
Appendix for Factored Adaptation for
Non-Stationary Reinforcement Learning

Contents

A Broader Impact 2

B Proofs and Causality Background 2

B.1 Preliminaries . 2

B.2 AdaRL summary . 3

B.3 Proofs . 4

C Details on Experimental Designs and Results 6

C.1 MuJoCo . 6

C.2 Sawyer benchmarks . 7

C.3 Minitaur benchmarks . 7

C.4 Full results . 7

C.5 Ablation studies on FANS-RL . 11

C.6 Visualization on the learned change factors . 12

C.7 Visualization on the learned graphs . 13

D Details on the Factored Adaptation Framework 13

D.1 Algorithm pipelines of FN-VAE . 14

D.2 The framework dealing with discrete and across-episode changes 14

D.3 The framework dealing with raw pixels . 16

D.4 Hyper-parameter selection . 17

E Experimental Platforms and Licenses 19

E.1 Platforms . 19

E.2 Licenses . 19

1

A Broader Impact

Our work is a first exploration in leveraging factored representations for non-stationary RL in order
to improve adaptation. One of the limitations of our current approach, and similarly to a few other
non-stationary RL approaches, is that we do not provide theoretical guarantees in terms of adapting
to non-stationarity. This limits the applicability of these approaches in safety-critical applications, e.g.
self-driving cars, or in adversarial environment. One of the future directions of this work would be to
provide theoretical guarantees under reasonable assumptions, similarly to generalization bounds for
factored representations for fast domain adaptation [14].

Based on the application, there might be different assumptions or inductive biases that might be
considered reasonable. Since our work leverages insights from recent causality literature [9], we
also inherit the same inductive bias in terms of assuming there is an underlying causal structure
that is time-invariant throughout the non-stationarity. In our current method, this causal structure
is estimated in the model estimation phase as one of the first steps of the algorithm. After this
estimation, there can still be changes in the functional dependencies between the various components,
but we assume there are no new edges/causal relations between components that were previously
disconnected, or new forms of non-stationarity, in terms of connections between the change factor
components and the state dimensions or reward. For example, if we consider Halfcheetah-v3 with a
change in gravity and estimate a model that can handle this type of non-stationarity, our method will
not be able to perform well under a new type of non-stationarity (e.g. change of wind forces) that
was not observed during model estimation. An interesting extension of our work would be designing
ways to efficiently detect changes in the causal structure and adapt the model.

As is the case with other works in causal discovery, we also make some standard assumptions to
recover the causal graph from time series observational data. In particular, we assume that there are
no other unobserved confounders, except for the change factors, and that there are no instantaneous
causal effects between the state components, which is implied by our definition of an FN-MDP and
its Dynamic Bayesian Network. In practical applications, this means that we are able to measure all
the relevant causal variables and we are measuring them at a rate that is faster than their interaction.
Additionally, in our identifiability proofs, we assume the causal Markov and faithfulness assumptions
[53], which provide a correspondence between conditional independences and d-separations in the
graph. The faithfulness assumption can be violated for example in case of deterministic relations,
thus requiring a careful modelling of the system. In general, if these assumptions are violated, the
causal structure we learn might be incorrect, and therefore the factored representation might not
be beneficial to adapt to non-stationarity. A future direction would be to relax some of the current
assumptions to provide a more realistic and flexible framework for factored non-stationary RL.

B Proofs and Causality Background

B.1 Preliminaries

B.1.1 Dynamic Bayesian networks

Dynamic Bayesian networks (DBNs) [54] are the extensions of Bayesian networks (BN), which
model the time-dependent relationship between nodes (See an example in Fig. A1(b)). The unfolded
DBNs can be represented as BNs. The variables in DBNs are in discrete time slices and dependent on
variables from the same and previous time slices. Hence, the DBNs can model the stationary process
repeated over the discrete time slices.

B.1.2 Markov and faithfulness assumptions

Given a directed acyclic graph G = (V,E), where V is the set of nodes and E is the set of directed
edges, we can define a graphical criterion that expresses a set of conditions on the paths.

Definition 2 (d-separation [55]). A path p is said to be blocked by a set of nodes Z ⊆ V if and only
if (1) p contains a chain i → m → j or a fork i ← m → j such that the middle node m is in Z,
or (2) p contains a collider i → m ← j such that the middle node m is not in Z and such that no
descendant of m is in Z. Let X, Y, and Z be disjunct sets of nodes. Z is said to d-separate X from Y
(denoted as X ⊥d Y|Z) if and only if Z blocks every path from a node in X to a node in Y.

2

x1 x2

x3

x4

xt−11 xt−12

xt−13

xt−14

xt1 xt2

xt3

xt4

(a) Bayesian network (b) Dynamic Bayesian network

Figure A1: Examples on Bayesian and Dynamic Bayesian networks. The dashed edges indicate
dependencies across time slices.

Definition 3 (Global Markov Condition [53, 55]). A distribution P over V satisfies the global
Markov condition on graph G if for any partition (X, Z, Y) such that X is d-separated from Y given
Z, i.e. X ⊥d Y|Z the distribution factorizes as:

P (X, Y|Z) = P (X|Z)P (Y|Z).
In other words, X is conditionally independent of Y given Z, which we denote as X ⊥⊥ Y|Z.

Definition 4 (Faithfulness Assumption [53, 55]). There are no independencies between variables
that are not entailed by the Markov Condition.

If we assume both of these assumptions, then we can use d-separation as a criterion to read all of
the conditional independences from a given DAG G. In particular, for any disjoint subset of nodes
X,Y,Z ⊆ V: X ⊥⊥ Y|Z ⇐⇒ X ⊥d Y|Z.

B.2 AdaRL summary

Our work extends the factored representation for fast policy adaptation across domains introduced in
AdaRL [14], which we summarize here. While Huang et al. [14] propose a general framework that
can be applied to both MDPs and POMDPs, in this work we focus on MDPs, so we only present the
simplified version of AdaRL for MDPs. The simplified AdaRL setting considers n source domains
and n′ target domains. The state at time t is represented as st = (s1,t, · · · , sd,t)⊤ ∈ Sd, while
at ∈ Am is the executed action and rt ∈ R is the reward signal. The generative process of the
environment in the k-th domain with k = 1, ..., n+ n′ can be described in terms of the transition
function for each dimension i = 1, ..., d of st as:

si,t = fi(c
s)s
i ⊙ st−1, c

a)s
i ⊙ at−1, c

θk)s
i ⊙ θs

k, ϵ
s
i,t) (A1)

where ⊙ denotes the element-wise product. The binary mask cs)si ∈ {0, 1}d represents which of
the state components sj,t−1 are used in the transition function of si,t. Similarly, ca)s

i ∈ {0, 1}m is a
mask that indicates whether the action directly affects si,t. The change factor θs

k ∈ Rp is the only
parameter that depends on the domain k in Eq. 1 and it encodes any change across domains in the
dynamics. The binary mask cθk)s

i ∈ {0, 1}p represents which of the θs
k components influence the

si,t. Finally, ϵsi,t is an i.i.d. random noise. Similarly the reward function is modeled as:

rt = h(cs)r ⊙ st−1, c
a)r ⊙ at−1,θ

r
k, ϵ

r
t) (A2)

where cs)ri ∈ {0, 1}d, ca)s
i ∈ {0, 1}m, and ϵrt is an i.i.d. random noise. The change factor θrk ∈ Rq

is the only parameter that depends on the domain k in Eq. A2 and it encodes any change in the reward
function. In this simplified setting, the binary masks c·)· can be seen as indicators of edges in a

3

Dynamic Bayesian Network (DBN). Under Markov and faithfulness assumptions, i.e., assuming
the conditional independences in the data and d-separations in the true underlying graph coincide,
the edges in the graph can be uniquely identified. This means one can learn the true causal graph
representing jointly all of the environments, even if the change parameters are latent.

In the general AdaRL framework, the representation is learned via a combination of a state prediction
network (to estimate the various fi) and a reward prediction network (to estimate h). All binary masks
c·)· and change factors θ·k are trainable parameters. All change factors θ·k are assumed to be constant
in each domain k. If the inputs are pixels, another encoder is added to infer the symbolic states,
forming a Multi-model Structured Sequential Variational Auto-Encoder (MiSS-VAE). MiSS-VAE
leverages the generative modeling to learn the data generation process in RL system with multiple
domains. All change factors in MiSS-VAE are modeled by constants in each domain. This setting is
not suitable for non-stationary RL where the change factors evolve over time.

In general, not all of the dimensions of the learned state and change factor vectors are useful in
policy learning. Huang et al. [14] select a subsection of dimensions which are essential for policy
optimization. Leveraging the learned representation as a DBN, we can select compact states and CFs
as having a directed path to a reward:

si,t ∈ smin ⇐⇒ si,t → ... → rt+τ for τ ≥ 1

θi ∈ θmin ⇐⇒ θi → ... → rt+τ for τ ≥ 1

B.3 Proofs

Proposition 3 (Identifiability with observed change factors). Suppose all the change factors θs
t and

θr
t are observed, i.e., Eq. 1-3) is an MDP. Under the Markov and faithfulness assumptions, all the

binary masks C·)· are identifiable.

Proof. We construct the graph in the Factored Non-stationary MDP as a dynamic Bayesian network
(DBN) G over the variables VMDP = {s1,t−1, . . . , sd,t−1, s1,t, . . . , sd,t, a1,t−1, . . . , am,t−1, rt−1},
and the change factors Vθ = {θs1,t−1, . . . , θ

s
p,t−1, θ

r
1,t−1, . . . , θ

r
q,t−1, θ

s
1,t, . . . , θ

s
p,t, θ

r
1,t, . . . , θ

r
q,t}.

In this setting, we can always the correct causal graph under the Markov and faithfulness assumptions.
We rewrite the time index of rt−1 as rt.

We could rewrite also the change factors time indices by shifting them back in time by one step,
i.e. t → t − 1, and this would allow us to model the whole setup as a Markov DBN without any
instantaneous effect. In this setup, we can leverage existing results to show that the true causal graph
is asymptotically identifiable from conditional independences in a time-series without any unobserved
confounders or instantaneous effects [56]. In order to make our proof clearer, we instead show step by
step how we can recover the parts of the graph related to VMDP, to Vθ and finally the connections
between them.

In this setting, there are no instantaneous effects except for the change factors, and the only causal
parents for a variable that is not a change factor at time t can be in the previous time-step t− 1. In
particular, as in usual MDPs, these are the only allowed edges:

1. state dimension si,t−1 at time t− 1 to state dimension sj,t at time t, for i, j ∈ {1, . . . , d}
(this includes the case in which i = j);

2. action dimension ak,t−1 at time t−1 to state dimension aj,t at time t, for j ∈ {1, . . . , d}, k ∈
{1, . . . ,m};

3. state dimension si,t−1 at time t − 1 to reward rt at time t, for i ∈ {1, . . . , d}, k ∈
{1, . . . ,m};

4. action dimension ak,t−1 at time t− 1 to reward rt at time t, for k ∈ {1, . . . ,m};
and in addition we have some extra knowledge about the allowed edges to and from change factors,
as expressed in our generative model in Equations (1-3):

1. transition change factor dimension θsi,t at time t to state dimension sj,t at time t, for
i ∈ {1, . . . , p}, j ∈ {1, . . . , d};

2. transition change factor dimension θsi,t at time t to transition change factor dimension θsj,t+1

at time t+ 1, for i, j ∈ {1, . . . , p};

4

3. reward change factor dimension θri,t at time t to reward change factor dimension θrj,t+1 at
time t+ 1, for i, j ∈ {1, . . . , q};

For the reward change factors, we assume they are fully connected to the reward, as shown in Eq. (2).
Using this background knowledge, we can learn the edges from any other variable Vi,t−1 → Vj,t, for
Vi,t−1, Vj,t ∈ VMDP, just by checking if Vi,t−1 ⊥̸⊥ Vi,t|θrt , θst , st−2,at−2. This dependence implies
that the variables are d-connected, under the Markov and faithfulness assumptions. Except for a
direct edge, there is no other possible path through the graph unrolled in time, since we have blocked
all influence of time-step t− 2 and earlier, and the paths through future time-steps contain colliders.
So this means that Vi,t−1 and Vj,t are adjacent, and in particular the edge follows the arrow of time,
from t− 1 to t. In our setting, we do not model the actions at time t, since we assume they are not
caused by any other variable. We also never need to condition on the reward to check if two variables
are adjacent, since it’s always on a collider path. This means we are able to learn the following binary
masks:

1. state dimensions to state dimensions Cs)s;
2. action dimensions to state dimensions Ca)s;
3. state dimensions to reward cs)r

4. action dimensions to reward ca)r;

To learn the edges between any change factor component to another change factor component, i.e.,
Vi,t−1 → Vj,t for Vi,t−1, Vj,t ∈ Vθ, we can just check if Vi,t−1 ⊥̸⊥ Vi,t|θrt−2, θ

s
t−2, since states,

actions and rewards can never be parents of the change factors, so we do not need to condition on
them to close any path through the earlier time-steps. We also assumed that change factor components
follow a Markov process, so they do not have instantaneous effects towards each other. This means
we are able to learn the following masks:

1. transition change factor dimensions to transition change factor dimensions Cθs)θs

;
2. reward change factor dimensions to reward change factor dimensions Cθr)θr

;

Finally to learn the edges between the change factors Vi,t ∈ Vθ and the other variables Vj,t ∈ VMDP,
we can just check if Vi,t ⊥̸⊥ Vj,t|st−1,at−1, θ

r
t−1, θ

s
t−1 and if this is true we can learn the edge

Vi,t → Vj,t. This means we are able to learn the mask:

1. transition change factor dimensions to state dimensions Cθs)s;

All of these results together show that if we have the Markov and faithfulness assumption, i.e. the
conditional independence tests return the true d-separations in the graph, and we observe the change
factors, we are able to completely identify the graph of the FN-MDP represented by the binary
masks.

Proposition 4 (Partial Identifiability with latent change factors). Suppose the generative process
follows Eq. 1-3 and the change factors θs

t and θr
t are unobserved. Under the Markov and faithfulness

assumptions, the binary masks Cs)s,Ca)s, cs)r and ca)r. Moreover, we can identify which state
dimensions are affected by θs

t and if the reward function changes.

Proof. In this case, the MDP is non-stationary, since we cannot observe the latent change factors.
We assume that we can represent the latent change factors as a smooth function of the observed time
index t. This assumption is called pseudo-causal sufficiency in previous work [9]. We can then use
the time index t as a surrogate variable to characterize the unobserved change factors, since at each
time-step their value will be fixed.

We again consider a DBN GMDP∪{t} over the variables VMDP =
{s1,t−1, . . . , sd,t−1, s1,t, . . . , sd,t, a1,t−1, . . . , am,t−1, rt−1} and the time index t. We rewrite
the time index of rt−1 as rt. Note that we do not represent the change factors in this DBN, but we
can capture their effect through t since they are assumed to be deterministic smooth functions of the
time index.

We can then reuse the results by Huang et al. [9] (Theorem 1) in which under the pseudo-causal
sufficiency (Assumption 1 in that paper) and the Markov and faithfulness assumption (Assumption 2),
one can asymptotically identify the true causal skeleton (i.e. the adjacencies) in the graph GMDP∪{t})
through conditional independence tests. In particular for any Vi, Vj ∈ VMDP ∪ {t}, Vi and Vj are
not adjacent if there exists a subset of the unrolled graph Vk of VMDP∪{t} \ {Vi, Vj} in GMDP∪{t}

5

such that Vi ⊥⊥ Vj |Vk. In particular, we can also focus on the tests that were used for the proof of the
previous Proposition, by just substituting the change factors with the time index t. The skeleton is
the undirected version of the causal graph, so this result only tells us that can asymptotically get the
correct undirected edges, but not their orientations.

Fortunately, in our setting we have some additional background knowledge that allows us to orient all
the existing edges. In particular, as in usual MDPs, these are the only allowed edges:

1. state dimension si,t−1 at time t− 1 to state dimension sj,t at time t, for i, j ∈ {1, . . . , d}
(this includes the case in which i = j);

2. action dimension ak,t−1 at time t−1 to state dimension aj,t at time t, for j ∈ {1, . . . , d}, k ∈
{1, . . . ,m};

3. state dimension si,t−1 at time t − 1 to reward rt at time t, for i ∈ {1, . . . , d}, k ∈
{1, . . . ,m};

4. action dimension ak,t−1 at time t− 1 to reward rt at time t, for k ∈ {1, . . . ,m};
This means that, for example, we cannot have a variable at time t causing a variable at time t− 1.
Therefore if two variables Vi,t−1 and Vj,t are adjacent, we already know that the direction of that
edge will be Vi,t−1 → Vj,t. This also implies that the following binary masks are identifiable (i.e. no
edge remains unoriented):

1. state dimensions to state dimensions Cs)s;
2. action dimensions to state dimensions Ca)s;
3. state dimensions to reward cs)r

4. action dimensions to reward ca)r;

These represent all of the edges in GMDP . We can also learn the edges from t to VMDP (by
construction we assume the opposite direction is not possible), which will represent the effect of the
change factors, as we show in the following.

Since t inherits all of the children of the latent change factors in G, we can further show that if
si,t ⊥⊥ t|st−1,at−1 in G, then none of the latent change factor dimensions θsj,t affect si,t, i.e.,
si,t ⊥⊥ t|st−1,at−1 ⇐⇒ cθ

s)s
i,j = 0. Intuitively, this means that the distribution of si,t only depends

on st−1 and at−1, and not on the timestep t, or in other words, this distribution is stationary. Under
the same principle, if rt ⊥⊥ t|st,at, then the reward is stationary.

C Details on Experimental Designs and Results

C.1 MuJoCo

We modify the Half-Cheetah environment into a variety of non-stationary settings. Details on the
change factors are given as below.

Changes on dynamics. We change the wind forces fw in the environment. We consider the
changing functions can be both continuous and discrete.

• Continuous changes: fwt = 10 + 10 sin(0.005 · t), where t is the timestep index;
• Discrete changes: (1) Across-episode:
a. Sine function: fw = 10 + 10 sin(0.5 · i)
b. Damping-like function: fw = 10 + 3 · (1.01)−⌈i/10⌉ sin(0.5 · i)
c. Piecewise linear function fw = 5 + 0.02 · ∥i− 1500∥; , where i is the episode index.
(2) Within-episode: fw = 10 + 10 sin(0.4 · ⌊t/10⌋), where t is the timestep index.

We also consider a special case where the agent’s mechanism is changing over time. Specifically, the
one random joint is disabled at the beginning of each episode.

Changes on reward functions. To introduce non-stationarity in the rewards, we change the target
speed vg in each episode. To make the learning process stable, we only consider the discrete changes
and the change points are located at the beginning of each episode. The changing function is
vg = 1.5 + 1.5 sin(0.2 · i), where i denotes the episode index.

6

Changes on both dynamics and rewards. We consider a more general but challenging scenario,
where the changes on dynamics and rewards can happen concurrently during the lifetime of the
agents. We change the wind forces and target speed at the beginning of each episode. At episode i,
the dynamics and reward functions are:{

fw = 10 + 10 sin(w · i)
vg = 1.5 + 1.5 sin(w · i)

Here, w is the non-stationary degree. We consider multiple values of w in our experiments. In
Fig. 2(d), w = 0.5. In Fig. 2(h), w is the value of non-stationary degree.

C.2 Sawyer benchmarks

In Sawyer-Reaching, the sawyer arm is trained to reach a target position sgt . The reward rt is the
difference between the current position st and the target position rt = −∥st − sg∥2. In this task,
we cannot directly modify the dynamics in the simulator, so consider a reward-varying scenario,
where the target location changes across each episode following a periodic function. In Sawyer-Peg,
the robot arm is trained to insert a peg into a designed target location sg. The reward function is
rt = I (∥st − sg∥2 ≤ 0.05).

We change the target location in Sawyer reaching task. The target location sgt is given as below:

sgt =

[
0.1 · ∥ cos(0.2 · i)∥
0.1 · sin(0.5 · i)

0.2

]

where i is the episode index. For Sawyer-Peg task, the target location sg changes at each episode.
The parameters in each dimension of sg is randomly sampled at episode i as below:

• x_range_1: (0.44, 0.45);
• x_range_2: (0.6, 0.61);
• y_range_1: (−0.08,−0.07);
• y_range_2: (0.07, 0.08);

C.3 Minitaur benchmarks

We consider both the changes on dynamics and reward functions.

Changes on dynamics. We change the mass of taurm in the environment. Specifically, we consider
both the continuous and discrete changes.

• Continuous changes: mt = 1.0 + 0.75 sin(0.005 · t);
• Discrete and within-episode changes: mt = 1.0 + 0.75 sin(0.3 · ⌊t/20⌋)

Changes on both dynamics and reward functions. We also consider a case where both the
dynamics and reward functions change at the beginning of each episode. We change the target speed
of minitaur to introduce the non-stationarity of reward functions. The change functions are given
below: {

mi = 1.0 + 0.5 sin(0.5 · i)
sv = 0.3 + 0.2 sin(0.5 · i)

C.4 Full results

Fig. A2 and A3 give the smoothed learning curves on average return over 10 runs versus timesteps
in Half-Cheetah and Minitaur experiments. Table C.4 shows the average final return over 10 runs
for all experiments. Fig. A4 demonstrates the return on Half-Cheetah with different non-stationary
degrees on multi-factor changing scenario. Fig. A5 gives average return on different benchmarks
with varying numbers of latent features with all evaluated approaches.

7

 

0.000 0.025 0.050 0.075 0.100 0.125

#. Steps (M)

°120

°100

°80

°60

°40

°20

R
ew

ar
d
s

0.000 0.025 0.050 0.075 0.100 0.125

#. Steps (M)

°120

°100

°80

°60

°40

°20

R
ew

ar
d
s

0.000 0.025 0.050 0.075 0.100 0.125

#. Steps (M)

°100

°80

°60

°40

°20

R
ew

ar
d
s

0.000 0.025 0.050 0.075 0.100 0.125

#. Steps (M)

°120

°100

°80

°60

°40

°20

R
ew

ar
d
s

0.000 0.025 0.050 0.075 0.100 0.125

#. Steps (M)

°120

°100

°80

°60

°40

°20

R
ew

ar
d
s

Ours LILAC TRIO VariBAD Oracle SAC

(a) (b)

(c) (e)

#. Steps (M)

R
et

u
rn

(d)

R
et

u
rn

#. Steps (M)

#. Steps (M) #. Steps (M) #. Steps (M)

R
et

u
rn

R
et

u
rn

R
et

u
rn

Figure A2: The average return (smoothed) across timesteps in Half-Cheetah experiments. (a) Discrete
(across-episode) changes on wind forces; (b) Discrete (within-episode) changes on wind forces;
(c) Continuous changes on wind forces; (d) Discrete (across-episode) changes on target speed; (e)
Discrete (across-episode) changes on wind forces and target speed concurrently.

0.00 0.05 0.10 0.15 0.20

#. Steps (M)

°40

°20

0

20

40

R
ew

ar
d
s

0.00 0.05 0.10 0.15 0.20

#. Steps (M)

°40

°30

°20

°10

0

10

20

30

R
ew

ar
d
s

0.00 0.05 0.10 0.15 0.20

#. Steps (M)

°40

°20

0

20

40

R
ew

ar
d
s

Ours LILAC TRIO VariBAD Oracle SAC

(a) (b) (c)

#. Steps (M) #. Steps (M) #. Steps (M)

R
et

u
rn

R
et

u
rn

R
et

u
rn

Figure A3: The average return (smoothed) across timesteps in Minitaur experiments. (a) Continuous
changes on the mass; (b) Discrete (across-episode) changes on the target speed; (c) Discrete (across-
episode) changes on mass and target speed concurrently.

8

Oracle SAC LILAC TRIO VariBAD Ours

Half-Cheetah: A-EP (D) −24.4
(±16.2)

−113.4 •
(±28.5)

−70.1 •
(±27.7)

−76.0 •
(±47.3)

−75.5 •
(±41.6)

-32.6
(±25.0)

Half-Cheetah: A-EP (A) −9.6
(±5.7)

−30.5 •
(±12.1)

−19.4 •
(±11.4)

−21.9 •
(±13.0)

−17.3 •
(±10.2)

-15.1
(±9.8)

Half-Cheetah: W-EP (D) −48.2
(±41.6)

−107.5 •
(±20.6)

−72.9 •
(±29.3)

−84.4 •
(±21.7)

−65.1 •
(±20.1)

-54.0
(±23.0)

Half-Cheetah: CONT (D) −12.3
(±27.7)

−112.0 •
(±16.9)

−58.4 •
(±22.3) - - -24.8

(±21.1)

Half-Cheetah: A-EP (R) −10.9
(±20.1)

−131.5 •
(±16.9)

−60.1 •
(±21.7)

−53.1 •
(±20.6)

−61.0 •
(±33.3)

-38.7
(±33.3)

Half-Cheetah: A-EP (R+D) −15.2
(±38.1)

−105.3 •
(±38.1)

−45.6
(±13.1)

−52.6 •
(±21.4)

−38.6
(±16.3)

-36.2
(±26.0)

Sawyer-Reaching: A-EP (R) 6.4
(±3.9)

−52.5 •
(±9.1)

−34.0 •
(±8.2)

−28.1 •
(±2.9)

−31.3 •
(±4.3)

-9.7
(±2.5)

Minitaur: CONT (D) 31.3
(±4.2)

−6.1 •
(±3.9)

−5.5 •
(±11.7) - - 6.3

(±10.4)

Minitaur: W-EP (D) 44.9
(±5.8)

−9.6 •
(±5.5)

8.5 •
(±14.9)

−0.8 •
(±4.7)

5.4 •
(±14.1)

20.2
(±11.9)

Minitaur: A-EP (R+D) 43.0
(±4.7)

−8.7 •
(±5.4)

3.8 •
(±3.0)

5.8 •
(±12.9)

21.5 •
(±9.7)

40.2
(±5.3)

Table A1: Average final return of different methods on Half-Cheetah, Sawyer-Reaching, and minitaur
benchmarks with a variety of non-stationary settings. The best non-oracle results w.r.t. the mean
are marked in bold. "•" indicates the baseline for which the improvements of our approach are
statistically significant (via Wilcoxon signed-rank test at 5% significance level). D, R, and A denote
changes on dynamics, reward and agent’s mechanism respectively. A-EP, W-EP, and CONT denote
across-episode, within-episode and continuous changes, respectively.

0.0 0.2 0.4 0.6 0.8

Nonstationary degrees

0.25

0.50

0.75

1.00

R
ew

a
rd
s

Ours

LILAC

TRIO

VariBAD

SAC

Nonstationary degrees

R
et

u
rn

Figure A4: Average final return on 10 runs on Half-Cheetah with different non-stationary degrees on
across-episode and multi-factor changes.

9

4 10 20 30 40

#. Latent features

0.2

0.4

0.6

0.8

1.0

R
ew

a
rd
s

4 10 20 30 40

#. Latent features

0.2

0.4

0.6

0.8

1.0

R
ew

a
rd
s

4 10 20 30 40

#. Latent features

0.4

0.6

0.8

1.0

R
ew

a
rd
s

(a) (b) (c)

4 10 20 30 40

#. Latent features

0.4

0.6

0.8

1.0

R
ew

a
rd
s

4 10 20 30 40

#. Latent features

0.2

0.4

0.6

0.8

1.0

R
ew

a
rd
s

4 8 20

#. Latent features

0.4

0.6

0.8

1.0

R
ew

a
rd
s

(d) (e) (f)

4 10 20 40

#. Latent features

0.6

0.8

1.0

R
ew

a
rd
s

4 10 20 40

#. Latent features

0.2

0.4

0.6

0.8

1.0

R
ew

a
rd
s

4 10 20 40

#. Latent features

0.4

0.6

0.8

1.0

R
ew

a
rd
s

(g) (h) (i)

Ours LILAC VariBAD TRIO

#. Latent features #. Latent features #. Latent features

#. Latent features #. Latent features #. Latent features

#. Latent features #. Latent features #. Latent features

R
et

u
rn

R
et

u
rn

R
et

u
rn

R
et

u
rn

R
et

u
rn

R
et

u
rn

R
et

u
rn

R
et

u
rn

R
et

u
rn

Figure A5: Average return on different benchmarks with different number of latent features. (a)
Half-Cheetah experiments with discrete (across-episode) changes on wind forces; (b) Half-Cheetah
experiments with discrete (within-episode) changes on wind forces; (c) Half-Cheetah experiments
with continuous changes on wind forces; (d) Half-Cheetah experiments with discrete (across-episode)
changes on target speed; (e) Half-Cheetah experiments with discrete (across-episode) changes on
wind forces and target speed concurrently; (f) Sawyer-Reaching experiment with discrete (across-
episode) changes on target locations; (g) Minitaur experiments with continuous changes on the mass;
(h) Minitaur experiments with discrete (across-episode) changes on the target speed; (i) Minitaur
experiments with discrete (across-episode) changes on mass and target speed concurrently.

10

C.5 Ablation studies on FANS-RL

 

CONT(D) A-EP(D) W-EP(D) A-EP(R) A-EP(R+D) A-EP(R+2D)

0.2

0.4

0.6

0.8

1.0

R
e
w
a
rd
s

A-EP(R)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
w
a
rd
s

CONT(D) W-EP(D) A-EP(R+D)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
w
a
rd
s

Ours

w/o structure

w/o smooth

w/o min sets

w/o sparsity

w/o reward pred

w/o state pred

w/o disentangled

LILAC

TRIO

VariBAD

R
et
u
rn

R
et
u
rn

R
et
u
rn

CONT(D) A-EP(D) W-EP(D) A-EP(R) A-EP(R+D) A-EP(R+2D)

A-EP(R)

CONT(D) W-EP(D) A-EP(R+D)

Figure A6: Ablation studies on different components in FANS-RL on (a) Half-Cheetah experiment;
(b) Sawyer experiment; and (c) Minitaur experiments. CONT, A-, W-EP indicate continuous, across-
episode, and within-episode changes, respectively. (D) and (R) represent changes on dynamics and
reward functions, respectively. Best viewed in color.

To verify the effectiveness of each component in our proposed framework, we consider the following
ablation studies:

•Without smoothness loss (Lsmooth);

•Without structural relationships (C·)·);

•Without compact representations (smin,θmin);

11

•Without sparsity losses (Lsparse);

•Without reward or state prediction losses (Lpred-rw, Lpred-dyn);

• Without the disentangled design of CF inference networks for dynamics (qsϕ) and rewards (qrϕ).
Specifically, we use one CF inference encoder and the mixed latent space of θs and θr in this setting.

As shown in Fig. A6, all the studied components benefit the performance. Furthermore, FANS-RL can
still outperform the strong baselines even without some of the components. Additionally, we conduct
the ablation studies where Cs)s, Cθs)s (or Cθr)r), and Cθs)θs

(or Cθr)θr

) have been switched off.
The results in Table C.5 indicate that 1) all these binary masks could lead to better policy learning
performances; and 2) Cθs)s and Cθr)r are the most crucial elements among them. This implies that
the changes happen in a sparse manner and our model can capture the sparse changes in dynamics or
reward functions.

Ours w/o Cs)s w/o Cθs)s or Cθr)r w/o Cθs)θs

or Cθr)θr

Half-Cheetah: A-EP (D) 1.00 0.93 0.84 0.95
Half-Cheetah: W-EP (D) 1.00 0.89 0.80 0.86
Half-Cheetah: CONT (D) 1.00 0.92 0.87 0.94
Half-Cheetah: A-EP (R) 1.00 0.85 0.79 0.83

Half-Cheetah: A-EP (R+D) 1.00 0.83 0.75 0.89
Sawyer-Reaching: A-EP (R) 1.00 0.95 0.90 0.92

Minitaur: CONT (D) 1.00 0.96 0.85 0.98
Minitaur: W-EP (D) 1.00 0.86 0.78 0.92

Minitaur: A-EP (R+D) 1.00 0.94 0.89 0.88

Table A2: Average final return of our framework for the ablations in which we switch off the
estimation of some binary masks.

We also test different smoothness losses, including the moving average (MA) Lsmooth =∑T
t=2 (∥θt − (θt−1 + θt−2 + . . .+ θt−T) /T∥1) and exponential moving average (EMA) Lsmooth =∑T
t=2 (∥θt − (βθt−1 + (1− β)vt−2)∥1), where vt = βθt + (1 − β)vt−1 and v0 is a zero vector.

Table C.5 shows the normalized final results of using different smoothness losses. We can find that
different smoothness losses have comparable performances.

Ours MA (T = 2) EMA (β = 0.98)

Half-Cheetah: A-EP (D_1) 1.00 1.02 0.89
Half-Cheetah: A-EP (D_2) 1.00 0.96 0.90
Half-Cheetah: W-EP (D) 1.00 0.88 1.05
Half-Cheetah: CONT (D) 1.00 1.04 0.95
Half-Cheetah: A-EP (R) 1.00 0.93 0.82

Half-Cheetah: A-EP (R+D) 1.00 1.09 1.02
Sawyer-Reaching: A-EP (R) 1.00 0.97 0.91

Minitaur: CONT (D) 1.00 1.08 0.96
Minitaur: W-EP (D) 1.00 0.86 1.03

Minitaur: A-EP (R+D) 1.00 0.97 0.94

Table A3: Average final return of using different smoothness losses.

C.6 Visualization on the learned change factors

Fig. A7 gives the visualization on the learned θ in Half-Cheetah. Fig. A7(a-b) show the pairwise
Euclidean distance between learned θr and the axes denote the values of change factors on rewards.
Similarly, Fig. A7(c-d) displays the Euclidean distance between learned θs and the values of change
factors on dynamics. The results suggest that there is a positive correlation between the distance of

12

learned θ versus the true change factors. This can verify that θ can capture the change factors in the
system.

0.04 0.48 0.89 2.06 2.85

0.
04

0.
48

0.
89

2.
06

2.
85

0 0.83 2.6 4.7 7.4

0.83 0 1.8 3.9 6.6

2.6 1.8 0 2.1 4.8

4.7 3.9 2.1 0 2.7

7.4 6.6 4.8 2.7 0

0

1

2

3

4

5

6

7

8

1.65 1.66 1.67 1.68 1.69
1.

65
1.

66
1.

67
1.

68
1.

69

0 0.07 0.04 0.2 0.01

0.07 0 0.03 0.13 0.08

0.04 0.03 0 0.16 0.05

0.2 0.13 0.16 0 0.21

0.01 0.08 0.05 0.21 0

0

1

2

3

4

5

6

7

8(a) (b)

0.78 2.4 10.9 12.52 15.2

0.
78

2.
4

10
.9

12
.5

2
15

.2

0 2.9 6.8 8.5 11

2.9 0 5.6 7.4 10

6.8 5.6 0 3.9 5.8

8.5 7.4 3.9 0 4.2

11 10 5.8 4.2 0

0

2

4

6

8

10

9.97 9.92 10.0 10.16 10.19

9.
97

9.
92

10
.0

10
.1

6
10

.1
9

0 0.51 0.83 0.26 0.94

0.51 0 0.35 0.63 0.55

0.83 0.35 0 0.28 0.46

0.26 0.63 0.28 0 0.31

0.94 0.55 0.46 0.31 0

0

2

4

6

8

10

(d)(c)

Figure A7: Visualization on the learned θr and θs. Best viewed in color.

C.7 Visualization on the learned graphs

In most of the enviroments we considered the underlying causal graph is unknown. Instead, we
will focus on evaluating whether the learned causal graph encodes reasonable causal relations in the
domain. Fig. A8 shows the learned graph in the Sawyer environment. S1, S2, and S3 are the state
variables of the end-effector, gripper, and the manipulated object respectively. Here the change factor
θr denotes the change in the reward function. These learned graphs represent a set of reasonable
cause-effect relations in the physical system, in which 1) the gripper is affected by the end-effector;
2) the object can be affected by the gripper (e.g., pushing, picking, etc.); 3) the action manipulates
the end-effector and the gripper; and 4) the reward is dependent on the object and the gripper.

S2,t+1

S3,t+1

S1,t

 objectS3

 end-effectorS1
 gripperS2

at at+1

rtθr
t

S1,t+1

S2,t

S3,t

θr
t+1

Figure A8: Visualization on the learned graph in Sawyer environment.

D Details on the Factored Adaptation Framework

Fig. A9 gives the pipeline of the whole framework.

13

Summary
Goal: Learning a policy that adapts to non-stationary
environments, including multiple simultaneous types of non-
stationarity (discrete/continuous, across/within episodes).

Contributions:
• FN-MDPs: a unified general framework for non-stationarity

based on ideas from causality and factored MDPs;
• FANS-RL: a general RL approach that interleaves model

estimation of FN-MDPs and policy optimisation;
• We can outperform SOTA in terms of return and robustness to

varying degrees of non-stationarity.

Estimating FN-MDPs: Factored Non-stationary VAE (FN-VAE)

Factored non-stationary MDP
(FN-MDP)

• FN-MDP = factored MDP + latent change factors
(transition function) and (reward function);

• We estimate and and learn the binary masks that
represent the causal graph:

• We show that causal edges are identified except the edges

between the latent factors;

• We identify compact representations and
sufficient for policy learning .

θs

θr

θs θr c⋅→⋅

si,t = fi(cs→s
i ⊙ st−1, ca→s

i ⊙ at−1, cθt→s
i ⊙ θs

t , ϵs
i,t)

rt = h(cs→r ⊙ st, ca→r ⊙ at, θr
t , ϵr

t)
θs

j,t = gs(cθs→θs

j ⊙ θs
t−1, ϵθs

t)
θr

k,t = gr(cθr→θr

k ⊙ θr
t−1, ϵθr

t)• We augment the Factored MDP with non-
stationary change factors (dynamics)
and (rewards).

• Similarly, we can identify the minimal and
sufficient change factors；

• With the learned FN-MDP, we can identify
the minimal and sufficient sets of states
and change factors for efficient policy
learning .

θs

θr

π (at ∣ smin
t , qϕ (θmin

t ∣ τ0:t))

s1,t−1

a1,t−1

rt

θs1,t

s2,t−1

s3,t−1

a2,t−1

s1,t

s2,t

s3,t

θs2,t

θr1,t
θr2,t

a1,t

a2,t

θs1,t+1
θs2,t+1

θr1,t+1

θr2,t+1

How to estimate the FN-MDP from RL trajectories?

Factored Non-stationary MDP (FN-MDP)

6
smin θmin

π(at ∣ smin
t , qϕ(θmin

t ∣ τ0:t))

Fan Feng (City University of Hong Kong), Biwei Huang (CMU), Kun Zhang (CMU, MBZUAI), Sara Magliacane (University of Amsterdam, MIT-IBM Watson AI Lab)

Experimental setting

Factored Adaptation for Non-stationary Reinforcement Learning

Graduate programs
prospectus

�����������������������������
����������������������������

 We learn a factored representation in form of a causal graph and latent change factors that represent non-stationarity.
 We leverage this to adapt quickly to multiple types of non-stationarity in the environment.

CodePaper

Ablation studies
• Different types of non-stationarity, including multiple simultaneous non-stationary parameters of different types;

• Different functions, e.g., sine, linear, damping.

Results

1. Graph estimation: estimate FN-MDP with FN-VAE from offline trajectories collected with initial policy;
2. Compact representations identification: freeze the learned masks and identify and ;
3. Policy learning: for each time step,

• Infer the mean and variance of latent change factors values with FN-VAE, and sample ;

• Choose an action with policy and add to replay buffer;

• Update FN-VAE (except the masks);
• Sample a batch from the replay buffer and update the policy network .

τ
smin θmin

θs
t , θr

t
at πψ (st, at, rt, θs

t , θr
t)

ψ

Factored Adaptation for Non-stationary RL (FANS-RL)

0.000 0.025 0.050 0.075 0.100 0.125

#. Steps (M)

�120

�100

�80

�60

�40

�20

R
ew

ar
ds

Ours

LILAC

TRIO

VariBAD

Oracle (average highest)

SAC (average highest)

Sawyer-reaching

Across-episode changes on
rewards (changing target)

0.00 0.05 0.10 0.15 0.20

#. Steps (M)

°40

°20

0

20

40

R
ew

ar
ds

0.000 0.025 0.050 0.075 0.100 0.125

#. Steps (M)

°100

°80

°60

°40

°20

R
ew

ar
ds

0.0 0.1 0.2 0.3 0.4

#. Steps (M)

°60

°40

°20

0

R
ew

ar
ds

(c)(a) (b)

#. Steps (M) #. Steps (M) #. Steps (M)

R
et

ur
n

R
et

ur
n

R
et

ur
n

Half-Cheetah V3

Continuous changes on
dynamics (sine wind)

0.00 0.05 0.10 0.15 0.20

#. Steps (M)

°40

°20

0

20

40

R
ew

ar
ds

0.000 0.025 0.050 0.075 0.100 0.125

#. Steps (M)

°100

°80

°60

°40

°20

R
ew

ar
ds

0.0 0.1 0.2 0.3 0.4

#. Steps (M)

°60

°40

°20

0

R
ew

ar
ds

(c)(a) (b)

#. Steps (M) #. Steps (M) #. Steps (M)

R
et

ur
n

R
et

ur
n

R
et

ur
n

Mini-taur

Across-episode changes on
both dynamics (mass) and reward (target velocity)

0.00 0.05 0.10 0.15 0.20

#. Steps (M)

°40

°20

0

20

40

R
ew

ar
ds

0.000 0.025 0.050 0.075 0.100 0.125

#. Steps (M)

°100

°80

°60

°40

°20

R
ew

ar
ds

0.0 0.1 0.2 0.3 0.4

#. Steps (M)

°60

°40

°20

0

R
ew

ar
ds

(c)(a) (b)

#. Steps (M) #. Steps (M) #. Steps (M)
R

et
ur

n

R
et

ur
n

R
et

ur
n

Simultaneous changes
0.0 0.2 0.4 0.6 0.8

0.4

0.6

0.8

1.0

R
ew

ar
d
s

Linear Damping Sin

0.6

0.7

0.8

0.9

1.0

R
ew

ar
d
s

(h)

1D 2D 1D+1R 2D+1R
0.4

0.6

0.8

1.0

R
ew

ar
d
s

(i) (j)

R
et
ur
n

R
et
ur
n

R
et
ur
n

Non-stationarity degrees
0.0 0.2 0.4 0.6 0.8

0.4

0.6

0.8

1.0

R
ew

ar
d
s

Linear Damping Sin

0.6

0.7

0.8

0.9

1.0

R
ew

ar
d
s

(h)

1D 2D 1D+1R 2D+1R
0.4

0.6

0.8

1.0

R
ew

ar
d
s

(i) (j)

R
et
ur
n

R
et
ur
n

R
et
ur
n

0.0 0.2 0.4 0.6 0.8

Nonstationary degrees

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d
s

Ours

LILAC

TRIO

VariBAD

A-EP(D) A-EP(R+D) A-EP(R+2D)
0.5

0.6

0.7

0.8

0.9

1.0

R
ew

ar
d
s

Ours

w/o structure

w/o smooth

w/o min sets

w/o sparsity

w/o reward pred

w/o state pred

w/o disentangled

A-EP(D) A-EP(R+D) A-EP(R+2D)
R
et
ur
n

A-EP(D) A-EP(R+D) A-EP(R+2D)
0.5

0.6

0.7

0.8

0.9

1.0

R
ew

ar
d
s

Ours

w/o structure

w/o smooth

w/o min sets

w/o sparsity

w/o reward pred

w/o state pred

w/o disentangled

Continuous

Discrete

episode
1 2 3 4

Continuous

episode
1 2 3 4

Within-episode
1 2 3 4

Across-episodeWithin-episode Across-episode

Learned mask

Learned mask

Learned mask

st−1

at−1 rt−1

Change factor

Inference network

Transition change factor

dynamics

Reward change factor

dynamics

st

at rt

Change factor

Inference network θs

t θr
t

Transition

decoder

Transition

decoder

Reward

decoder

Reward

decoder

Learned mask

̂st ̂st+1 ̂rt ̂rt+1

Trajectories collected with

an initial policy

(e.g., random)

τ

Figure A9: The whole pipeline of FANS-RL.

D.1 Algorithm pipelines of FN-VAE

Alg. A1 gives the full pipeline of FN-VAE.

Algorithm A1: Learning FN-MDPs using FN-VAE.
Input: Trajectories τ , FN-VAE parameters ϕ = (ϕs, ϕr), α = (α1, α2), β = (β1, β2), γ; Mask
matrices G = (C·)·), Boolean updateG, Learning rates λϕ, λγ , λα, λβ , λG, Length of collected
rollouts k; Number of training epochs E.
Output: ϕ, α1, α2, β1, β2, γ
for i = 1, 2, . . ., E do

Randomly sample a batch of trajectories τ0:k in τ
Infer the latent change factors
for j = s, r do

Infer µϕj (τ0:k) and σ2
ϕj (τ0:k) using qϕj

Infer µγj (θj0:k) and σ2
γj (θ

j
0:k) using pγj

Sample θj0:k ∼ N
(
µϕj (τ0:k) , σ

2
ϕj (τ0:k)

)
end for
Reconstruct and predict ŝ0:k, ŝ1:k, r̂0:k, r̂1:k using pα1

, pα2
, pβ1

, and pβ2

Update the FN-VAE model
ϕ← ϕ− λϕ∇ϕLVAE
γ ← γ − λγ∇γ (LKL + Lsmooth)
α← α− λα∇α(Lrec-dyn + Lpred-dyn)
β ← β − λβ∇β(Lrec-rw + Lpred-rw)
if updateG then
G← G− λG∇G (Lrec-dyn + Lrec-rw + LKL + Lsparse)

end if
end for

D.2 The framework dealing with discrete and across-episode changes

Alg. A2 gives the extended framework for handling both across- and within-episode changes in
non-stationary RL, respectively. The major difference between Alg. A2 and Alg. 1 is that we

14

Algorithm A2: Factored Adaptation for non-stationary RL (discrete changes.)
1: Init: Env; VAE parameters: ϕ = (ϕs, ϕr), α = (α1, α2), β = (β1, β2), γ; Mask matrices: C·)·;

Policy parameters: ψ; replay buffer: D; Number of episodes: N ; Episode horizon: H; Change
index t̃ = {t1, . . . , tM}; m = 0.

2: Output: ϕ, α1, α2, β1, β2, γ, ψ
3: # Model initialization
4: Collect multiple trajectories τ = {τ 1

0:k, τ
2
0:k, . . .} with policy πψ from Env;

5: Learn an initial VAE model on τ (Alg. A1)
6: Identify the compact representations smin and change factors θmin based on C·)·

7: # Model estimation & policy learning
8: for n = 0, . . . , N − 1 do
9: for t = 0, . . . ,H − 1 do

10: Observe st from Env;
11: # Estimating latent change factors
12: if n · (H − 1) + t ∈ t̃ then
13: m← m+ 1
14: for j = s, r do
15: Infer µγj (θjtm−1

) and σ2
γj (θ

j
tm−1

) via pγj

16: Sample θjtm ∼ N
(
µγj (θjtm−1

), σ2
γj (θ

j
tm−1

)
)

17: end for
18: end if
19: Generate at ∼ πψ(at | smint ,θmintm)
20: Receive rn,t from Env
21: Add (st,at, rt,θ

s
tm ,θ

r
tm) to replay buffer D;

22: Extract a trajectory with length k from D;
23: Learn VAE (Alg. A1) with updateG=False;
24: Sample a batch of data from D
25: Update policy network parameters ψ
26: end for
27: end for

only infer θ using via CF dynamics networks at change points. Furthermore, we also adjust the
objective functions of FN-VAE to fit the discrete changes. At timestep t in episode n, where
tm ≤

(
(n− 1) ·H + t

)
< tm+1, we have:

• Prediction and reconstruction losses:

Lrec-dyn =
T−2∑
t=1

Eθstm∼qϕ log pα1
(st|st−1,at−1,θ

s
tm ;C·)s)

Lpred-dyn =
T−2∑
t=1

Eθstm∼qϕ log pα2
(st+1|st,at,θs

tm)

(A3)

Lrec-rw =
T−2∑
t=1

Eθrtm∼qϕ log pβ1(rt|st,at,θrtm ; cs)r, ca)r)

Lpred-rw =
T−2∑
t=1

Eθrtm∼qϕ log pβ2(rt+1|st+1,at+1,θ
r
tm)

(A4)

• KL loss:

LKL =
T∑
t=2

KL
(
qϕs(θs

tm |θs
tm−1

, τ0:t))∥pγs(θs
tm |θs

tm−1
;Cθs)θs

)
)

+KL
(
qϕr (θrtm |θrtm−1

, τ0:t))∥pγr (θrtm |θrtm−1
;Cθr)θr

)
) (A5)

• Sparsity loss:

15

Lsparse =w1∥Cs)s∥1 + w2∥Ca)s∥1 + w3∥Cθs)s∥1
+ w6∥Cθs)θs∥1 + w7∥Cθr)θr∥1
+ w4∥cs)r∥1 + w5∥ca)r∥1

(A6)

• Smoothness loss:

Lsmooth =

T∑
t=2

(
||θs

tm − θs
tm−1
||1 + ||θr

tm − θr
tm−1
||1

)
(A7)

The total loss Lvae = k1Lrec + k2Lpred − k3LKL − k4Lsparse − k5Lsmooth, where k1, k2, k3, k4, and
k5 are adjustable hyper-parameters to balance the objective functions.

D.3 The framework dealing with raw pixels

We augment the generative process in Eq. 1-3 with the generative process of observation.

ot = ui(c
s)o
i ⊙ st, ϵ

o
t), (A8)

where u is a non-linear function and i = 1, . . . , d. cs)o := [cs)oi]di=1. ϵot is an i.i.d. random noise.
To learn the ui, we model the states as the latent variables in FN-VAE. Fig. A10 gives the modified

cs→r ca→r
θr

t

pα2 ôt+1

̂rt+1pβ2

̂rtpβ1

pγs

ôtpα1

Cθr →θ
r

at+1

cs→o

θs
t

Cθs →θ
s

st

θr
t+1

pα2 ôt+2

̂rt+2pβ2

̂rt+1pβ1

pα1
cs→o

cs→r ca→r

at+2

at+1

ôt+1

θs
t+1st+1

pγr

Cs→
s ,θs t,a

t

pγo

at

qs
ϕ

hs
t

ot at rt qr
ϕ

hr
t

qo
ϕ

ot+1 at+1 rt+1 qs
ϕ qr

ϕqo
ϕ

ho
t

Observation decoder

Reward decoder

State inference network

State dynamics network

CF inference network

CF dynamics network

Figure A10: The architecture of FN-VAE using raw pixel as input.

FN-VAE dealing with raw pixels, where the states are also in the latent space. Different from the
original FN-VAE, we incorporate state inference networks and state dynamics networks. Moreover,
we reconstruct and predict the current and future observations using the observation decoder. Detailed
objective functions are given below.1

• Prediction and reconstruction losses

1Here we give the example of handling the discrete changes.

16

Lrec-obs =
T−2∑
t=1

Est∼qϕo log pα1
(ot|st; cs)o)

Lpred-obs =
T−2∑
t=1

Est∼qϕo log pα2
(ot+1|st,θs

tm)

(A9)

Lrec-rw =
T−2∑
t=1

E(θrtm∼qϕ,st∼qϕo) log pβ1
(rt|st,at,θrtm ; cs)r, ca)r)

Lpred-rw =
T−2∑
t=1

E(θrtm∼qϕ,st∼qϕo) log pβ2
(rt+1|st,at+1,θ

r
tm)

(A10)

• KL loss

LKL =

T∑
t=2

KL
(
qϕs(θs

tm |θs
tm−1

, τ0:t))∥pγs(θs
tm |θs

tm−1
;Cθs)θs

)
)

+KL
(
qϕr (θrtm |θrtm−1

, τ0:t))∥pγr (θrtm |Cot)θ
r

)
)

+KL
(
qϕo(st|τ0:t,θstm))∥pγo(st|st−1,at−1,θ

s
tm ;Cs)s,Ca)s,Cθs)s)

) (A11)

where τ0:t = {o0, r0,o1, r1, . . . ,ot, rt}.
• Sparsity loss

Lsparse =w1∥Cs)s∥1 + w2∥Ca)s∥1 + w3∥Cθs)s∥1
+ w4∥cs)r∥1 + w5∥ca)r∥1
+ w6∥Cθs)θs∥1 + w7∥Cθr)θr∥1 + w8∥Cs)o∥1

(A12)

• Smooth loss

Lsmooth =

T∑
t=2

(
||θs

tm − θs
tm−1
||1 + ||θr

tm − θr
tm−1
||1

)
(A13)

D.4 Hyper-parameter selection

D.4.1 Factored model estimation

Input with symbolic states. In Half-Cheetah, Sawyer-Reaching, and Minitaur the symbolic states
are observable. For the CF dynamic networks, we use 2-layer fully connected networks. The number
of neurons is 512. For CF inference networks, we use 2-layer fully connected networks, where
the number of neurons is 256, followed by the LSTM networks with 256 hidden units. The initial
learning rates for all losses are set to be 0.1 with a decay rate 0.99. The batch size is 256 and the
length of time steps is equal to the horizon in each task. The number of RNN cells is 256. The
decoder networks are 2-layer fully connected networks. The number of neurons is 512.

Input with raw pixels. In Saywer-Peg, we directly learn and adapt in non-stationary environments
with raw pixels observed. Different from other experiments, we use the architecture described in
Fig. A10. At timestep t, we stack 4 frames as the input ot. A 5-layer convolutional networks is used
to extract the features of the trajectories of observations and rewards. The layers have 32, 64, 128,
256, and 256 filters. And the corresponding filter sizes are 5, 3, 3, 3, 4. The observation decoders
are the transpose of the convolutional networks. Then the extracted features are used as the input
of LSTM networks in state inference networks. The state inference networks and state dynamic
networks share the same architectures with the CF inference and dynamics networks, respectively.
We use the same CF inference networks, CF dynamics networks, and reward decoders with those in
cases with symbolic states as input. The number of latent features is 40.

17

0.0 0.1 0.2 0.3 0.4

#. Steps (M)

°60

°40

°20

0

20

R
ew

ar
d
s

Ours

ZeUS (best)

ZeUS (final)

Meld (best)

Meld (final)

CaDM (best)

CaDM (final)

HyperDynamics (best)

HyperDynamics (final)

R
et

u
rn

#. Steps (M)

Figure A11: Average return across 10 runs on Sawyer-Peg (raw pixels) with across-episode changes.

Balancing parameters in losses For all experiments:

• All w· are set to be 0.1;

• Weights of the reconstruction loss: k1 = 0.8;

• Weights of the prediction loss: k2 = 0.8;

• Weights of KL loss: k3 = 0.5;

• Weights of sparsity loss: k4 = 0.1;

• Weights of smooth loss: k5 = 0.02.

We use the automatic weighting method in [16] to learn the weights for k1, . . . ,K5 and grid search
for w1, . . . , w7.

Model initialization. Table A4, A5, and A6 provide the settings of learning the model initialization.

CONT (D) A-EP (D) W-EP (D) A-EP (R) A-EP (R+D)
trajectories 500 20 20 20 100

steps in each episode 50 50 50 50 50
episodes 10 100 100 100 100

Table A4: The selected hyper-parameters for model estimation in Half-Cheetah experiment.

Sawyer-Reaching Sawyer-Peg
trajectories 500 20

steps in each episode 150 40
episodes 10 100

Table A5: The selected hyper-parameters for model estimation in Saywer experiments.

18

CONT (D) W-EP (D) A-EP (R+D)
trajectories 500 50 80

steps in each episode 100 100 100
episodes 10 50 100

Table A6: The selected hyper-parameters for model estimation in Minitaur experiments.

D.4.2 Policy learning

In the Half-Cheetah, Sawyer-Reaching, and Minitaur experiments, we follow the learning rates
selection for policy networks in [7]. In Sawyer-Peg, for both actor and critic networks, we use 2-layer
fully-connected networks. The number of neurons is 256. For all experiments, we use standard
Gaussian to initialize the parameters of policy networks. The learning rate is 3e− 4. The relay buffer
capacity is 50, 000. The number of batch size is 256.

Details on TRIO and VariBAD. For TRIO and VariBAD, we meta-train the models (batch size:
5000, # epochs: 2 for all experiments) and show the learning curves of meta-testing. The tasks
parameters for meta-training are uniformly sampled from a Gaussian distribution. For all approaches,
we use the same set of hyper-parameters for policy optimization modules (i.e., SAC). For the latent
parameters in TRIO, we follow the original paper where the latent space from the inference network
is projected to a higher dimension. The number of latent parameters for TRIO is the same as those
in other approaches (Half-Cheetah and Minitaur: 40, Sawyer-Reaching: 20). We compared with
TS-TRIO, with the kernels set as in the original implementation.

E Experimental Platforms and Licenses

E.1 Platforms

All methods are implemented on 8 Intel Xeon Gold 5220R and 4 NVidia V100 GPUs.

E.2 Licenses

In our code, we have used the following libraries which are covered by the corresponding licenses:

• Tensorflow (Apache License 2.0),
• Pytorch (BSD 3-Clause "New" or "Revised" License),
• OpenAI Gym (MIT License),
• OpenCV (Apache 2 License),
• Numpy (BSD 3-Clause "New" or "Revised" License)
• Keras (Apache License).

19

	Introduction
	Factored Non-stationary MDPs
	Learning the Generative Process in FN-MDPs
	FANS-RL: Online Model Estimation and Policy Optimization
	Evaluation
	Related Work
	Conclusions, Limitations and Future Work
	Broader Impact
	Proofs and Causality Background
	Preliminaries
	AdaRL summary
	Proofs

	Details on Experimental Designs and Results
	MuJoCo
	Sawyer benchmarks
	Minitaur benchmarks
	Full results
	Ablation studies on FANS-RL
	Visualization on the learned change factors
	Visualization on the learned graphs

	Details on the Factored Adaptation Framework
	Algorithm pipelines of FN-VAE
	The framework dealing with discrete and across-episode changes
	The framework dealing with raw pixels
	Hyper-parameter selection

	Experimental Platforms and Licenses
	Platforms
	Licenses

