonstrate that the OPTFORMER can simultaneously imitate at least 7 different
HPO algorithms, which can be further improved via its function uncertainty es-
timates. Compared to a Gaussian Process, the OPTFORMER also learns a robust
prior distribution for hyperparameter response functions, and can thereby provide
more accurate and better calibrated predictions. This work paves the path to future
extensions for training a Transformer-based model as a general HPO optimizer.

1 Introduction

The emergence of public machine learning data platforms such as OpenML [1] and hyperparameter
optimization (HPO) services such as Google Vizier [2], Amazon SageMaker [3] and Microsoft
Azure [4] have made large-scale datasets containing hyperparameter evaluations accessible. For our
use-case in this paper, Google Vizier is the de-facto HPO service across Google, having optimized
some of Google’s largest products and research efforts, and contains a collection of valuable tuning
data within the last 5 years. While there is growing interest in leveraging such data to meta-learn
hyperparameter optimization algorithms [5–8], dealing with large datasets consisting of experimental
trials in the wild can be challenging, due to large variations in HPO problems and their associated
text metadata (e.g. shown later in Table 1).

Thus, most meta and transfer-learning HPO methods [7–16] consider a restrictive setting where
all tasks must share the same set of hyperparameters so that the input data can be represented as
fixed-sized vectors. Consequently, such methods only exploit a small portion of the available data to
learn priors. This drawback is more severe for large datasets which contain significant amounts of
useful information.

To overcome these limitations, we introduce the OPTFORMER, a general hyperparameter optimization
framework based on Transformers [17]. Transformers have demonstrated excellent performance
in many data tasks, ranging from natural language [18], images [19, 20], biological data [21, 22],
code [23, 24], and control [25, 26]. Here, we investigate how to use a Transformer as a universal
interface for modelling experimental data and learn HPO algorithms, as given a sufficient amount of
data, a Transformer can potentially learn a more complex prior distribution than standard Bayesian
Optimization (BO) with Gaussian Processes (GPs), especially as the Transformer possesses certain
computational advantages over GPs for large datasets.

Code: https://github.com/google-research/optformer. Google AI Blog: https://
ai.googleblog.com/2022/08/optformer-towards-universal.html.
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Figure 1: Illustration of the OPTFORMER model over a hyperparameter optimization trajectory. It is
trained to predict both hyperparameter suggestions (in green) and response function values (in red).

We introduce a serialization scheme to convert a combination of any metadata and an optimization
trajectory into text, represented as a sequence of tokens, and formulate the HPO task as a sequence
modeling problem. We adopt a supervised learning approach, by learning to predict parameters and
hyperparameter response functions from offline tuning data (See Fig. 1). In order to further improve
optimization performance, we augment the model by utilizing its own function prediction during
inference (Section 4.3). Extensive experiments on both public and private datasets demonstrate the
OPTFORMER’s competitive tuning and generalization abilities.

In summary, our contributions are as follows:

• We formulate, to the best of our knowledge, the first meta-learning HPO framework to learn both
policy and function priors from data across different search spaces.

• The OPTFORMER is capable of learning the behaviors of 7 diverse blackbox optimization algo-
rithms relying on a broad class of methods (non-adaptive, evolutionary, and Bayesian).

• Furthermore, the OPTFORMER learns the prior over objective functions and provides both accurate
and well calibrated predictions, in many cases significantly surpassing GPs in log-predictive
likelihood and expected calibration error (ECE) [27].

• Lastly, OPTFORMER policies augmented with model-based optimization, such as the use of
Expected Improvement acquisition functions, are competitive HPO algorithms. To the best of our
knowledge, this is the first time Transformers are augmented with acquisition functions for online
adaptation.

2 Preliminaries

2.1 Meta-learning for hyperparameter optimization

HPO aims to find a set of hyperparameters x from search space X to maximize a model performance
metric, y = f(x), often referred to as a response function. Table 1 shows an example of HPO
experimental data. Following the HPO nomenclature [2, 28], an experimental study consists of
metadata (m) and a history of trials (h). The metadata contains arbitrary unstructured information,
including but not limited to descriptions of the problem, optimization algorithm, names, types and
value ranges of hyperparameters. The history after t trials, ht = (x1, y1, . . . ,xt, yt), contains a
sequence of trials, each of which consists of a parameter suggestion x and function value y.

The goal of the meta-learning approach for HPO is to learn the shared knowledge among the objective
functions f from a dataset of multiple tuning experiments represented as studies and to obtain an
optimal HPO algorithm for new hyperparameter tuning tasks from a similar distribution to those in
the dataset.

An HPO algorithm π maps the metadata and history to a distribution over hyperparameter suggestions,
i.e. π(xt+1|m,ht). Using the terminology of offline RL [29], we refer to the algorithm used to
generate the trajectories in a dataset as the behavior policy πb.
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We primarily consider search spaces X with a fixed number D of hyperparameters per task, and
hence x = (x(1), . . . , x(D)), with each hyperparameter x(d) being of type DOUBLE, INTEGER,
DISCRETE, or CATEGORICAL (see Appendix A.1 for details). More complex search spaces can be
supported as discussed in Section 7.

2.2 Transformer model
Table 1: Example of a study
(m,h) with two parameters and
two trials. Metadata m appears in
blue and history h in purple.

"name": "convnet on cifar10",
"metric": "accuracy",
"goal": "MAXIMIZE",
"algorithm": "random_search",
"parameter": {
"name": "opt_kw.lr",

"type": "DOUBLE",

"min_value": 1e-6,

"max_value": 1e-2,

"scale_type": "LOG"

}
"parameter": {
"name": "opt_type",

"type": "CATEGORICAL",

"categories": ["SGD", "Adam"],

}
"trial" {
"parameter": {

"opt_kw.lr": 0.0021237573,

"opt_type": "SGD"

}

"metric": {

"accuracy": 0.69482429,

}}
"trial" {
"parameter": {

"opt_kw.lr": 0.00038292234,

"opt_type": "Adam"

}

"metric": {

"accuracy": 0.71642583

}}

The Transformer model is an efficient attention-based neural
network architecture for sequence modeling [17]. We adopt
the T5 Transformer encoder-decoder architecture [30]. The
encoder and decoder each consist of a stack of multi-head self-
attention layers which construct pairwise interactions between
positions, followed by position-wise feed-forward networks. The
encoder converts a sequence of input token representations m,
to a sequence of continuous embeddings, which is fed to the
decoder to generate a sequence of output tokens h one element
at a time (see Fig. 1).

3 Related work

There has been a rich set of works in meta-learning and trans-
fer learning by modifying specific core components of the BO
pipeline, such as the acquisition function or the GP, in order to
tackle BO’s myopic behavior, or obtaining more information
from similar tasks. For instance, approaches include learning
new acquisition functions [31], multi-task BO [7–13] and BO
for transfer learning using contextual GPs [14–16]. [32] also
studies the use of meta-BO for hyperparameter tuning tasks in
machine learning. However, all of these works consider a fixed
search space.

A more radical meta-learning approach to non-differentiable
optimization trains recurrent neural networks (RNNs) as neural
optimizers from scratch. [33] first proposed training an RNN
with gradient descent to optimize blackbox functions and hy-
perparameters while [34, 35] train RNNs using reinforcement
learning (RL) to solve RL tasks. Unfortunately, prior works are
limited to fixed search spaces and only use online generated data,
constraining the training objectives to be cheaply computable.

In this work, we wish to overcome the limitations of previous
works by exploiting the Transformer architecture. Numerous
works have demonstrated Transformers’ strong capabilities in flexible symbolic and numerical ma-
nipulation. On the symbolic side, Transformers have been shown able to manipulate symbolic
mathematical expressions [36–38] and generate code [23, 24]. Furthermore, on the numerical side,
Transformers have also been shown able to perform linear algebra computations [39], Bayesian
Inference [40], and offline RL [25, 26, 41]. For AutoML specifically, [42] has demonstrated Trans-
formers’ and analogous graph neural networks’ abilities to use dataset descriptions and metadata to
generate classification and data preprocessing pipelines. However, to date, there has been little effort
in attacking the full problem of hyperparameter tuning in the blackbox optimization setting. In this
paper, the challenging task of learning algorithms from blackbox optimization trajectories can be
seen as a significant extension of both symbolic and numerical manipulation. Since the underlying
algorithm can be composed of multiple symbolic and mathematical operations with unbounded
complexity, the model must infer potentially very complex behavior over long horizons.

4 Universal interface and model for hyperparameter optimization

In this section, we provide a universal interface for modeling HPO studies with mixed textual and
numerical information as a sequence of discrete tokens. We train our OPTFORMER as a generative
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Table 2: Serialized study after preprocessing and tokenization. Metadata m appears in blue, normal-
ized and quantized values of xt in green, and yt in red.

After preprocessing

<name>:"convnet on cifar10",<metric>:"accuracy",<goal>:<MAXIMIZE>,
<algorithm>:"random_search"
&<name>:"opt_kw.lr",<type>:<DOUBLE>,<min_value>:1e-6,<max_value>:1e-2,
<scale_type>:<LOG>
&<name>:"opt_type",<type>:<CATEGORICAL>,<categories>:["SGD", "Adam"]
<831><0>* <0>| <645><1>* <999>

Subwords
after tokenization

name : " con v net on ci far 10 ", metric : " acc u racy ",
goal : MAXIMIZE , algorithm : " random _ search "
& name : " op t _ kw . lr ", type : DOUBLE , min_value : 1 e -6 ,
max_value : 1 e -2 , scale_type : LOG
& name : " op t _ type ", type : CATEGORICAL ,
categories : [ " SG D ", " A dam " ]
831 0 * 0 | 645 1 * 999

model on a given dataset and explain how to use the OPTFORMER’s parameter and function prediction
abilities to implement an HPO policy.

4.1 Study tokenization

To generalize over HPO problems of different parameter sizes, types, and metadata, we propose to
serialize the study as a one-dimensional textual sequence, also advocated in [26]. Unfortunately, a
naive serialization approach, e.g. via JSON [43], will produce unnecessarily long sequences.

To improve scalability, we compress the textual representation of metadata m by removing redun-
dant phrases and punctuation (e.g., "parameter", quotes) and encoding keywords (e.g., "name",
"algorithm") and enumerating types (e.g. "DOUBLE") into single tokens.

For the historical sequence h, we convert every DOUBLE and INTEGER parameter along with every
function value into a single token, by normalizing and discretizing them into integers, with an
quantization level of Q = 1000; e.g.

x̄ = int[xnorm ·Q], where xnorm = (x− xmin)/(xmax − xmin). (1)

The range of x is defined by the search space and the range of y is obtained from observed values in
h. For other types, we use the index in their value set.

The shortened text string is then converted to a sequence of tokens via the SentencePiece tokenizer [44]
(see Table 2 for an example). Every trial is represented by text, which is represented as a sequence of
normalized and quantized tokens,

[
x̄

(1)
t , . . . , x̄

(D)
t , ?, ȳt, "|"

]
, where the token ? separates parameter

and function values and "|" separates trials. See Appendix A.2 for further details on tokenization.

4.2 Model and training loss

After tokenization, the converted historical sequence is as follows:

h̄t =
[
x̄

(1)
1 , x̄

(2)
1 , . . . , x̄

(D)
1 , ?, ȳ1, "|", . . . , x̄(1)

t , x̄
(2)
t , . . . , x̄

(D)
t , ?, ȳt

]
. (2)

We can now apply a Transformer model to learn the conditional distribution of tokens in h̄ using
the chain rule, given the metadata m̄, as depicted in Fig. 1. The joint distribution is presented in
Appendix D.1.

Given a dataset D of hyperparameter optimization studies, we train the OPTFORMER by maximizing
the weighted log-likelihood for each study (m,h) ∼ D:

L(θ;m,h) =
∑
n wn logPθ(h̄

(n)|m̄, h̄(1:n−1)), (3)

with wn = 0 if h̄(n) ∈ {?, "|"} and wn = 1 otherwise. That is, we mask out the separator tokens (?,
"|") and predict parameter x̄ and function tokens ȳ only. Note that h̄(n) denotes the n-th token, that
is the n-th element of the list in Equation (2), and h̄(1:n−1) denotes all tokens up to the (n− 1)-th
token. Further details and data augmentations are provided in Appendix D.2.
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4.3 Inference and decoding

Parameter prediction: To decode the predicted parameter token x̄(d)
t back to its original parameter

range, we truncate the output distribution to the vocabulary range corresponding to valid parameter
values [0, Q) and reverse our tokenization procedure in Section 4.1. For a DOUBLE or INTEGER
parameter x, we use a piecewise constant distribution:

pθ(x| . . . ) = Q · Pθ(x̄| . . . )/(xmax − xmin), if x ∈ [xmin, xmax], otherwise 0 . (4)

For all other parameter types, x̄ corresponds to the index of the set of feasible values. Putting these
together, we may now sample parameter xt from the model’s prior distribution and thus define an
HPO policy:

πprior(xt|m,ht−1) =

D∏
d=1

pθ(x
(d)
t |m,ht−1,x

(1:d−1)
t ). (5)

As we use a supervised learning loss, we expect πprior to approximate the behavior policy πb.

Note that traditional BO algorithms require running Bayesian inference and then conducting a global
search in the hyperparameter space with an acquisition function. Thus the runtime complexity of
making one hyperparameter suggestion is cubic in t for a typical GP-based BO method that performs
ARD each iteration [45]. In contrast, generating one suggestion by the OPTFORMER consists of
decoding D parameter tokens with an input sequence of (D + 3)t tokens, which are then parsed into
the D parameter values, producing a runtime of O(D2t) linear in t, with proper caching.

Function prediction: To decode the real-valued function yt from the discrete distribution
Pθ(ȳt|m̄, h̄t−1, x̄t), we construct the same piecewise constant distribution as in Eq. (4) with the
range [ymin, ymax] used in tokenization. Note that the limited support of y will not be a concern
for HPO when either the range is known or we set the range large enough compared to observed
values. For more general use as a few-shot function prediction model, one could consider adopting
the Riemann Distribution in [40], which supports an unbounded range.

Augmented HPO policies with function prediction: At best, the learned policy πprior can only
perform as well as the original policy πb when using behavioral cloning. However, we can take
advantage of the model’s simultaneous function prediction ability to improve the policy with model-
based planning or offline RL techniques. While a comprehensive study of policy improvements
for Transformers is out of the scope of this work, we consider here a simple yet effective policy
improvement operator: sampling M = 100 candidate suggestions from πprior and choosing the
suggestion with the highest score defined by an acquisition function u(·) as follows:

πu(xt|m,ht−1) = argmax
{x(i)}Mi=1

u(pθ(·|m,ht−1,x
(i))), with x(i) i.i.d.∼ πprior(x|m,ht−1). (6)

Common acquisition functions include Expected Improvement (EI), Probability of Improvement
(PI), Upper Confidence Bound (UCB), and Thompson Sampling, see for example [46]. At a high
level, this approach to combining imitated policies with function prediction is reminiscent of the idea
behind the offline RL approach of BCQ [47].

Because we apply a linear mapping from the original y value to the quantized value ȳ before discretiza-
tion, we can simply define the acquisition functions on the discrete distribution Pθ(ȳ|m̄, h̄t−1, x̄t) as
follows:

uEI(x|ȳ∗) = EPθ(ȳ|m,ht−1,x) [max(ȳ − ȳ∗, 0)] , (7)

uUCB(x|α) = Quantile(Pθ(ȳ|m,ht−1,xt), α) , (8)

uPI(x|ȳ∗) =
∑
ȳ>ȳ∗

Pθ(ȳ|m,ht−1,x) , (9)

uTS(x) = ȳ, with ȳ ∼ Pθ(ȳ|m,ht−1,xt) , (10)

where ȳ∗ = maxτ≤t−1 ȳτ in EI and PI is the threshold to measure improvement. We define the UCB
acquisition function with a quantile parameter α. Our TS acquisition is defined as a sampled function
value at a given location from the marginal predictive distribution. It is inspired by the traditional
Thompson Sampling method [45] but different in that the correlation between different locations is
ignored.
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5 Data

Training the OPTFORMER requires HPO studies with optimization trajectories. The most natural
dataset we possess is the entire Google Vizier [2] database, one of the world’s largest collections of
real world hyperparameter tuning studies, which we denote as RealWorldData. There are around
750K studies, each with on average 300 trials, covering a vast class of production and machine
learning applications at Google, ranging from vision, speech, NLP and robotics, and representing one
of the most representative distributions of HPO tasks for machine learning models in practice. These
studies were generated with a mixture of non-adaptive, evolutionary, and BO algorithms. However,
as the dataset does not contain sufficient algorithm information, we have to treat the corresponding
behavior policy as a randomly mixed algorithm πb.

In addition, we create two new datasets based on public benchmarks. HPO-B is the largest public
benchmark for HPO containing about 1.9K tuning tasks, most of which use one of 16 shared search
spaces. In the continuous evaluation setting, it fits an XGBoost model to the trial data of every tuning
task as the objective function. For further control over specific function dimensions and properties, we
use the blackbox optimization benchmark BBOB [48], consisting of 24 types of synthetic functions
with customizable properties (dimension sizes, rotations, shifts, discretizations, noise types) we
randomize over.

For each of the two public benchmarks (HPO-B and BBOB), we apply a fixed set of 7 HPO
algorithms to generate a dataset of optimization trajectories. In contrast to RealWorldData, we specify
the algorithm name in the metadata m as part of the conditioning input for our model. The controlled
algorithms used are: (1) Grid Search, (2) Shuffled Grid Search, (3) Random Search, (4) Regularized
Evolution [49], (5) Hill-Climbing, (6) Eagle Strategy [50], and (7) Vizier’s GP-UCB [2]. Appendix B
contains detailed explanations of the algorithms.

Table 3: Offline training datasets considered in this study. More details are given in Appendix C
along with examples of studies in Table 5.

("R") RealWorldData ("H") HPO-B ("B") BBOB
#Studies 750K 10M 10M

#Trials / study 300 (on average) 120 300
Study source Google’s database Generated Generated

πb Mixed Controlled Controlled
Obj. Functions HPO tasks HPO tasks Synthetic
Search space Different per task 16 shared search spaces Randomized

6 Experiments

We train a single Transformer model with 250M parameters on the union of the three datasets
described above, RealWorldData, HPO-B, and BBOB (hyperparameter details in Appendix D.2).

Each dataset contains a corresponding “test” set of functions, either using synthetic functions (BBOB)
or fitting a machine learning model to obtain the objective (RealWorldData, HPO-B). We evaluate
mainly on the two natural HPO benchmarks, RealWorldData and HPO-B. The train/test subsets of
RealWorldData are split temporally to avoid information leak (see Appendix C for details).

To aggregate results across functions with different output scaling, we normalize all the test functions.
This is standard practice in the literature [2, 5, 51–54]. We define our performance metric at trial t
as the best-so-far normalized function value maxi∈{1:t}(yi − yrand)/(ymax − yrand), where yrand

is the median of function values randomly sampled in the search space to be robust to outliers, and
ymax is the maximum, if known, or best value found by any algorithm. For the HPO-B benchmark,
we use the recommended bounds provided in [5]. We also consider other metrics when comparing
different algorithms in Appendix E.3, including the performance profile and average ranking. We
find our results are consistent over different metrics.

Because the OPTFORMER is trained to predict the conditional distributions of parameter and function
values, we would like to answer the following questions when evaluating on unseen test problems:
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Figure 2: Comparing the performance of different algorithms outputted by the OPTFORMER condi-
tioned on the corresponding algorithm’s name.

1. Can the OPTFORMER learn to imitate multiple HPO algorithms with one model? (Section 6.1)
2. Can the OPTFORMER learn a good prior over hyperparameter response functions? (Section 6.2)
3. Is the OPTFORMER a competitive approach for HPO? (Section 6.3)

6.1 Imitating HPO policies

We first evaluate how well the OPTFORMER can learn the conditional distribution of parameter
suggestions given by the behavior policies in the dataset, and how well it can imitate multiple
algorithms. As the algorithm’s name is contained in the metadata m, we can modify the behaviour of
the policy πprior(xt+1|m,ht) simply by altering this variable. Fig. 2a compares two different policies
to the OPTFORMER, when it is conditioned on the corresponding policy name. We observe a good
match between the imitated algorithms and the OPTFORMER (additional algorithms are shown in
Appendix E.1).

In Fig. 2b we run target policies on the BBOB dataset’s test functions and compare the optimization
trajectories of the algorithms and the OPTFORMER. In Fig. 2c we compare the average and standard
deviation of the best normalized function values at trial 100. Our model imitates most algorithms
very accurately in both the mean and variance except for the most complicated algorithm, Vizier,
where πprior is slightly worse in the LUNACEK benchmark. We expand on this in Appendix E.1.
Because Vizier is the best performing HPO algorithm among all considered, the OPTFORMER will
imitate Vizier faithfully, although not perfectly, in the following experiments.

6.2 Learning priors for hyperparameter response functions

In this section, we assess the OPTFORMER’s ability to learn the conditional distribution of the
function value as a few-shot function regressor. Specifically, for every function in each test dataset,
we repeatedly sample up to 200 random trials (x1, y1, . . .xt, yt), t ≤ 200, and predict the conditional
distribution p(yt|x1, y1, . . . ,xt). We compare with a GP model with output warping — details
provided in Appendix B. We report the log-predictive likelihood log p(yt|xt, . . . ) in Table 4.
As uncertainty estimation is important for HPO, we also evaluate how well the function predictive
distribution is calibrated. When a predictive distribution pθ(y| . . . ) matches the true distribution,
the estimated CDF F (y) =

∫ y
−∞ pθ(y

′| . . . )dy′ will be uniformly distributed. In Fig. 3, we plot the
cumulative histogram of F (y) on RealWorldData test set and check the deviation from the diagonal
line to assess goodness-of-fit as proposed by Rosenblatt [55]. The OPTFORMER has a smaller
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Table 4: Log-predictive likelihood (with 1-std. stan-
dard error, higher is better (↑)) and ECE (percentage
of error, lower is better (↓)) on RealWorldData and
HPO-B test sets.

Log-predictive likelihood ↑
Model RealWorldData HPO-B

GP 0.83(0.06) 4.03(0.04)
OPTFORMER 2.12 (0.05) 6.16 (0.04)

ECE (percent %) ↓
Model RealWorldData HPO-B

GP 5.34 (0.06) 2.39 (0.05)
OPTFORMER 1.11 (0.02) 1.89 (0.01)
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Figure 3: Cumulative histogram of pre-
dicted CDF(y) on RealWorldData test
set.
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Figure 4: Higher is better. Best normalized function value averaged over 16 RealWorldData test
functions (left) and over 86 HPO-B test functions (right) with 1-std confidence interval from 5
runs. GP* and DGP* results are provided by [5]. The transfer learning methods ABLR, FSBO and
HyperBO cannot be applied to RealWorldData.

deviation than the GP almost across the entire range. We also compare calibration performance
using the expected calibration error (ECE) [27]. Readers are referred to [27] and Appendix E.2
for a detailed explanation of ECE. We observe from Table 4 that the OPTFORMER achieves better
predictive likelihood and ECE than the GP on both datasets.

6.3 Augmenting a prior policy with function prediction

We evaluate the OPTFORMER as a hyperparameter optimization algorithm on two benchmarks,
RealWorldData and HPO-B. We compare our prior policy, the OPTFORMER, and an augmented
policy with Expected Improvement, the OPTFORMER (EI), against standard HPO baselines, including
Random Search, our implementation of GP-UCB, and the well-tuned Vizier service. For HPO-B,
we also include the GP (not to be confused with our GP-UCB) and DGP (GP with deep kernel)
baseline results provided by the original paper [5]. Additionally, we include three recent transfer-
learning methods based on multi-task GP models: ABLR [12, 56], FSBO [7], and HyperBO [57, 58]
(implementation details in Appendix B). Please note that all of these transfer learning methods require
learning GPs on multiple tasks sharing the same search space. Therefore, none of them apply to the
RealWorldData benchmark where every study has its own search space.

We show the trajectory of the best normalized function value averaged over all functions from each
benchmark in Fig. 4. While the prior policy returned by the OPTFORMER does not perform as well
as Vizier, it is comparable or slightly better than our GP-UCB baseline and ABLR.
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(a) Ablation on training data.
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(b) Ablation on metadata.
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(c) Ablation on the prior policy.
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(d) Ablation on the acquisition function.

Figure 5: Best normalized function values averaged over HPO-B test functions with 1-std confidence
interval. Ablation curves are shown with© markers. (a) The more similar the training dataset, the
better the transfer. Here, the suffix with "H", "R", "B" indicates training on HPO-B, RealWorldData,
and BBOB respectively. (b) Removing the majority of metadata hurts function prediction. (c) The
prior policy improves performance with or without the Expected Improvement acquisition function.
(d) All acquisition functions provide a significant improvement.

The most significant improvement is achieved when we augment our prior policy with the Expected
Improvement acquisition function. The resulting OPTFORMER (EI) outperforms all baselines across
the board on both benchmarks. This illustrates that the OPTFORMER is able to learn the distribution
of functions in the meta-training split and transfers to the meta-testing split.

It is worth noting that to run 100 trials for about half of the test functions, the required history token
sequence is longer than the 1024-token length used in training, with the maximum length about twice
the training horizon. The superior performance of the OPTFORMER (EI) thus demonstrates its good
generalization performance beyond the optimization horizon it is trained for.

6.4 Ablations

We provide further ablations on three important components for our policy:

Training dataset. To understand the impact of the training datasets on the OPTFORMER, we train
three variants on individual datasets (OPTFORMER-"R","H","B" respectively for RealWorldData,
HPO-B, BBOB) and study their transfer learning performances on HPO-B. Fig. 5a verifies that
training with in-domain data ("H") gives better performance than training over the more diverse
across-domain RealWorldData HPO dataset ("R"), which is better than training over the synthetic
BBOB data ("B"). Nonetheless, training on RealWorldData is enough to give comparable performance
to the best transfer learning baseline at the end of 100 trials. Lastly, training on all of the datasets
(OPTFORMER) gives a further advantage over OPTFORMER-H. This suggests that more data does
not hurt the model’s performance but rather may improve it, even if the extra data is out-of-domain.
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Meta-data m. We have demonstrated how the OPTFORMER’s behavior can be controlled by the
algorithm name in metadata m in Section 6.1. Here we study whether the OPTFORMER learns
to depend on other meta information. At inference time, we provide minimum information in m
(OPTFORMER-min) by excluding all textual information and parameter value ranges. We only keep
necessary information such as parameter types and algorithm names. Fig. 5b shows that the prior
policy of OPTFORMER-min performs comparably with the OPTFORMER, partly due to the use of data
augmentation (see Appendix D.2). The augmented policy OPTFORMER-min (EI) (dashed orange)
improves upon the prior policy but is significantly worse than the full model, suggesting that the
missing metadata impacts the model’s predictions on function values.

Prior policy. Section 6.3 demonstrated the benefit of adding an acquisition function to the prior
policy. A natural question is whether a good prior policy is needed at all. In Fig. 5c, we replace the
prior policy in the OPTFORMER (EI) with random search (Random Search (EI), dashed blue line).
While adding Expected Improvement still improves this random search policy’s performance, the
best method requires both a good prior policy and the acquisition function.

Choice of acquisition function. In Fig. 5d, we compare the Expected Improvement (EI) with
Thompson Sampling (TS), Probability of Improvement (PI), and Upper Confidence Bound (UCB)
with a confidence level of 0.9. We observe that the prior policy is improved by all the acquisition
functions. Particularly, OPTFORMER (EI) is the best among all the choices though the difference is
relatively small compared to the advantage over other baselines and OPTFORMER prior policy. We
provide additional analysis with results on both the RealWorldData and HPO-B datasets, as well as
other evaluation metrics in Appendix E.4.

7 Limitations and future extensions

We list a few limitations of this work and discuss some potential extensions. (1) We did not consider
parameters that do not always apply or are subject to dynamic constraints depending on other
parameter values. Such parameters are common in AutoML [59] and NAS applications [60]. Our
work can be extended to support these applications, by providing the conditional specifications as
text in metadata m. (2) We also considered only sequential optimization with a batch size of 1. To
support parallel suggestions, one could apply random masking to input function value observations to
simulate scenarios with parallel pending trials [33]. (3) While we trained the Transformer to clone
the behavior policy offline, there are extensive literature on offline RL [29] that could be applied
here [25, 47, 61–64]. One could also consider meta-training acquisition functions as in [31] within
the same model and online fine-tuning as in [7, 41]. (4) We considered a single objective function,
though multiple objectives can be easily included by outputting multiple function tokens in a trial. (5)
The maximum sequence length is limited by the quadratic memory size requirement of a Transformer,
which could be mitigated with more scalable architecture variants such as Performer [65].

8 Conclusion

We presented first step to learning a universal Transformer model for hyperparameter optimization
from large scale datasets containing tuning experiments with vastly different search spaces and
experiment descriptions. By training on a diverse set of synthetic and real-world tuning trajectories,
we demonstrated the capacity of a single Transformer model to imitate 7 fundamentally different
HPO policies, learn to make well calibrated few-shot function predictions, and provide competitive
optimization performance on unseen test functions comparable with the existing, long-tried GP-based
baselines. Many extensions are readily conceivable for future exploration.
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Board (IRB) approvals, if applicable? [N/A] Not applicable.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] Not applicable.
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