Additional notations. In the appendix, we use the following additional notations. For an integer $d \geq 1$, and a vector $\mathbf{v} \in \mathbb{R}^{d}$, the support $\operatorname{supp}(\mathbf{v})=\left\{j \in[d]: \mathbf{v}_{j} \neq 0\right\}$ denotes the indices of non-zero entries. For an event A on a probability space (Ω, B, P) (which is usually self-understood from the context), we denote by $I(A), \mathbb{1}\{A\}$, or $\mathbb{1}(A)$ its indicator function, such that $I(A)(\omega)=1$ if $\omega \in A$, and zero otherwise. We denote by Φ the cumulative distribution function of the standard normal random variable. For two scalars $a, b \in \mathbb{R}$, we write $a \wedge b=\min (a, b)$.

A Properties of Uniform Hashing

```
Algorithm 2 Encoding-Decoding via Uniform Hashing
    input: cluster \(\mathcal{C}^{t}\) with \(n \geq 1\) users having data \(X^{t, j}, j=1, \ldots, n\)
    for \(j=1, \ldots, n\) do
        Generate a uniformly random hash function \(h^{t, j}:[d] \rightarrow\left[2^{b}\right]\) using shared randomness
        Encode message \(Y^{t, j}=h^{t, j}\left(X^{t, j}\right)\) and send it to the server \(\quad \triangleright\) Encoding
    end for
    for \(k=1, \ldots, d\) do
        Count \(N_{k}^{t}\left(Y^{t,[n]}\right) \leftarrow\left|\left\{j \in[n]: h^{t, j}(k)=Y^{t, j}\right\}\right| \quad \triangleright\) Decoding
        Estimate \(\breve{b}_{k}^{t} \leftarrow N_{k}^{t} / n\)
    end for
    output: \(\widehat{\mathbf{b}}^{t}\)
```

Recall that for all $t \in[T]$ and $k \in[d], b_{k}^{t}=\frac{p_{k}^{t}\left(2^{b}-1\right)+1}{2^{b}} \in\left[\frac{1}{2^{b}}, 1\right]$.
Proposition 1 (Properties of Hashed Estimates). For each $t \in[T]$, suppose $\check{\mathbf{b}}^{t}$ is computed in cluster \mathcal{C}^{t} as in Algorithm 2 with i.i.d datapoints $X^{t, j} \sim \operatorname{Cat}\left(\mathbf{p}^{t}\right), \forall j \in[n]$. Then, it holds that

1. $\check{\mathbf{b}}^{1}, \ldots, \check{\mathbf{b}}^{T} \in[0,1]$ are independent;
2. for any $t \in[T]$ and $k \in[d], N_{k}^{t} \sim \operatorname{Binom}\left(n, b_{k}^{t}\right)$;
3. $\operatorname{supp}\left(\mathbf{p}^{t}-\mathbf{p}^{\star}\right)=\operatorname{supp}\left(\mathbf{b}^{t}-\mathbf{b}^{\star}\right)$ and $p_{k}^{\star}=1$ (or 0) is equivalent to $b_{k}^{\star}=1$ (or $\frac{1}{2^{b}}$, respectively).

Proof. Property 1 holds because $\widehat{\mathbf{b}}^{1}, \ldots, \widehat{\mathbf{b}}^{T}$ are obtained by cluster-wise encoding-decoding of independent datapoints. To see property 2 , we have for any $j \in[n]$ and $k \in[d]$ that

$$
\begin{aligned}
\mathbb{P}\left(h^{t, j}(k)=Y^{t, j}\right) & =\mathbb{P}\left(k=X^{t, j}\right)+\mathbb{P}\left(k \neq X^{t, j} \text { and } h^{t, j}(k)=h^{t, j}\left(X^{t, j}\right)\right) \\
& =p_{k}^{t}+\left(1-p_{k}^{t}\right) \cdot \frac{1}{2^{b}}=b_{k}^{t} \in\left[\frac{1}{2^{b}}, 1\right]
\end{aligned}
$$

Thus, $I\left(h^{t, j}(k)=Y^{t, j}\right)$ is a Bernoulli variable with success probability b_{k}^{t}. Since each datapoint is encoded with an independent hash function, N_{k}^{t} has a binomial distribution with n trials and parameter b_{k}^{t}. Property 3 directly follows from $\mathbf{b}^{t}-\mathbf{b}^{\star}=\left(\mathbf{p}^{t}-\mathbf{p}^{\star}\right)\left(2^{b}-1\right) / 2^{b}$ and as $b>0$.

Proposition 2 (Property of Debiasing). For any $\mathbf{y}, \mathbf{y}^{\star} \in \mathbb{R}^{d}$, let $\mathbf{x}=\operatorname{Proj}_{[0,1]}\left(\frac{2^{b} \mathbf{y}-1}{2^{b}-1}\right)$ and $\mathbf{x}^{\star}=\operatorname{Proj}_{[0,1]}\left(\frac{2^{b} \mathbf{y}^{\star}-1}{2^{b}-1}\right)$. Then it holds that for $q=1,2, \mathbb{E}\left[\left\|\mathbf{x}-\mathbf{x}^{\star}\right\|_{q}^{q}\right]=O\left(\mathbb{E}\left[\left\|\mathbf{y}-\mathbf{y}^{\star}\right\|_{q}^{q}\right]\right)$. In particular, we have for $q=1,2$ and any $t \in[T], \mathbb{E}\left[\left\|\widehat{\mathbf{p}}^{t}-\mathbf{p}^{t}\right\|_{q}^{q}\right]=O\left(\mathbb{E}\left[\left\|\widehat{\mathbf{b}}^{t}-\mathbf{b}^{t}\right\|_{q}^{q}\right]\right)$, where $\widehat{\mathbf{p}}^{t}=\operatorname{Proj}_{[0,1]}\left(\frac{2^{b} \widehat{\mathbf{b}}^{t}-1}{2^{b}-1}\right)$ is the final per-cluster estimate obtained in Algorithm 1

Proof. Using the inequality that $\left|\operatorname{Proj}_{[0,1]}(x)-\operatorname{Proj}_{[0,1]}(y)\right| \leq|x-y|$ for any $x, y \in \mathbb{R}$, we have

$$
\begin{aligned}
\mathbb{E}\left[\left\|\mathbf{x}-\mathbf{x}^{\star}\right\|_{q}^{q}\right] & =\sum_{k \in[d]} \mathbb{E}\left[\left|\operatorname{Proj}_{[0,1]}\left(\frac{2^{b} y_{k}-1}{2^{b}-1}\right)-\operatorname{Proj}_{[0,1]}\left(\frac{2^{b} y_{k}^{\star}-1}{2^{b}-1}\right)\right|^{q}\right] \\
& \leq \sum_{k \in[d]} \mathbb{E}\left[\left|\frac{2^{b}\left(y_{k}-y_{k}^{\star}\right)}{2^{b}-1}\right|^{q}\right]=\left(\frac{2^{b}}{2^{b}-1}\right)^{q} \mathbb{E}\left[\left\|\mathbf{y}-\mathbf{y}^{\star}\right\|_{q}^{q}\right]=O\left(\mathbb{E}\left[\| \mathbf{y}-\left.\mathbf{y}^{\star}\right|_{q} ^{q}\right]\right) .
\end{aligned}
$$

In the last step, we used that $2^{b} /\left(2^{b}-1\right) \leq 2$ for all $b \geq 1$, and thus the $O(\cdot)$ only depends on universal constants.

B General Lemmas

In this section, we state some general lemmas that will be used in the analysis.
Lemma 2 (Berry-Esseen Theorem; [55]). Assume that Z_{1}, \ldots, Z_{n} are i.i.d. copies of a random variable Z with mean μ, variance $\sigma^{2}>0$, and such that $\mathbb{E}\left[|Z-\mu|^{3}\right]<\infty$. Then,

$$
\sup _{x \in \mathbb{R}}\left|\mathbb{P}\left\{\sqrt{n} \frac{\bar{Z}-\mu}{\sigma} \leq x\right\}-\Phi(x)\right| \leq 0.4748 \frac{\gamma(Z)}{\sqrt{n}}
$$

where $\bar{Z}=\frac{1}{n} \sum_{i=1}^{n} Z_{i}$ and $\gamma(Z)=\mathbb{E}\left[|Z-\mu|^{3}\right] / \sigma^{3}$ is the absolute skewness of Z.
Lemma 3 (Hoeffding's Inequality; [55]). Let $Z_{1}, \ldots, Z_{n} \in[l, r], l<r$, be independent random variables and let $\bar{Z}=\frac{1}{n} \sum_{j=1}^{n} Z_{j}$. Then for any $\delta \geq 0$,

$$
\max \{\mathbb{P}(\bar{Z}-\mathbb{E}[\bar{Z}]>\delta), \mathbb{P}(\bar{Z}-\mathbb{E}[\bar{Z}]<-\delta)\} \leq \exp \left(-\frac{2 n \delta^{2}}{(r-l)^{2}}\right)
$$

Lemma 4 (Bernstein's Inequality; [54]). Let Z_{1}, \ldots, Z_{n} be i.i.d. copies of a random variable Z with $|Z-\mathbb{E}[Z]| \leq M, M>0$ and $\operatorname{Var}\left(Z_{1}\right)=\sigma^{2}>0$, and let $\bar{Z}=\frac{1}{n} \sum_{j=1}^{n} Z_{j}$. Then for any $\delta \geq 0$,

$$
\begin{equation*}
\mathbb{P}(|\bar{Z}-\mathbb{E}[\bar{Z}]|>\delta) \leq 2 \exp \left(-\frac{n \delta^{2}}{2\left(\sigma^{2}+M \delta\right)}\right) \leq 2 \exp \left(-\frac{n}{4} \min \left\{\frac{\delta^{2}}{\sigma^{2}}, \frac{\delta}{M}\right\}\right) \tag{6}
\end{equation*}
$$

The second inequality above directly follows from $\frac{1}{a+b} \geq \frac{1}{2} \min \left\{\frac{1}{a}, \frac{1}{b}\right\}$ for any $a, b>0$. Note that (6) also allows $\sigma=0$ because $\mathbb{P}(|\bar{Z}-\mathbb{E}[\bar{Z}]|>\delta)=0$ and $\min \left\{\delta^{2} / \sigma^{2} \triangleq+\infty, \delta / M\right\}=\frac{\delta}{M}$. Therefore, we use this lemma for all $\sigma \geq 0$ below.

B. 1 Analysis Framework

For each $t \in[T]$, we denote by

$$
\begin{equation*}
\mathcal{K}_{\alpha}^{t}=\left\{k \in[d]:\left(\breve{b}_{k}^{\star}-\breve{b}_{k}^{t}\right)^{2} \leq \alpha \breve{b}_{k}^{t} / n\right\} \tag{7}
\end{equation*}
$$

the set of entries in which the central estimate $\left[\widehat{\mathbf{b}}^{\star}\right]_{k}$ is adapted to cluster \mathcal{C}^{t}. In this language, the final estimates can be expressed as $\widehat{b}_{k}^{t}=\breve{b}_{k}^{\star} \mathbb{1}\left\{k \in \mathcal{K}_{\alpha}^{t}\right\}+\breve{b}_{k}^{t} \mathbb{1}\left\{k \notin \mathcal{K}_{\alpha}^{t}\right\}$ for $t \in[T]$. Therefore, it holds that, for $q=1,2$,

$$
\begin{equation*}
\mathbb{E}\left[\left\|\widehat{\mathbf{b}}^{t}-\mathbf{b}^{t}\right\|_{q}^{q}\right]=\sum_{k \in[d]} \mathbb{E}\left[\mathbb{1}\left\{k \in \mathcal{K}_{\alpha}^{t}\right\}\left|\check{b}_{k}^{\star}-b_{k}^{t}\right|^{q}\right]+\sum_{k \in[d]} \mathbb{E}\left[\mathbb{1}\left\{k \notin \mathcal{K}_{\alpha}^{t}\right\}\left|\check{b}_{k}^{t}-b_{k}^{t}\right|^{q}\right] . \tag{8}
\end{equation*}
$$

Let $\mathcal{I}^{t} \triangleq\left\{k \in[d]: b_{k}^{t}=b_{k}^{\star}\right.$, i.e., $\left.p_{k}^{t}=p_{k}^{\star}\right\}$ be set of entries at which the t-th cluster's distribution \mathbf{p}^{t} aligns with the central distribution \mathbf{p}^{\star}. We next bound the two terms from 8 in Lemmas 5 and 6 These do not need the independence of $\check{\mathbf{b}}^{\star}$ and $\check{\mathbf{b}}^{t}$, and hence do not require sample splitting despite the division between stages.
Lemma 5. For any $t \in[T], \alpha \geq 1$ and $\eta \in(0,1]$, with \mathcal{K}_{α}^{t} from (7), we have, for $q=1,2$

$$
\sum_{k \in[d]} \mathbb{E}\left[\mathbb{1}\left\{k \in \mathcal{K}_{\alpha}^{t}\right\}\left|\check{b}_{k}^{\star}-b_{k}^{t}\right|^{q}\right]=O\left(\mathbb{E}\left[\left\|\check{b}_{\mathcal{I}_{\eta} \cap \mathcal{I}^{t}}^{\star}-b_{\mathcal{I}_{\eta} \cap \mathcal{I}^{t}}^{\star}\right\|_{q}^{q}\right]+\sum_{k \notin \mathcal{I}_{\eta} \cap \mathcal{I}^{t}}\left(\frac{\alpha b_{k}^{t}}{n}\right)^{q / 2}\right)
$$

Proof. We first take $q=1$. For any $k \in[d]$, clearly

$$
\begin{equation*}
\mathbb{E}\left[\mathbb{1}\left\{k \in \mathcal{K}_{\alpha}^{t}\right\}\left|\check{b}_{k}^{\star}-b_{k}^{t}\right|\right] \leq \mathbb{E}\left[\left|\check{b}_{k}^{\star}-b_{k}^{t}\right|\right] . \tag{9}
\end{equation*}
$$

We use this bound for $k \in \mathcal{I}_{\eta} \cap \mathcal{I}^{t}$. For $k \notin \mathcal{I}_{\eta} \cap \mathcal{I}^{t}$, we instead bound

$$
\mathbb{E}\left[\mathbb{1}\left\{k \in \mathcal{K}_{\alpha}^{t}\right\}\left|\check{b}_{k}^{\star}-b_{k}^{t}\right|\right] \leq \mathbb{E}\left[\mathbb{1}\left\{k \in \mathcal{K}_{\alpha}^{t}\right\}\left|\check{b}_{k}^{\star}-\breve{b}_{k}^{t}\right|\right]+\mathbb{E}\left[\mathbb{1}\left\{k \in \mathcal{K}_{\alpha}^{t}\right\}\left|\check{b}_{k}^{t}-b_{k}^{t}\right|\right] .
$$

If $k \in \mathcal{K}_{\alpha}^{t}$, it holds by definition that $\left|\check{b}_{k}^{\star}-\breve{b}_{k}^{t}\right| \leq \sqrt{\alpha \breve{b}_{k}^{t} / n}$, thus we further have

$$
\begin{align*}
\mathbb{E}\left[\mathbb{1}\left\{k \in \mathcal{K}_{\alpha}^{t}\right\}\left|\breve{b}_{k}^{\star}-b_{k}^{t}\right|\right] & \leq \mathbb{E}\left[\mathbb{1}\left\{k \in \mathcal{K}_{\alpha}^{t}\right\} \sqrt{\alpha \check{b}_{k}^{t} / n}\right]+\mathbb{E}\left[\mathbb{1}\left\{k \in \mathcal{K}_{\alpha}^{t}\right\}\left|\check{b}_{k}^{t}-b_{k}^{t}\right|\right] \\
& \leq \mathbb{E}\left[\sqrt{\alpha \breve{b}_{k}^{t} / n}\right]+\mathbb{E}\left[\left|\check{b}_{k}^{t}-b_{k}^{t}\right|\right] \tag{10}
\end{align*}
$$

By Jensen's inequality and since $n \breve{b}_{k}^{t} \sim \operatorname{Binom}\left(n, b_{k}^{t}\right)$, we have

$$
\begin{equation*}
\mathbb{E}\left[\sqrt{\check{b}_{k}^{t}}\right] \leq \sqrt{\mathbb{E}\left[\check{b}_{k}^{t}\right]}=\sqrt{b_{k}^{t}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}\left[\left|\check{b}_{k}^{t}-b_{k}^{t}\right|\right] \leq \sqrt{\mathbb{E}\left[\left(\breve{b}_{k}^{t}-b_{k}^{t}\right)^{2}\right]}=\sqrt{\frac{b_{k}^{t}\left(1-b_{k}^{t}\right)}{n}} \leq \sqrt{\frac{b_{k}^{t}}{n}} \tag{12}
\end{equation*}
$$

Plugging (11) and (12) into (10), we find

$$
\begin{equation*}
\mathbb{E}\left[\mathbb{1}\left\{k \in \mathcal{K}_{\alpha}^{t}\right\}\left|\check{b}_{k}^{\star}-b_{k}^{t}\right|\right] \leq(\sqrt{\alpha}+1) \sqrt{\frac{b_{k}^{t}}{n}}=O\left(\sqrt{\frac{\alpha b_{k}^{t}}{n}}\right) . \tag{13}
\end{equation*}
$$

Summing up (9) over all entries in $\mathcal{I}_{\eta} \cap \mathcal{I}^{t}$ and summing up (13) over all entries not in $\mathcal{I}_{\eta} \cap \mathcal{I}^{t}$ leads to the claim for $q=1$ in Lemma[5. The case $q=2$ follows by a similar argument.
Lemma 6. For any $t \in[T], \alpha \geq 1$ and $\eta \in(0,1]$, with \mathcal{K}_{α}^{t} from (7), we have, for $q=1,2$

$$
\begin{aligned}
& \sum_{k \in[d]} \mathbb{E}\left[\mathbb{1}\left\{k \notin \mathcal{K}_{\alpha}^{t}\right\}\left|\check{b}_{k}^{t}-b_{k}^{t}\right|^{q}\right] \\
= & O\left(\sum_{k \in \mathcal{I}_{n} \cap \mathcal{I}^{t}} \mathbb{P}\left(k \notin \mathcal{K}_{\alpha}^{t}\right) \wedge\left(\frac{b_{k}^{t}\left(1-b_{k}^{t}\right)}{n}\right)^{q / 2}+\sum_{k \notin \mathcal{I}_{n} \cap \mathcal{I}^{t}}\left(\frac{b_{k}^{t}}{n}\right)^{q / 2}\right) .
\end{aligned}
$$

Proof. For $q=1$, note that

$$
\begin{equation*}
\mathbb{E}\left[\mathbb{1}\left\{k \notin \mathcal{K}_{\alpha}^{t}\right\}\left|\check{b}_{k}^{t}-b_{k}^{t}\right|\right] \leq \mathbb{P}\left(k \notin \mathcal{K}_{\alpha}^{t}\right) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}\left[\mathbb{1}\left\{k \notin \mathcal{K}_{\alpha}^{t}\right\}\left|\check{b}_{k}^{t}-b_{k}^{t}\right|\right] \leq \mathbb{E}\left[\left|\check{b}_{k}^{t}-b_{k}^{t}\right|\right] . \tag{15}
\end{equation*}
$$

Combining (14), (15) with the first inequality in (12) for $k \in \mathcal{I}_{\eta} \cap \mathcal{I}^{t}$, and using the last inequality in (12) for $k \notin \mathcal{I}_{\eta} \cap \mathcal{I}^{t}$ leads to the claim with $q=1$. We can similarly obtain the bound with $q=2$.

Combing Lemma 5 and 6 with (8), we find the following proposition:
Proposition 3. For any $\alpha \geq 1$, and $q=1,2$, it holds that

$$
\begin{aligned}
& \mathbb{E}\left[\left\|\widehat{\mathbf{b}}^{t}-\mathbf{b}^{t}\right\|_{q}^{q}\right]=O\left(\sum_{k \notin \mathcal{I}_{\eta} \cap \mathcal{I}^{t}}\left(\frac{\alpha b_{k}^{t}}{n}\right)^{q / 2}\right. \\
& \left.+\sum_{k \in \mathcal{I}_{\eta} \cap \mathcal{I}^{t}} \mathbb{P}\left(k \notin \mathcal{K}_{\alpha}^{t}\right) \wedge\left(\frac{b_{k}^{t}\left(1-b_{k}^{t}\right)}{n}\right)^{q / 2}+\mathbb{E}\left[\left\|\check{b}_{\mathcal{I}_{\eta} \cap \mathcal{I}^{t}}^{\star}-b_{\mathcal{I}_{\eta} \cap \mathcal{I}^{t}}^{\star}\right\|_{q}^{q}\right]\right)
\end{aligned}
$$

Proposition 3 does not rely on how $\breve{\mathbf{b}}^{\star}$ is obtained. The next part is devoted to proving that when $\breve{\mathbf{b}}^{\star}$ is obtained via a certain robust estimate, the bounds in Proposition 3 are small for certain values of α and η.

C Median-Based Method

In this section, we provide the proofs for the median-based SHIFT method. We first re-state the detailed version of some key results that apply to both the ℓ_{2} and ℓ_{1} errors.

Below, we use $\sigma_{k}=\sqrt{b_{k}^{\star}\left(1-b_{k}^{\star}\right)}$ to denote the standard deviation of the Bernoulli variable with success probability $b_{k}^{\star}=p_{k}^{\star}+\left(1-p_{k}^{\star}\right) / 2^{b}$. We also recall that \mathcal{B}_{k} is defined as the set of clusters with distributions mismatched with the central distribution at the k-th entry, i.e., $\mathcal{B}_{k}=\left\{t \in[T]: p_{k}^{t} \neq p_{k}^{\star}\right\}$, and \mathcal{I}_{η} is defined as the η-well-aligned entries, i.e., $\mathcal{I}_{\eta}=\left\{k \in[d]:\left|\mathcal{B}_{k}\right|<\eta T\right\}$.
Lemma 7 (Detailed statement of Lemma 11. Suppose $\check{\mathbf{b}}^{\star}=\operatorname{median}\left(\left\{\check{\mathbf{b}}^{t}\right\}_{t \in[T]}\right)$. Then for any $0<\eta \leq \frac{1}{5}, k \in \mathcal{I}_{\eta}$, and $q=1,2$, it holds that

$$
\mathbb{E}\left[\left|\check{b}_{k}^{\star}-b_{k}^{\star}\right|^{q}\right]=\tilde{O}\left(\left(\frac{\left|\mathcal{B}_{k}\right| \sigma_{k}}{T \sqrt{n}}\right)^{q}+\left(\frac{\sigma_{k}}{\sqrt{T n}}\right)^{q}+\left(\frac{1}{n}\right)^{q}\right) .
$$

Let us define, for $q=1,2$,

$$
E(q) \triangleq E(q ; n, d, b, T):=\frac{d}{\left(2^{b} T n\right)^{q / 2}}+\frac{d}{n^{q}} .
$$

Proposition 4. Suppose $\check{\mathbf{b}}^{\star}=\operatorname{median}\left(\left\{\check{\mathbf{b}}^{t}\right\}_{t \in[T]}\right)$. Then for any $0<\eta \leq \frac{1}{5}$ and $q=1,2$, it holds that

$$
\mathbb{E}\left[\left\|\check{b}_{\mathcal{I}_{\eta}}^{\star}-b_{\mathcal{I}_{\eta}}^{\star}\right\|_{q}^{q}\right]=\tilde{O}\left(\sum_{k \in \mathcal{I}_{\eta}}\left(\frac{\left|\mathcal{B}_{k}\right| \sigma_{k}}{T \sqrt{n}}\right)^{q}+E(q)\right) .
$$

We omit the proofs of Proposition 4 and Theorem 6(below), as Proposition 4 is a direct corollary of Lemma 7 by using $\sum_{k \in[d]} \sigma_{k}^{q}=O\left(d / 2^{b q / 2}\right)$ for $q=1,2$, and Theorem 6 follows from the same analysis as Theorem 5
Theorem 5 (Detailed statement of Theorem 11. Suppose $n \geq 2^{b+6} \ln (n)$ and $\alpha \geq 2(8+\sqrt{8 \ln (n)})^{2}$ with $\alpha=O(\ln (n))$. Then for the median-based SHIFT method, for any $0<\eta \leq \frac{1}{5}, q=1,2$, and $t \in[T]$,

$$
\mathbb{E}\left[\left\|\widehat{\mathbf{p}}^{t}-\mathbf{p}^{t}\right\|_{q}^{q}\right]=\tilde{O}\left(\sum_{k \notin \mathcal{I}_{\eta} \cap \mathcal{I}^{t}}\left(\frac{b_{k}^{t}}{n}\right)^{q / 2}+\sum_{k \in \mathcal{I}_{\eta} \cap \mathcal{I}^{t}}\left(\frac{\left|\mathcal{B}_{k}\right|^{2} b_{k}^{\star}}{T^{2} n}\right)^{q / 2}+E(q)\right)
$$

Furthermore, by setting $\eta=\Theta(1)$ with $\eta \leq \frac{1}{5}$, we have

$$
\mathbb{E}\left[\left\|\check{\mathbf{p}}^{t}-\mathbf{p}^{t}\right\|_{q}^{q}\right]=\tilde{O}\left(s^{1-q / 2}\left(\frac{\max \left\{2^{b}, s\right\}}{2^{b} n}\right)^{q / 2}+E(q) .\right)
$$

Theorem 6 (Detailed statement of Theorem 2). Suppose $n \geq \tilde{n} \geq 2^{b+6} \ln (\tilde{n})$ and $\alpha \geq 2(8+$ $\sqrt{8 \ln (\tilde{n})})^{2}$ with $\alpha=O(\ln (\tilde{n}))$. Then the median-based SHIFT method for predicting the distribution of the new cluster with \tilde{n} users achieves, for $q=1,2$,

$$
\mathbb{E}\left[\left\|\check{\mathbf{p}}^{T+1}-\mathbf{p}^{T+1}\right\|_{q}^{q}\right]=\tilde{O}\left(s^{1-q / 2}\left(\frac{\max \left\{2^{b}, s\right\}}{2^{b} \tilde{n}}\right)^{q / 2}+E(q) .\right)
$$

C. 1 Proof of Lemma 7

We first consider $T \leq 20 \ln (n)$. In this case, by Bernstein's inequality (Lemma 4 with $M=1$, we have for any $t \in[T] \backslash \mathcal{B}_{k}$ that for any $\delta \geq 0$,

$$
\begin{equation*}
\mathbb{P}\left(\left|\check{b}_{k}^{t}-b_{k}^{\star}\right|>\delta\right) \leq 2 e^{-\frac{n}{4} \min \left\{\delta^{2} / \sigma_{k}^{2}, \delta\right\}} \tag{16}
\end{equation*}
$$

Taking $\delta=\max \left\{\sigma_{k} \sqrt{8 \ln (n) / n}, 8 \ln (n) / n\right\}$ in (16), we find

$$
\begin{equation*}
\mathbb{P}\left(\left|\check{b}_{k}^{t}-b_{k}^{\star}\right|>\max \left\{\sigma_{k} \sqrt{\frac{8 \ln (n)}{n}}, \frac{8 \ln (n)}{n}\right\}\right) \leq \frac{2}{n^{2}} \tag{17}
\end{equation*}
$$

Since $\left|[T] \backslash \mathcal{B}_{k}\right|>\frac{T}{2}$ for any $k \in \mathcal{I}_{\eta}$ with $\eta \leq \frac{1}{5}$, we have, since $\breve{b}_{k}^{\star}=\operatorname{median}\left(\left\{\check{b}_{k}^{t}\right\}_{t \in[T]}\right)$, that there are $t_{-}, t_{+} \in[T] \backslash \mathcal{B}_{k}$ with $\check{b}_{k}^{t^{\prime}} \leq \check{b}_{k}^{\star} \leq \check{b}_{k}^{t^{\prime}}$. Hence, $\left|\check{b}_{k}^{\star}-b_{k}^{\star}\right| \leq \max _{t \in[T] \backslash \mathcal{B}_{k}}\left|\check{b}_{k}^{t}-b_{k}^{\star}\right|$.

Recall that for any random variable $0 \leq X \leq 1$ and any $\delta \geq 0, \mathbb{E}[X] \leq \delta+\mathbb{P}(X \geq \delta)$. Therefore, by taking the union bound of (17) over $k \in[T] \backslash \mathcal{B}_{k}$, and by the assumption that $T \leq 20 \ln (n)$, we have

$$
\begin{align*}
& \mathbb{E}\left[\left|\check{b}_{k}^{\star}-b_{k}^{\star}\right|\right] \leq \mathbb{E}\left[\max _{k \in[T] \backslash \mathcal{B}_{k}}\left|\check{b}_{k}^{t}-b_{k}^{\star}\right|\right] \leq \sigma_{k} \sqrt{\frac{8 \ln (n)}{n}}+\frac{8 \ln (n)}{n}+\frac{2 T}{n^{2}} \\
= & O\left(\sigma_{k} \sqrt{\frac{\ln (n)}{n}}+\frac{\ln (n)}{n}\right)=O\left(\sigma_{k} \frac{\ln (n)}{\sqrt{T n}}+\frac{\ln (n)}{n}\right)=\tilde{O}\left(\frac{\sigma_{k}}{\sqrt{T n}}+\frac{1}{n}\right) . \tag{18}
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
\mathbb{E}\left[\left(\check{b}_{k}^{\star}-b_{k}^{\star}\right)^{2}\right] \leq \sigma_{k}^{2} \frac{8 \ln (n)}{n}+\frac{64 \ln (n)^{2}}{n^{2}}+\frac{2 T}{n^{2}}=\tilde{O}\left(\frac{\sigma_{k}^{2}}{T n}+\frac{1}{n^{2}}\right) \tag{19}
\end{equation*}
$$

For each $k \in[d]$ with $b_{k}^{\star} \neq 1$ (recall that $b_{k}^{\star} \geq 1 / 2^{b}$ by definition), let $\gamma_{k}=\left(1-2 b_{k}^{\star}(1-\right.$ $\left.\left.b_{k}^{\star}\right)\right) / \sqrt{b_{k}^{\star}\left(1-b_{k}^{\star}\right)}$, and let $\tilde{F}_{k}(x):=\frac{1}{T-\left|\mathcal{B}_{k}\right|} \sum_{t \in[T] \backslash \mathcal{B}_{k}} \mathbb{1}\left(\breve{b}_{k}^{t} \leq x\right)$ be the empirical distribution function of $\left\{\breve{b}_{k}^{t}: b_{k}^{t}=b_{k}^{\star}\right\}$. Let $\varepsilon \in(0,1 / 2)$ and $C_{\varepsilon}=\sqrt{2 \pi} \exp \left(\left(\Phi^{-1}(1-\varepsilon)\right)^{2} / 2\right)$. For $\delta \geq 0$, define, recalling $\eta T>\left|\mathcal{B}_{k}\right|$ for all $k \in \mathcal{I}_{\eta}$,

$$
G_{k, T, \delta}=\frac{\left|\mathcal{B}_{k}\right|}{T}+\frac{10^{-8}}{T n}+\sqrt{\frac{\delta}{T-\left|\mathcal{B}_{k}\right|}}
$$

where the term $\frac{10^{-8}}{T n}$ is used to overcome some challenges due to the discreteness of empirical distributions, and can be replaced with other suitably small terms (see the proof of Lemma 9). Further, define

$$
G_{k, T, \delta}^{\prime}=G_{k, T, \delta}+0.4748 \frac{\gamma_{k}}{\sqrt{n}}
$$

To prove Lemma 1 for $T>20 \ln (n)$, we need the following additional lemmas:
Lemma 8. For any $\delta \geq 0$ such that

$$
\begin{equation*}
G_{k, T, \delta}^{\prime} \leq \frac{1}{2}-\varepsilon \tag{20}
\end{equation*}
$$

it holds with probability at least $1-4 e^{-2 \delta}$ that

$$
\tilde{F}_{k}\left(b_{k}^{\star}+C_{\varepsilon} \frac{\sigma_{k}}{\sqrt{n}} G_{k, T, \delta}^{\prime}\right) \geq \frac{1}{2}+\frac{\left|\mathcal{B}_{k}\right|}{T}+\frac{10^{-8}}{T n}
$$

and

$$
\tilde{F}_{k}\left(b_{k}^{\star}-C_{\varepsilon} \frac{\sigma_{k}}{\sqrt{n}} G_{k, T, \delta}^{\prime}\right) \leq \frac{1}{2}-\frac{\left|\mathcal{B}_{k}\right|}{T}-\frac{10^{-8}}{T n}
$$

Proof. The proof essentially follows Lemma 1 of [58]. We provide the proof for the sake of being self-contained.
Let $Z_{k}^{t}=\left(\check{b}_{k}^{t}-b_{k}^{t}\right) / \sqrt{\operatorname{Var}\left(\breve{b}_{k}^{t}\right)}$ be a standardized version of \breve{b}_{k}^{t} for each $t \in[T]$ and $k \in[d]$, with $b_{k}^{\star} \neq 1$. Let $\tilde{\Phi}_{k}(z)=\frac{1}{T-\left|\mathcal{B}_{k}\right|} \sum_{t \in[T] \backslash \mathcal{B}_{k}} \mathbb{1}\left(Z_{k}^{t} \leq z\right)$ be the empirical distribution of $\left\{Z_{k}^{t}: t \in\right.$ $\left.[T] \backslash \mathcal{B}_{k}\right\}$. The distribution of Z_{k}^{t} is identical $t \in[T] \backslash \mathcal{B}_{k}$, and we denote by Φ_{k} their common cdf.

By definition, $\mathbb{E}\left[\tilde{\Phi}_{k}(z)\right]=\Phi_{k}(z)$ for any $z \in \mathbb{R}$. Let $z_{1}>0>z_{2}$ be such that $\Phi\left(z_{1}\right)=\frac{1}{2}+G_{k, T, \delta}^{\prime}$ and $\Phi\left(z_{2}\right)=\frac{1}{2}-G_{k, T, \delta}^{\prime}$, which exist due to 20. Then, by Lemma 2 , we have

$$
\begin{equation*}
\Phi_{k}\left(z_{1}\right) \geq \frac{1}{2}+G_{k, T, \delta} \quad \text { and } \quad \Phi_{k}\left(z_{2}\right) \leq \frac{1}{2}-G_{k, T, \delta} \tag{21}
\end{equation*}
$$

Further, by the Hoeffding's inequality, we have for any $\delta \geq 0$ and $z \in \mathbb{R}$,

$$
\begin{equation*}
\left|\tilde{\Phi}_{k}(z)-\Phi_{k}(z)\right| \leq \sqrt{\frac{\delta}{T-\left|\mathcal{B}_{k}\right|}} \tag{22}
\end{equation*}
$$

with probability at least $1-2 e^{-2 \delta}$. Then, by a union bound of (22) for $z=z_{1}, z_{2}$, and by 21), it holds with probability at least $1-4 e^{-2 \delta}$ that

$$
\begin{equation*}
\tilde{\Phi}_{k}\left(z_{1}\right) \geq \frac{1}{2}+\frac{\left|\mathcal{B}_{k}\right|}{T}+\frac{10^{-8}}{T n} \quad \text { and } \quad \tilde{\Phi}_{k}\left(z_{2}\right) \leq \frac{1}{2}-\frac{\left|\mathcal{B}_{k}\right|}{T}-\frac{10^{-8}}{T n} \tag{23}
\end{equation*}
$$

Finally, we bound the values of z_{1} and z_{2}. By the mean value theorem, there exists $\xi \in\left[0, z_{1}\right]$ such that

$$
\begin{equation*}
G_{k, T, \delta}^{\prime}=z_{1} \Phi^{\prime}(\xi)=\frac{z_{1}}{\sqrt{2 \pi}} e^{-\frac{\xi^{2}}{2}} \geq \frac{z_{1}}{\sqrt{2 \pi}} e^{-\frac{z_{1}^{2}}{2}} \tag{24}
\end{equation*}
$$

By (20) and the definition of z_{1}, we have $z_{1} \leq \Phi^{-1}(1-\varepsilon)$, and thus, by (24), we have

$$
\begin{equation*}
z_{1} \leq \sqrt{2 \pi} G_{k, T, \delta}^{\prime} \exp \left(\frac{1}{2}\left(\Phi^{-1}(1-\varepsilon)\right)^{2}\right) \tag{25}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
z_{1} \geq-\sqrt{2 \pi} G_{k, T, \delta}^{\prime} \exp \left(\frac{1}{2}\left(\Phi^{-1}(1-\varepsilon)\right)^{2}\right) \tag{26}
\end{equation*}
$$

Since for all $z, \tilde{\Phi}_{k}(z)=\tilde{F}_{k}\left(\sigma_{k} z / \sqrt{n}+b_{k}^{\star}\right)$, plugging (25) and (26) into 23), we find the conclusion of this lemma.

This leads to our next result.
Lemma 9. For any $k \in[d]$ such that condition (20) holds, we have with probability at least $1-4 e^{-2 \delta}$ that

$$
\begin{equation*}
\left|\check{b}_{k}^{t}-b_{k}^{t}\right| \leq C_{\varepsilon} \frac{\sigma_{k}}{\sqrt{n}} G_{k, T, \delta}^{\prime}+\frac{0.4748 C_{\varepsilon}}{n} \tag{27}
\end{equation*}
$$

Proof. Let \hat{F}_{k} be the empirical distribution function of $\left\{\breve{b}_{k}^{t}: t \in[T]\right\}$, such that for all $x \in \mathbb{R}$, $\hat{F}_{k}(x):=\frac{1}{T} \sum_{t \in[T]} \mathbb{1}\left(\breve{b}_{k}^{t} \leq x\right)$. We have

$$
\begin{align*}
\left|\hat{F}_{k}(x)-\tilde{F}_{k}(x)\right| & =\left|\frac{1}{T} \sum_{t \in[T]} \mathbb{1}\left(\breve{b}_{k}^{t} \leq x\right)-\frac{1}{T-\left|\mathcal{B}_{k}\right|} \sum_{t \in[T] \backslash \mathcal{B}_{k}} \mathbb{1}\left(\check{b}_{k}^{t} \leq x\right)\right| \\
& =\left|\frac{1}{T} \sum_{t \in \mathcal{B}_{k}} \mathbb{1}\left(\breve{b}_{k}^{t} \leq x\right)-\frac{\left|\mathcal{B}_{k}\right|}{T\left(T-\left|\mathcal{B}_{k}\right|\right)} \sum_{t \in[T] \backslash \mathcal{B}_{k}} \mathbb{1}\left(\breve{b}_{k}^{t} \leq x\right)\right| \\
& \leq \max \left\{\frac{1}{T} \cdot\left|\mathcal{B}_{k}\right|, \frac{\left|\mathcal{B}_{k}\right|}{T\left(T-\left|\mathcal{B}_{k}\right|\right)} \cdot\left(T-\left|\mathcal{B}_{k}\right|\right)\right\}=\frac{\left|\mathcal{B}_{k}\right|}{T} . \tag{28}
\end{align*}
$$

Define $\tilde{F}_{k}^{-}(x):=\frac{1}{T-\left|\mathcal{B}_{k}\right|} \sum_{t \in[T] \backslash \mathcal{B}_{k}} \mathbb{1}\left(\breve{b}_{k}^{t}<x\right) \leq \tilde{F}_{k}(x)$. Then by (28) and Lemma 8, we have, with probability at least $1-4 e^{-2 \delta}$ that

$$
\begin{equation*}
\hat{F}_{k}\left(b_{k}^{\star}+C_{\varepsilon} \frac{\sigma_{k}}{\sqrt{n}} G_{k, T, \delta}^{\prime}\right) \geq \frac{1}{2}+\frac{10^{-8}}{T n} \quad \text { and } \quad \hat{F}_{k}^{-}\left(b_{k}^{\star}-C_{\varepsilon} \frac{\sigma_{k}}{\sqrt{n}} G_{k, T, \delta}^{\prime}\right) \leq \frac{1}{2}-\frac{10^{-8}}{T n} \tag{29}
\end{equation*}
$$

Let $\breve{b}_{k}^{(j)}, \forall j \in[T]$ be the j-th smallest element in $\left\{\breve{b}_{k}^{t}: t \in[T]\right\}$. Recalling the definition of the median, if T is odd, then $\check{b}_{k}^{\star}=\breve{b}_{k}^{((T+1) / 2)}$. Therefore, $b_{k}^{\star}+C_{\varepsilon} \frac{\sigma_{k}}{\sqrt{n}} G_{k, T, \delta}^{\prime}<\check{b}_{k}^{\star}$ implies $\hat{F}_{k}\left(b_{k}^{\star}+C_{\varepsilon} \frac{\sigma_{k}}{\sqrt{n}} G_{k, T, \delta}^{\prime}\right) \leq \frac{1}{2}-\frac{1}{2 T}$ and $b_{k}^{\star}-C_{\varepsilon} \frac{\sigma_{k}}{\sqrt{n}} G_{k, T, \delta}^{\prime}>\check{b}_{k}^{\star}$ implies $\hat{F}_{k}^{-}\left(b_{k}^{\star}-C_{\varepsilon} \frac{\sigma_{k}}{\sqrt{n}} G_{k, T, \delta}^{\prime}\right) \geq$ $\frac{1}{2}+\frac{1}{2 T}$, leading to a contradiction with 29).
On the other hand, if T is even, $\check{b}_{k}^{\star}=\left(\breve{b}_{k}^{(T / 2)}+\breve{b}_{k}^{(T / 2+1)}\right) / 2$. Therefore, $b_{k}^{\star}+C_{\varepsilon} \frac{\sigma_{k}}{\sqrt{n}} G_{k, T, \delta}^{\prime}<\breve{b}_{k}^{\star}$ implies $\hat{F}_{k}\left(b_{k}^{\star}+C_{\varepsilon} \frac{\sigma_{k}}{\sqrt{n}} G_{k, T, \delta}^{\prime}\right) \leq \frac{1}{2}$ and $b_{k}^{\star}-C_{\varepsilon} \frac{\sigma_{k}}{\sqrt{n}} G_{k, T, \delta}^{\prime}>\check{b}_{k}^{\star}$ implies $\hat{F}_{k}^{-}\left(b_{k}^{\star}-C_{\varepsilon} \frac{\sigma_{k}}{\sqrt{n}} G_{k, T, \delta}^{\prime}\right) \geq$ $\frac{1}{2}$, which is also contradictory to 29 .
To summarize, it holds that

$$
\left|\check{b}_{k}^{\star}-b_{k}^{\star}\right| \leq C_{\varepsilon} \frac{\sigma_{k}}{\sqrt{n}} G_{k, T, \delta}^{\prime}
$$

with probability at least $1-4 e^{-2 \delta}$.
If $T \leq 20 \ln (n)$, Lemma 7 follows directly from (18) and (19). Now, given Lemma 8 and Lemma 9 . we turn to prove Lemma 7 with $T \geq 20 \ln (n)$. We first check condition 20 . Since $\left|\mathcal{B}_{k}\right| \leq \eta T$ for any $k \in \mathcal{I}_{\eta}, \eta \leq \frac{1}{5}$, and $\gamma_{k} \sigma_{k} \leq 1$, we have for each $k \in \mathcal{I}_{\eta}$ that

$$
G_{k, T, \delta}^{\prime} \leq \eta+\frac{10^{-8}}{T n}+\sqrt{\frac{5 \delta}{4 T}}+\frac{0.4748}{\sqrt{n} \sigma_{k}}
$$

When $T \geq 20 \ln (n)$, for any $k \in[d]$ such that $\sigma_{k} \geq \frac{20}{\sqrt{n}(1-2 \eta)}$, taking $\delta=\ln (n)$ above, we have

$$
G_{k, T, \delta}^{\prime} \leq \eta+10^{-8}+\frac{1}{4}+0.4748 \frac{1-2 \eta}{20} \leq \frac{1}{2}-0.035755
$$

Therefore, condition (20) in Lemma 9 is satisfied with $\varepsilon=0.035755$, for which we can check that $C_{\varepsilon} \leq 13$. Thus, for any $\delta \leq \ln (n)$,

$$
\begin{equation*}
\mathbb{P}\left(\left|\check{b}_{k}^{\star}-b_{k}^{\star}\right| \geq 13 \frac{\sigma_{k}}{\sqrt{n}} G_{k, T, \delta}+\frac{13}{n}\right) \leq 4 e^{-2 \delta} \tag{30}
\end{equation*}
$$

Therefore, by (30), we have, using that for any random variable $0 \leq X \leq 1$ and any $0 \leq r \leq 1$, $\mathbb{E}[X] \leq r+\mathbb{P}(X \geq r)$, and that for $\delta=(\ln n) / 2$, one has $4 e^{-2 \delta}=4 / n$, we find

$$
\begin{equation*}
\mathbb{E}\left[\left|\check{b}_{k}^{\star}-b_{k}^{\star}\right|\right] \leq 13 \frac{\sigma_{k}}{\sqrt{n}} G_{k, T,(\ln n) / 2}+\frac{17}{n}=\tilde{O}\left(\frac{\sigma_{k}}{\sqrt{n}} \frac{\left|\mathcal{B}_{k}\right|}{T}+\frac{\sigma_{k}}{\sqrt{n T}}+\frac{1}{n}\right) \tag{31}
\end{equation*}
$$

Similarly, by the Cauchy-Schwarz inequality, we also have

$$
\begin{align*}
\mathbb{E}\left[\left(\check{b}_{k}^{\star}-b_{k}^{\star}\right)^{2}\right] & =O\left(\frac{\sigma_{k}^{2}}{n}\left(\frac{\left|\mathcal{B}_{k}\right|^{2}}{T^{2}}+\frac{\ln (n)}{T-\left|\mathcal{B}_{k}\right|}\right)+\frac{1}{n^{2}}+e^{-2 \ln (n)}\right) \\
& =\tilde{O}\left(\frac{\sigma_{k}^{2}}{n} \frac{\left|\mathcal{B}_{k}\right|^{2}}{T^{2}}+\frac{\sigma_{k}^{2}}{n T}+\frac{1}{n^{2}}\right) \tag{32}
\end{align*}
$$

On the other hand, for any $k \in[d] \backslash \mathcal{B}_{k}$ such that $\sigma_{k}<\frac{20}{\sqrt{n}(1-2 \eta)}$, by Bernstein's inequality and a union bound, we have

$$
\begin{equation*}
\mathbb{P}\left(\max _{k \in[T] \backslash \mathcal{B}_{k}}\left|\check{b}_{k}^{t}-b_{k}^{\star}\right|>\delta\right) \leq 2\left(T-\left|\mathcal{B}_{k}\right|\right) e^{-\frac{n}{4} \min \left\{\delta^{2} / \sigma_{k}^{2}, \delta\right\}} \leq 2 T e^{-\frac{n}{4} \min \left\{\frac{n(1-2 \eta)^{2} \delta^{2}}{400}, \delta\right\}} \tag{33}
\end{equation*}
$$

Since $\left|[T] \backslash \mathcal{B}_{k}\right|>\frac{T}{2}$, we have as before that $\left|\check{b}_{k}^{\star}-b_{k}^{\star}\right| \leq \max _{t \in[T] \backslash \mathcal{B}_{k}}\left|\check{b}_{k}^{t}-b_{k}^{\star}\right|$. Taking $\delta=$ $4 \max \left\{\ln \left(T n^{2}\right), 10 \sqrt{\ln \left(T n^{2}\right)}\right\} / n$ in (33), with the same steps as above, we find

$$
\begin{align*}
\mathbb{E}\left[\left|\check{b}_{k}^{\star}-b_{k}^{\star}\right|\right] & \leq \mathbb{E}\left[\max _{k \in[T] \backslash \mathcal{B}_{k}}\left|\check{b}_{k}^{t}-b_{k}^{\star}\right|\right] \leq \delta+2 T e^{-\frac{n}{4} \min \left\{\frac{(1-2 \eta)^{2} n \delta^{2}}{400}, \delta\right\}} \\
& \leq \frac{4 \max \left\{\ln \left(T n^{2}\right), 10 \sqrt{\ln \left(T n^{2}\right)}\right\}+2}{n}=\tilde{O}\left(\frac{1}{n}\right) \tag{34}
\end{align*}
$$

and

$$
\begin{equation*}
\mathbb{E}\left[\left(\breve{b}_{k}^{\star}-b_{k}^{\star}\right)^{2}\right] \leq \delta^{2}+2 T e^{-\frac{n}{4} \min \left\{\frac{(1-2 \eta)^{2} n \delta^{2}}{400}, \delta\right\}}=\tilde{O}\left(\frac{1}{n^{2}}\right) \tag{35}
\end{equation*}
$$

To summarize, combining (31), (32) with (34), (35), we complete the proof when $T>20 \ln (n)$.
Furthermore, by using $\sum_{k \in[d]} \sigma_{k}^{q}=O\left(d / 2^{b q / 2}\right)$ for $q=1,2$, we directly reach Proposition 4 ,

C. 2 Proof of Theorem 5

We first consider the case where $T \leq 20 \ln (n)$. By definition, \widehat{b}_{k}^{t} is either equal to \breve{b}_{k}^{t} or \breve{b}_{k}^{\star}, and the latter happens only when $k \in \mathcal{K}_{\alpha}^{t}$, i.e., $\left|\breve{b}_{k}^{\star}-\breve{b}_{k}^{t}\right| \leq \sqrt{\alpha \breve{b}_{k}^{t} / n}$. In this case, we have

$$
\left|\widehat{b}_{k}^{t}-b_{k}^{t}\right|=\left|\check{b}_{k}^{\star}-b_{k}^{t}\right| \leq\left|\check{b}_{k}^{t}-b_{k}^{t}\right|+\left|\check{b}_{k}^{\star}-\breve{b}_{k}^{t}\right| \leq\left|\check{b}_{k}^{t}-b_{k}^{t}\right|+\sqrt{\frac{\alpha \breve{b}_{k}^{t}}{n}}
$$

Therefore, we have $\left|\widehat{b}_{k}^{t}-b_{k}^{t}\right| \leq\left|\breve{b}_{k}^{t}-b_{k}^{t}\right|+\sqrt{\alpha \breve{b}_{k}^{t} / n}$ for all $k \in[d]$. This leads to

$$
\begin{align*}
\mathbb{E}\left[\left\|\widehat{\mathbf{b}}^{t}-\mathbf{b}^{t}\right\|_{1}\right] & \leq \mathbb{E}\left[\left\|\check{\mathbf{b}}^{t}-\mathbf{b}^{t}\right\|_{1}\right]+\sqrt{\frac{\alpha}{n}} \sum_{k \in[d]} \mathbb{E}\left[\sqrt{\breve{b}_{k}^{t}}\right] \\
& \leq \mathbb{E}\left[\left\|\check{\mathbf{b}}^{t}-\mathbf{b}^{t}\right\|_{1}\right]+\sqrt{\frac{\alpha}{n}} \sum_{k \in[d]} \sqrt{\mathbb{E}\left[\check{b}_{k}^{t}\right]} \tag{36}
\end{align*}
$$

where (36) holds by Jensen's inequality. By further using the Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
\mathbb{E}\left[\left\|\breve{\mathbf{b}}^{t}-\mathbf{b}^{t}\right\|_{1}\right] \leq \sqrt{d \mathbb{E}\left[\left\|\breve{\mathbf{b}}^{t}-\mathbf{b}^{t}\right\|_{2}^{2}\right]}=O\left(\frac{d}{\sqrt{2^{b} n}}\right) \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k \in[d]} \sqrt{\mathbb{E}\left[b_{k}^{t}\right]}=\sum_{k \in[d]} \sqrt{b_{k}^{t}} \leq \sqrt{d \sum_{k \in[d]} b_{k}^{t}}=O\left(\frac{d}{\sqrt{2^{b}}}\right) \tag{38}
\end{equation*}
$$

Plugging 37) and 38 into 36, we find

$$
\mathbb{E}\left[\left\|\check{\mathbf{b}}^{t}-\mathbf{b}^{t}\right\|_{1}\right]=\tilde{O}\left(\frac{d}{\sqrt{2^{b} n}}\right)=\tilde{O}\left(\frac{d}{\sqrt{2^{b} T n}}\right) .
$$

We can similarly prove

$$
\mathbb{E}\left[\left\|\check{\mathbf{b}}^{t}-\mathbf{b}^{t}\right\|_{2}^{2}\right]=\tilde{O}\left(\frac{d}{2^{b} n}\right)=\tilde{O}\left(\frac{d}{2^{b} T n}\right)
$$

Next we prove the case where $T \geq 20 \ln (n)=\Omega(\ln (n))$. We first consider the estimation errors over $k \in \mathcal{I}_{\eta} \cap \mathcal{I}^{t}$ such that $\sigma_{k} \geq \frac{20}{\sqrt{n}(1-2 \eta)}$. Let $\mathcal{E}_{k}^{t}:=\left\{\check{b}_{k}^{t} \geq \frac{1}{2} b_{k}^{t}\right.$ and $\left.\left|\check{b}_{k}^{\star}-b_{k}^{\star}\right| \leq 8 \sqrt{b_{k}^{\star} / n}\right\}$. If $n \geq 2^{b+6} \ln (n)$ and $0<\eta \leq 1 / 5$, then since $b_{k}^{\star} \geq \frac{1}{2^{b}}$ for any $k \in[d]$, we have

$$
\begin{aligned}
& 13 \frac{\sigma_{k}}{\sqrt{n}} G_{k, T, \ln n}+\frac{13}{n}=13 \frac{\sigma_{k}}{\sqrt{n}}\left(\frac{\left|\mathcal{B}_{k}\right|}{T}+\frac{10^{-8}}{T n}+\sqrt{\frac{\ln (n)}{T-\left|\mathcal{B}_{k}\right|}}\right)+\frac{13}{n} \\
\leq & 13 \frac{\sigma_{k}}{\sqrt{n}}\left(\frac{\left|\mathcal{B}_{k}\right|}{T}+\frac{10^{-8}}{T n}+\sqrt{\frac{5 \ln (n)}{4 T}}\right)+\frac{13}{n} \leq 13 \frac{\sigma_{k}}{\sqrt{n}}\left(\frac{1}{5}+10^{-8}+\frac{1}{4}\right)+\frac{13}{\sqrt{n 2^{b+6} \ln (n)}} \\
\leq & 13 \frac{\sigma_{k}}{\sqrt{n}}\left(\frac{1}{5}+10^{-8}+\frac{1}{4}\right)+\frac{13 \sqrt{b_{k}^{\star}}}{\sqrt{n 64 \ln (n)}} \leq 8 \sqrt{\frac{b_{k}^{\star}}{n}} .
\end{aligned}
$$

Hence, by (30), it holds that

$$
\begin{equation*}
\mathbb{P}\left(\check{b}_{k}^{\star}-b_{k}^{\star} \left\lvert\, \geq 8 \sqrt{\frac{b_{k}^{\star}}{n}}\right.\right) \leq \frac{4}{n^{2}} \tag{39}
\end{equation*}
$$

By Bernstein's inequality and as $b_{k}^{\star} \geq \frac{1}{2^{b}}$, we have

$$
\begin{equation*}
\mathbb{P}\left(\left|\breve{b}_{k}^{t}-b_{k}^{t}\right|>\frac{b_{k}^{t}}{2}\right) \leq 2 e^{-\frac{n}{4} \min \left\{\frac{b_{k}^{t}}{4\left(1-b_{k}^{t}\right)} \frac{b_{k}^{t}}{2}\right\}} \leq 2 e^{-\frac{n b_{k}^{t}}{16}} \leq 2 e^{-\frac{n}{16 \cdot 2^{b}}} \leq \frac{2}{n^{2}} \tag{40}
\end{equation*}
$$

where the last inequality holds because $n \geq 2^{b+6} \ln (n)$. Combining (40) with (39), we find $\mathbb{P}\left(\left(\mathcal{E}_{k}^{t}\right)^{c}\right) \leq \frac{6}{n^{2}}$. By definition, $k \notin \mathcal{K}_{\alpha}^{t}$ implies $\left|\breve{b}_{k}^{\star}-\breve{b}_{k}^{t}\right|>\sqrt{\alpha \breve{b}_{k}^{t} / n}$. On the event \mathcal{E}_{k}^{t}, this further implies $\left|\breve{b}_{k}^{\star}-\breve{b}_{k}^{t}\right|>\sqrt{\alpha b_{k}^{t} / 2 n}$. Combined with (39) and that $b_{k}^{\star}=b_{k}^{t}$ for any $k \in \mathcal{I}^{t}$, we have on the event \mathcal{E}_{k}^{t}

$$
\begin{equation*}
\left|\check{b}_{k}^{t}-b_{k}^{t}\right|=\left|\check{b}_{k}^{t}-b_{k}^{\star}\right| \geq\left|\check{b}_{k}^{t}-\check{b}_{k}^{\star}\right|-\left|\check{b}_{k}^{\star}-b_{k}^{\star}\right|>\sqrt{\frac{b_{k}^{t}}{n}}\left(\sqrt{\frac{\alpha}{2}}-8\right) \tag{41}
\end{equation*}
$$

Let $\zeta \triangleq \sqrt{\alpha / 2}-8 \geq \sqrt{8 \ln (n)}$ and $\mathcal{F}_{k}^{t}:=\left\{\left|\widehat{b}_{k}^{t}-b_{k}^{t}\right| \geq \zeta \sqrt{b_{k}^{t} / n}\right\}$. By Bernstein's inequality, and using $n \geq 2^{b+6} \ln (n)$, we have

$$
\begin{equation*}
\mathbb{P}\left(\mathcal{F}_{k}^{t}\right) \leq 2 e^{-\frac{n}{4} \min \left\{\frac{\zeta^{2}}{n\left(1-b_{k}^{t}\right)}, \zeta \sqrt{\frac{b_{k}^{t}}{n}}\right\}} \leq 2 e^{-\min \left\{\frac{\zeta^{2}}{4}, \frac{\zeta}{4} \sqrt{\frac{n}{2^{b}}}\right\}} \leq \frac{2}{n^{2}} \tag{42}
\end{equation*}
$$

Combining (41) with (42), we find that for any $k \in \mathcal{I}_{\eta} \cap \mathcal{I}^{t}$ with $\sigma_{k} \geq \frac{20}{\sqrt{n}(1-2 \eta)}$, it holds that

$$
\begin{aligned}
& \mathbb{P}\left(k \notin \mathcal{K}_{\alpha}^{t}\right) \leq \mathbb{P}\left(\left(\mathcal{E}_{k}^{t}\right)^{c}\right)+\mathbb{P}\left(\mathcal{E}_{k}^{t} \cap\left\{k \notin \mathcal{K}_{\alpha}^{t}\right\}\right) \leq \mathbb{P}\left(\left(\mathcal{E}_{k}^{t}\right)^{c}\right)+\mathbb{P}\left(\mathcal{E}_{k} \cap \mathcal{F}_{k}^{t}\right) \\
\leq & \mathbb{P}\left(\left(\mathcal{E}_{k}^{t}\right)^{c}\right)+\mathbb{P}\left(\mathcal{F}_{k}^{t}\right) \leq \frac{8}{n^{2}}
\end{aligned}
$$

On the other hand for any $k \in \mathcal{I}_{\eta} \cap \mathcal{I}^{t}$ with $\sigma_{k}<\frac{20}{\sqrt{n}(1-2 \eta)}$, we have

$$
\sqrt{\frac{b_{k}^{t}\left(1-b_{k}^{t}\right)}{n}}=\sqrt{\frac{b_{k}^{\star}\left(1-b_{k}^{\star}\right)}{n}}=\frac{\sigma_{k}}{\sqrt{n}}=O\left(\frac{1}{n}\right) .
$$

Therefore, we have for all $k \in \mathcal{I}_{\eta} \cap \mathcal{I}^{t}$, and $q=1,2$

$$
\begin{equation*}
\min \left\{\mathbb{P}\left(k \notin \mathcal{K}_{\alpha}^{t}\right),\left(\frac{b_{k}^{t}\left(1-b_{k}^{t}\right)}{n}\right)^{q / 2}\right\}=O\left(\frac{1}{n^{q}}\right) \tag{43}
\end{equation*}
$$

Since $\alpha=O(\ln (n))$, by 43) and Proposition 3, we obtain

$$
\begin{equation*}
\mathbb{E}\left[\left\|\widehat{\mathbf{b}}^{t}-\mathbf{b}^{t}\right\|_{1}\right]=\tilde{O}\left(\sum_{k \notin \mathcal{I}_{\eta} \cap \mathcal{I}^{t}} \sqrt{\frac{b_{k}^{t}}{n}}+\mathbb{E}\left[\left\|\breve{b}_{\mathcal{I}_{\eta} \cap \mathcal{I}^{t}}^{\star}-b_{\mathcal{I}_{\eta} \cap \mathcal{I}^{t}}^{\star}\right\|_{1}\right]+\frac{d}{n}\right) . \tag{44}
\end{equation*}
$$

Combining (44) with Proposition 4 and using that $\sigma_{k} \leq \sqrt{b_{k}^{\star}}=\sqrt{b_{k}^{t}}$ for any $k \in \mathcal{I}^{t}$, we have

$$
\begin{equation*}
\mathbb{E}\left[\left\|\widehat{\mathbf{b}}^{t}-\mathbf{b}^{t}\right\|_{1}\right]=\tilde{O}\left(\sum_{k \notin \mathcal{I}_{\eta} \cap \mathcal{I}^{t}} \sqrt{\frac{b_{k}^{t}}{n}}+\sum_{k \in \mathcal{I}_{\eta} \cap \mathcal{I}^{t}} \frac{\left|\mathcal{B}_{k}\right|}{T} \sqrt{\frac{b_{k}^{t}}{n}}+E(1)\right) \tag{45}
\end{equation*}
$$

Since $\left|\left(\mathcal{I}^{t}\right)^{c}\right|=\left\|\mathbf{p}^{t}-\mathbf{p}^{\star}\right\|_{0} \leq s$, by the Cauchy-Schwarz inequality, we have

$$
\begin{align*}
& \sum_{k \notin \mathcal{I}_{\eta} \cap \mathcal{I}^{t}} \sqrt{\frac{b_{k}^{t}}{n}} \leq \sum_{k \notin \mathcal{I}_{\eta}} \sqrt{\frac{b_{k}^{t}}{n}}+\sum_{k \notin \mathcal{I}^{t}} \sqrt{\frac{b_{k}^{t}}{n}} \leq \sum_{k \notin \mathcal{I}_{\eta}} \sqrt{\frac{b_{k}^{t}}{n}}+\sqrt{\frac{s \sum_{k \notin \mathcal{I}^{t}} b_{k}^{t}}{n}} \\
\leq & \sum_{k \notin \mathcal{I}_{\eta}} \sqrt{\frac{b_{k}^{t}}{n}}+\sqrt{\frac{s \sum_{k \notin \mathcal{I}^{t}}\left(\left(2^{b}-1\right) p_{k}^{t}+1\right)}{2^{b} n}} \leq \sum_{k \notin \mathcal{I}_{\eta}} \sqrt{\frac{b_{k}^{t}}{n}}+\sqrt{\frac{s\left(2^{b}-1+s\right)}{2^{b} n}} \tag{46}
\end{align*}
$$

Plugging 46 into 44, we further obtain

$$
\begin{equation*}
\mathbb{E}\left[\left\|\widehat{\mathbf{b}}^{t}-\mathbf{b}^{t}\right\|_{1}\right]=\tilde{O}\left(\sum_{k \notin \mathcal{I}_{\eta}} \sqrt{\frac{b_{k}^{t}}{n}}+\sum_{k \in \mathcal{I}_{\eta}} \frac{\left|\mathcal{B}_{k}\right|}{T} \sqrt{\frac{b_{k}^{t}}{n}}+\sqrt{\frac{s \max \left\{2^{b}, s\right\}}{2^{b} n}}+E(1)\right) \tag{47}
\end{equation*}
$$

Similarly, we can reach the following ℓ_{2} counterpart:

$$
\begin{equation*}
\mathbb{E}\left[\left\|\widehat{\mathbf{b}}^{t}-\mathbf{b}^{t}\right\|_{2}^{2}\right]=\tilde{O}\left(\sum_{k \notin \mathcal{I}_{\eta}} \frac{b_{k}^{t}}{n}+\sum_{k \in \mathcal{I}_{\eta}} \frac{\left|\mathcal{B}_{k}\right|^{2}}{T^{2}} \frac{b_{k}^{t}}{n}+\frac{\max \left\{2^{b}, s\right\}}{2^{b} n}+E(2)\right) . \tag{48}
\end{equation*}
$$

Note that $\sum_{k \in[d]}\left|\mathcal{B}_{k}\right| / T \leq s$ and for any set \mathcal{I} with $|\mathcal{I}|=\left\lceil\frac{s}{\eta}\right\rceil$,

$$
\sum_{k \in \mathcal{I}} \sqrt{\frac{b_{k}^{t}}{n}} \leq \sqrt{\frac{|\mathcal{I}| \sum_{k \in \mathcal{I}}\left(\left(2^{b}-1\right) p_{k}^{t}+1\right)}{2^{b} n}}=O\left(\sqrt{\frac{s / \eta \max \left\{2^{b}, s / \eta\right\}}{2^{b} n}}\right)
$$

Now, recalling the definition of \mathcal{I}_{η}, we apply Lemma 10 in with $\left(r_{k}, x_{k}\right)=\left(\sqrt{b_{k}^{t} / n},\left|\mathcal{B}_{k}\right| / T\right)$ for all $k \in[d]$, to find

$$
\mathbb{E}\left[\left\|\widehat{\mathbf{b}}^{t}-\mathbf{b}^{t}\right\|_{1}\right]=\tilde{O}\left(\sqrt{\frac{s / \eta \max \left\{2^{b}, s / \eta\right\}}{2^{b} n}}+E(1)\right)
$$

Therefore, for any $\eta=\Theta(1)$ with $\eta \leq \frac{1}{5}$, we finally have

$$
\mathbb{E}\left[\left\|\widehat{\mathbf{b}}^{t}-\mathbf{b}^{t}\right\|_{1}\right]=\tilde{O}\left(\sqrt{\frac{s \max \left\{2^{b}, s\right\}}{2^{b} n}}+E(1)\right)
$$

Similarly, by combining (48) with Lemma 10 , we have for any $\eta=\Theta(1)$ with $\eta \leq \frac{1}{5}$,

$$
\mathbb{E}\left[\left\|\widehat{\mathbf{b}}^{t}-\mathbf{b}^{t}\right\|_{2}^{2}\right]=\tilde{O}\left(\frac{\max \left\{2^{b}, s\right\}}{2^{b} n}+E(2)\right)
$$

The result directly follows Proposition 2 ,
Lemma 10. Given $\eta \in(0,1]$, $r_{k} \geq 0$ for all $k \in[d]$, and for $q=1,2$, consider the functions $f_{q}:\left\{x \in \mathbb{R}^{d}: 0 \leq x_{k} \leq 1, \forall k \in[d]\right.$ and $\left.\sum_{k \in[d]} x_{k} \leq s\right\} \rightarrow \mathbb{R}, f_{q}\left(x_{1}, \ldots, x_{d}\right):=$ $\sum_{k \in[d]} r_{k}^{q}\left(\mathbb{1}\left\{x_{k} \geq \eta\right\}+x_{k}^{q} \mathbb{1}\left\{x_{k}<\eta\right\}\right)$. Then it holds that

$$
\begin{equation*}
\max _{x_{1}, \ldots, x_{d}} f_{q}\left(x_{1} \ldots, x_{d}\right) \leq \sum_{k=1}^{\lceil s / \eta\rceil} r_{(k)}^{q} \tag{49}
\end{equation*}
$$

where $r_{(1)} \geq \cdots \geq r_{(d)}$ is the non-decreasing rearrangement of $\left\{r_{1}, \ldots, r_{d}\right\}$.
Proof. We only prove the result for f_{1}, and the result for function f_{2} follows similarly. Note that $r_{k}\left(\mathbb{1}\left\{x_{k} \geq \eta\right\}+x_{k} \mathbb{1}\left\{r_{k} \geq \eta\right\}\right)$ is increasing with respect to r_{k} and x_{k}. To consider the maximum of the sum in f, by the rearrangement inequality, without loss of generality, we can assume $r_{1} \geq r_{2} \geq \cdots \geq r_{d} \geq 0$ and $1 \geq x_{1} \geq x_{2} \geq \cdots \geq x_{d} \geq 0$. In this case, we claim that the maximum is attained at $x_{1}=\cdots=x_{\lfloor s / \eta\rfloor}=\eta, x_{\lfloor s / \eta\rfloor+1}=s-\eta\lfloor s / \eta\rfloor$, and $x_{k}=0$ for all $k>\lfloor s / \eta\rfloor+1$. Further, the maximum is $\sum_{k=1}^{\lfloor s / \eta\rfloor} r_{k}+r_{\lfloor s / \eta\rfloor+1}(s-\eta\lfloor s / \eta\rfloor)^{2}$, which is upper bounded by the right-hand side of 49 . We now use the exchange argument to prove the claim.

Step 1: If there is some k such that $x_{k}>\eta \geq x_{k+1}$, then defining x^{\prime} by letting $\left(x_{k}^{\prime}, x_{k+1}^{\prime}\right)=$ $\left(\eta, x_{k}+x_{k+1}-\eta\right)$ while for other $j, x_{j}^{\prime}=x_{j}$, increases the value of f. Therefore, the maximum is attained by x such that for some j, $x_{1}=\cdots=x_{j}=\eta>x_{j+1} \geq \cdots \geq x_{d}$.
Step 2: If there is some k such that $\eta>x_{k} \geq x_{k+1}>0$, then defining x^{\prime} by letting $\left(x_{k}^{\prime}, x_{k+1}^{\prime}\right)=$ $\left(\min \left\{\eta, x_{k}+x_{k+1}\right\}, \max \left\{0, x_{k}+x_{k+1}-\eta\right\}\right)$ while for other $j, x_{j}^{\prime}=x_{j}$, increases the value of f. Therefore, combined with Step 1 , the maximum is attained by x such that for some $j, x_{1}=\cdots=x_{j}=\eta>x_{j+1} \geq 0$ and $x_{k}=0$ for all $k>j+1$. Thus most one element lies in $(0, \eta)$.

Combining Step 1 and Step 2 above, we complete the proof of the claim, which further leads to (49).

D Trimmed-Mean-Based Method

In this section, we study the trimmed-mean-based estimator. Fix $\omega \in(0,1 / 2)$. Specifically, for each $k \in[d]$, let \mathcal{U}_{k} be the subset of $\left\{\left[\check{\mathbf{p}}^{t}\right]_{t \in[T]}\right\}$ obtained by removing the largest and smallest ωT element \int^{3}. Then, the trimmed-mean-based method can be expressed as

$$
\begin{equation*}
\check{b}_{k}^{\star}=\frac{1}{\left|\mathcal{U}_{k}\right|} \sum_{t \in \mathcal{U}_{k}} \check{b}_{k}^{t} \tag{50}
\end{equation*}
$$

We also write $\check{\mathbf{b}}^{\star}=\operatorname{trmean}\left(\left\{\check{\mathbf{b}}^{t}\right\}_{t \in[T]}, \omega\right)$. For any chosen trimming proportion $0 \leq \eta \leq \omega \leq \frac{1}{5}$, we control the estimation error of each η-well aligned entry. Intuitively, this is small because there are at most a fraction of η elements from heterogeneous distributions. These are trimmed if they behave as outliers, and otherwise kept in \mathcal{U}_{k}. The error control for a single entry $k \in \mathcal{I}_{\eta}$ is in Lemma 11
Lemma 11. Suppose $\check{\mathbf{b}}^{\star}=\operatorname{trmean}\left(\left\{\check{\mathbf{b}}^{t}\right\}_{t \in[T]}, \omega\right)$ such that $0 \leq \omega \leq \frac{1}{5}$. Then for each $k \in \mathcal{I}_{\eta}$ with $0<\eta \leq \omega$ and any $q=1,2$, it holds that

$$
\begin{equation*}
\mathbb{E}\left[\left|\check{b}_{k}^{\star}-b_{k}^{\star}\right|^{q}\right]=\tilde{O}\left(\left(\omega^{2} \frac{b_{k}^{\star}}{n}\right)^{q / 2}+\left(\frac{b_{k}^{\star}}{T n}\right)^{q / 2}+\frac{1}{(T n)^{q}}+\left(\frac{\omega}{n}\right)^{q}\right) \tag{51}
\end{equation*}
$$

Proof. To prove Lemma 11, we need the following lemma.
Lemma 12. For each $k \in \mathcal{I}_{\eta}$ with $0<\eta \leq \omega \leq \frac{1}{5}$, and any $\varepsilon_{k}, \delta_{k} \geq 0$, it holds with probability at least $1-2 e^{-\frac{\left(T-\left|\mathcal{B}_{k}\right|\right) n}{4} \min \left\{\frac{\varepsilon_{k}^{2}}{\sigma_{k}^{2}}, \varepsilon_{k}\right\}}-2\left(T-\left|\mathcal{B}_{k}\right|\right) e^{-\frac{n}{4} \min \left\{\frac{\delta_{k}^{2}}{\sigma_{k}^{2}}, \delta_{k}\right\}}$ that

$$
\left|\check{b}_{k}^{\star}-b_{k}^{\star}\right| \leq \frac{\varepsilon_{k}+3 \omega \delta_{k}}{1-2 \omega}
$$

Proof of Lemma 12 By Bernstein's inequality and the union bound, we have for any $\varepsilon_{k}, \delta_{k}>0$ that

$$
\mathbb{P}\left(\left|\frac{1}{T-\left|\mathcal{B}_{k}\right|} \sum_{t \in[T] \backslash \mathcal{B}_{k}} \check{b}_{k}^{t}-b_{k}^{\star}\right|>\varepsilon_{k}\right) \leq 2 e^{-\frac{\left(T-\left|\mathcal{B}_{k}\right|\right) n}{4} \min \left\{\frac{\varepsilon_{k}^{2}}{\sigma_{k}^{2}}, \varepsilon_{k}\right\}}
$$

and

$$
\mathbb{P}\left(\max _{t \in[T] \backslash \mathcal{B}_{k}}\left|\check{b}_{k}^{t}-b_{k}^{\star}\right|>\delta_{k}\right) \leq 2\left(T-\left|\mathcal{B}_{k}\right|\right) e^{-\frac{n}{4} \min \left\{\frac{\delta_{k}^{2}}{\sigma_{k}^{2}}, \delta_{k}\right\}}
$$

By the definition of $\check{\breve{b}_{k}^{\star}}$, we have

$$
\begin{aligned}
& \left|\check{b}_{k}^{\star}-b_{k}^{\star}\right|= \\
= & \frac{1}{T(1-2 \omega)}\left|\sum_{t \in \mathcal{U}_{k}} \check{b}_{k}^{t}-b_{k}^{\star}\right| \\
= & \frac{1}{T(1-2 \omega)}\left|\sum_{t \in[T] \backslash \mathcal{B}_{k}}\left(\breve{b}_{k}^{t}-b_{k}^{\star}\right)-\sum_{t \in[T] \backslash\left(\mathcal{B}_{k} \cup \mathcal{U}_{k}\right)}\left(\breve{b}_{k}^{t}-b_{k}^{\star}\right)+\sum_{t \in \mathcal{B}_{k} \cap \mathcal{U}_{k}}\left(\check{b}_{k}^{t}-b_{k}^{\star}\right)\right| \\
= & \left.\left|\sum_{t \in[T] \backslash \mathcal{B}_{k}} \check{b}_{k}^{t}-b_{k}^{\star}\right|+\left|\sum_{i \notin \mathcal{B}_{k} \cup \mathcal{U}_{k}} \check{b}_{k}^{t}-b_{k}^{\star}\right|+\left|\sum_{t \in \mathcal{B}_{k} \cap \mathcal{U}_{k}} \check{b}_{k}^{t}-b_{k}^{\star}\right|\right) .
\end{aligned}
$$

It is clear that

$$
\left|\sum_{t \in[T] \backslash\left(\mathcal{B}_{k} \cup \mathcal{U}_{k}\right)}\left(\breve{b}_{k}^{t}-b_{k}^{\star}\right)\right| \leq\left|[T] \backslash \mathcal{U}_{k}\right| \max _{t \in[T] \backslash \mathcal{B}_{k}}\left|\check{b}_{k}^{t}-b_{k}^{\star}\right|=2 \omega T \max _{t \in[T] \backslash \mathcal{B}_{k}}\left|\check{b}_{k}^{t}-b_{k}^{\star}\right| .
$$

[^0]Then we claim that $\left|\sum_{t \in \mathcal{B}_{k} \cap \mathcal{U}_{k}} \check{b}_{k}^{t}-b_{k}^{\star}\right| \leq\left|\mathcal{B}_{k}\right| \max _{t \in[T] \backslash \mathcal{B}_{k}}\left|\breve{b}_{k}^{t}-b_{k}^{\star}\right|$. Let $\mathcal{Q}_{k, 1}$ and $\mathcal{Q}_{k, \mathrm{r}}$ be the indices of the trimmed elements on the left side and right side, respectively, i.e., the smallest and largest ωT elements among $\left\{\check{b}_{k}^{t}\right\}_{t \in[T]}$. If $\mathcal{B}_{k} \cap \mathcal{U}_{k} \neq \emptyset$, then $\left|\mathcal{U}_{k} \backslash \mathcal{B}_{k}\right|<T(1-2 \omega)$. Furthermore, we have $\left|\mathcal{Q}_{k, 1} \cup\left(\mathcal{U}_{k} \backslash \mathcal{B}_{k}\right)\right|=\left|\mathcal{Q}_{k, \mathrm{r}} \cup\left(\mathcal{U}_{k} \backslash \mathcal{B}_{k}\right)\right|=\omega T+\left|\mathcal{U}_{k} \backslash \mathcal{B}_{k}\right|<T(1-\omega) \leq\left|[T] \backslash \mathcal{B}_{k}\right|$, which leads to $\left([T] \backslash \mathcal{B}_{k}\right) \cap \mathcal{Q}_{k, 1} \neq \emptyset$ and $\left(T \backslash \mathcal{B}_{k}\right) \cap \mathcal{Q}_{k, \mathrm{r}} \neq \emptyset$. In conclusion, we have $\max _{t \in \mathcal{U}_{k}}\left|\check{b}_{k}^{t}-b_{k}^{\star}\right| \leq$ $\max _{t \in[T] \backslash \mathcal{B}_{k}}\left|\check{b}_{k}^{t}-b_{k}^{\star}\right|$, which completes the proof of the claim. Therefore, we have

$$
\left|\check{b}_{k}^{\star}-b_{k}^{\star}\right| \leq \frac{1}{T(1-2 \omega)}\left(\left|\sum_{t \in[T] \backslash \mathcal{B}_{k}}\right| \check{b}_{k}^{t}-b_{k}^{\star}| |+\left(2 \omega T+\left|\mathcal{B}_{k}\right|\right) \max _{t \in[T] \backslash \mathcal{B}_{k}}\left|\breve{b}_{k}^{t}-b_{k}^{\star}\right|\right) \leq \frac{\varepsilon_{k}+3 \omega \delta_{k}}{1-2 \omega}
$$

with probability at least $1-2 e^{-\frac{\left(T-\left|\mathcal{B}_{k}\right| \mid n\right.}{4} \min \left\{\frac{\varepsilon_{k}^{2}}{\sigma_{k}^{2}}, \varepsilon_{k}\right\}}-2\left(T-\left|\mathcal{B}_{k}\right|\right) e^{-\frac{n}{4} \min \left\{\frac{\delta_{k}^{2}}{\sigma_{k}^{2}}, \delta_{k}\right\}}$.
Given Lemma 12, by setting

$$
\varepsilon_{k}=\max \left\{\frac{4 \sigma_{k} \sqrt{\ln \left(T^{2} n^{2}\right)}}{\sqrt{\left(T-\left|\mathcal{B}_{k}\right|\right) n}}, \frac{8 \ln \left(T^{2} n^{2}\right)}{\left(T-\left|\mathcal{B}_{k}\right|\right) n}\right\}=\tilde{O}\left(\frac{\sigma_{k}}{\sqrt{T n}}+\frac{1}{T n}\right)
$$

and

$$
\delta_{k}=\max \left\{\frac{4 \sigma_{k} \sqrt{\ln \left(T^{2}\left(T-\left|\mathcal{B}_{k}\right|\right) n^{2}\right)}}{\sqrt{n}}, \frac{4 \ln \left(T^{2}\left(T-\left|\mathcal{B}_{k}\right|\right) n^{2}\right)}{n}\right\}=\tilde{O}\left(\frac{\sigma_{k}}{\sqrt{n}}+\frac{1}{n}\right)
$$

using that $1 /(1-2 \omega) \leq \frac{5}{3}$, and recalling $\sigma_{k} \leq \sqrt{b_{k}^{\star}}$, we have with probability at least $1-\frac{4}{T^{2} n^{2}}$ that

$$
\begin{align*}
& \left|\check{b}_{k}^{\star}-b_{k}^{\star}\right| \leq \frac{\varepsilon_{k}+3 \omega \delta_{k}}{1-2 \omega} \\
\leq & \frac{5 \omega}{3} \max \left\{\frac{4 \sqrt{b_{k}^{\star} \ln \left(T^{3} n^{2}\right)}}{\sqrt{n}}, \frac{4 \ln \left(T^{3} n^{2}\right)}{n}\right\}+\frac{5}{3} \max \left\{\frac{4 \sqrt{b_{k}^{\star} \ln \left(T^{2} n^{2}\right)}}{\sqrt{\left(T-\left|\mathcal{B}_{k}\right|\right) n}}, \frac{4 \ln \left(T^{2} n^{2}\right)}{\left(T-\left|\mathcal{B}_{k}\right|\right) n}\right\} \tag{52}\\
= & \tilde{O}\left(\omega \sqrt{\frac{b_{k}^{\star}}{n}}+\frac{\omega}{n}+\frac{\sigma_{k}}{\sqrt{T n}}+\frac{1}{T n}\right)
\end{align*}
$$

which implies

$$
\begin{aligned}
\mathbb{E}\left[\left|\check{b}_{k}^{\star}-b_{k}^{\star}\right|\right] & =\tilde{O}\left(\omega \sqrt{\frac{b_{k}^{\star}}{n}}+\frac{\omega}{n}+\frac{\sigma_{k}}{\sqrt{T n}}+\frac{1}{T n}+\frac{1}{T^{2} n^{2}}\right) \\
& =\tilde{O}\left(\omega \sqrt{\frac{b_{k}^{\star}}{n}}+\sqrt{\frac{b_{k}^{\star}}{T n}}+\frac{1}{T n}+\frac{\omega}{n}\right)
\end{aligned}
$$

Similarly, we can obtain

$$
\begin{aligned}
\mathbb{E}\left[\left(\check{b}_{k}^{\star}-b_{k}^{\star}\right)^{2}\right] & =\tilde{O}\left(\frac{\omega^{2} b_{k}^{\star}}{n}+\frac{\omega^{2}}{n^{2}}+\frac{\sigma_{k}^{2}}{T n}+\frac{1}{T^{2} n^{2}}+\frac{1}{T^{2} n^{2}}\right) \\
& =\tilde{O}\left(\omega^{2} \frac{b_{k}^{\star}}{n}+\frac{b_{k}^{\star}}{T n}+\frac{1}{T^{2} n^{2}}+\frac{\omega^{2}}{n^{2}}\right) .
\end{aligned}
$$

Given these results, we readily establish the following bound on the total error over all η-well-aligned entries.
Proposition 5. Suppose $\check{\mathbf{b}}^{\star}=\operatorname{trmean}\left(\left\{\check{\mathbf{b}}^{\dagger}\right\}_{t \in[T]}, \omega\right)$ such that $0 \leq \omega \leq 1 / 5$. Then for each $k \in \mathcal{I}_{\eta}$ with $0<\eta \leq \omega$ and any $q=1,2$, it holds that

$$
\mathbb{E}\left[\left\|\check{b}_{\mathcal{I}_{\eta}}^{\star}-b_{\mathcal{I}_{\eta}}^{\star}\right\|_{q}^{q}\right]=\tilde{O}\left(d\left(\frac{\omega^{2}}{2^{b} n}\right)^{q / 2}+\frac{d}{\left(2^{b} T n\right)^{q / 2}}+\frac{d}{(T n)^{q}}+d\left(\frac{\omega}{n}\right)^{q}\right)
$$

By setting $\alpha=\Theta(\ln (T n))$, we find the following result.
Theorem 7. Suppose $n \geq 2^{b+5} \ln (T n)$ and $\alpha \geq 2(8+\sqrt{8 \ln (T n)})^{2}$ with $\alpha=O(\ln (T n))$. Then for the trimmed-mean-based SHIFT method, for any $0<\omega \leq \frac{1}{5}, t \in[T]$ and $q=1,2$,

$$
\mathbb{E}\left[\left\|\widehat{\mathbf{p}}^{t}-\mathbf{p}^{t}\right\|_{q}^{q}\right]=\tilde{O}\left(\left(\frac{s}{\omega}\right)^{1-q / 2}\left(\frac{\max \left\{2^{b}, s / \omega\right\}}{2^{b} n}\right)^{q / 2}+d\left(\frac{\omega^{2}}{2^{b} n}\right)^{q / 2}+\frac{d}{\left(2^{b} T n\right)^{q / 2}}\right) .
$$

Proof. To apply Proposition 3, we need to bound $\sum_{k \in \mathcal{I}_{n} \cap \mathcal{I}^{t}} \min \left\{\mathbb{P}\left(k \notin \mathcal{K}_{\alpha}^{t}\right), \sqrt{b_{k}^{t}\left(1-b_{k}^{t}\right) / n}\right\}$ and $\sum_{k \in \mathcal{I}_{\eta} \cap \mathcal{I}^{t}} \min \left\{\mathbb{P}\left(k \notin \mathcal{K}_{\alpha}^{t}\right), b_{k}^{t}\left(1-b_{k}^{t}\right) / n\right\}$.
Let $\mathcal{E}_{k}^{t}:=\left\{\breve{b}_{k}^{t} \geq \frac{1}{2} b_{k}^{t}\right.$ and $\left.\left|\check{b}_{k}^{\star}-b_{k}^{\star}\right| \leq 8 \sqrt{b_{k}^{\star} \ln \left(T^{3} n^{2}\right) / n}\right\}$. For each entry $k \in \mathcal{I}_{\eta} \cap \mathcal{I}^{t}$, since $n \geq 2^{b} \ln \left(T^{3} n^{2}\right)$ and $b_{k}^{\star} \leq \frac{1}{2^{b}}$, we have $\frac{1}{n} \leq \sqrt{\frac{b_{k}^{\star}}{n \ln \left(T^{3} n^{2}\right)}}$. By (52), we have with probability at least $1-\frac{4}{T^{2} n^{2}}$ that

$$
\begin{align*}
& \quad \check{b}_{k}^{t}-b_{k}^{t} \left\lvert\, \leq \frac{5 \omega}{3} \max \left\{\frac{4 \sqrt{b_{k}^{\star} \ln \left(T^{3} n^{2}\right)}}{\sqrt{n}}, \frac{4 \ln \left(T^{3} n^{2}\right)}{n}\right\}+\frac{5}{3} \max \left\{\frac{4 \sqrt{b_{k}^{\star} \ln \left(T^{2} n^{2}\right)}}{\sqrt{\left(T-\left|\mathcal{B}_{k}\right|\right) n}}, \frac{4 \ln \left(T^{2} n^{2}\right)}{\left(T-\left|\mathcal{B}_{k}\right|\right) n}\right\}\right. \\
& \leq \frac{4}{3} \sqrt{\frac{b_{k}^{\star} \ln \left(T^{3} n^{2}\right)}{n}}+\frac{20}{3} \sqrt{\frac{b_{k}^{\star} \ln \left(T^{2} n^{2}\right)}{\left(T-\left|\mathcal{B}_{k}\right|\right) n}} \leq 8 \sqrt{\frac{b_{k}^{\star} \ln \left(T^{3} n^{2}\right)}{n}} \tag{53}
\end{align*}
$$

By Bernstein's inequality and as $b_{k}^{\star} \geq \frac{1}{2^{b}}$, we have

$$
\begin{equation*}
\mathbb{P}\left(\left|\breve{b}_{k}^{t}-b_{k}^{t}\right|>\frac{b_{k}^{t}}{2}\right) \leq 2 e^{-\frac{n}{4} \min \left\{\frac{b_{k}^{t}}{4\left(1-b_{k}^{t}\right.}, \frac{b_{k}^{t}}{2}\right\}} \leq 2 e^{-\frac{n b_{k}^{t}}{16}} \leq 2 e^{-\frac{n}{16 \cdot 2^{b}}} \leq \frac{2}{T^{2} n^{2}} \tag{54}
\end{equation*}
$$

where the last inequality is because $n \geq 2^{b+5} \ln (T n)$. Combining (53) with 54), we find $\mathbb{P}\left(\left(\mathcal{E}_{k}^{t}\right)^{c}\right) \leq$ $\frac{6}{T^{2} n^{2}}$. Now following the argument from (41)-43), we can obtain that for all $k \in \mathcal{I}_{\eta} \cap \mathcal{I}^{t}$,

$$
\mathbb{P}\left(k \notin \mathcal{K}_{\alpha}^{t}\right)=O\left(\frac{1}{T^{2} n^{2}}\right) .
$$

Since $\alpha=O(\ln (T n))$, by applying (43) to Proposition 3 with $\eta=\omega$ and using Proposition 5 with $n=\Omega\left(2^{b}\right)$, we find

$$
\begin{equation*}
\mathbb{E}\left[\left\|\widehat{\mathbf{b}}^{t}-\mathbf{b}^{t}\right\|_{1}\right]=\tilde{O}\left(\sum_{k \notin \mathcal{I}_{\omega} \cap \mathcal{I}^{t}} \sqrt{\frac{b_{k}^{t}}{n}}+\frac{d \omega}{\sqrt{2^{b} n}}+\frac{d}{\sqrt{2^{b} T n}}\right) \tag{55}
\end{equation*}
$$

and

$$
\mathbb{E}\left[\left\|\widehat{\mathbf{b}}^{t}-\mathbf{b}^{t}\right\|_{2}^{2}\right]=\tilde{O}\left(\sum_{k \notin \mathcal{I}_{\omega} \cap \mathcal{I}^{t}} \frac{b_{k}^{t}}{n}+\frac{d \omega}{2^{b} n}+\frac{d}{2^{b} T n}\right)
$$

Note that $\left|\left(\mathcal{I}_{\omega} \cap \mathcal{I}^{t}\right)^{c}\right| \leq\left|\mathcal{I}_{\omega}^{c}\right|+\left|\left(\mathcal{I}^{t}\right)^{c}\right| \leq s / \omega+s=O(s / \omega)$ and

$$
\begin{align*}
\sum_{k \notin \mathcal{I}_{\omega} \cap \mathcal{I}^{t}} \sqrt{\frac{b_{k}^{t}}{n}} & \leq \sqrt{\left|\left(\mathcal{I}_{\omega} \cap \mathcal{I}^{t}\right)^{c}\right| \sum_{k \notin \mathcal{I}_{\omega} \cap \mathcal{I}^{t}} \frac{b_{k}^{t}}{n}}=\sqrt{\frac{\left|\left(\mathcal{I}_{\omega} \cap \mathcal{I}^{t}\right)^{c}\right| \max \left\{2^{b},\left|\left(\mathcal{I}_{\omega} \cap \mathcal{I}^{t}\right)^{c}\right|\right\}}{2^{b} n}} \\
& =\sqrt{\frac{s / \omega \max \left\{2^{b}, s / \omega\right\}}{2^{b} n}} \tag{56}
\end{align*}
$$

Plugging (56) into (55) and using $\mathbb{E}\left[\left\|\widehat{\mathbf{p}}^{t}-\mathbf{p}^{t}\right\|_{1}\right]=O\left(\mathbb{E}\left[\left\|\widehat{\mathbf{b}}^{t}-\mathbf{b}^{t}\right\|_{1}\right]\right)$, we find the conclusion in terms of the ℓ_{1} error. The results in terms of the ℓ_{2} error can be obtained similarly.

E Lower Bounds

In this section, we provide the proofs for the minimax lower bounds for estimating distributions under our heterogeneity model. We first re-state the detailed version the lower bounds that apply to both the ℓ_{2} and ℓ_{1} errors.
Theorem 8 (Detailed statement of Theorem 3). For any—possibly interactive—estimation method, and for any $t \in[T]$ and $q=1,2$, we have

$$
\begin{equation*}
\inf _{\substack{\left(W^{t^{\prime},[n]}\right)_{t^{\prime} \in[T]} \\ \widehat{\mathbf{p}}^{t}}} \sup _{\substack{\mathbf{p}^{\star} \in \mathcal{P}_{d} \\\left\{\mathbf{p}^{t^{\prime}}: t^{\prime} \in[T]\right\} \subseteq \mathbb{B}_{s}\left(\mathbf{p}^{\star}\right)}} \mathbb{E}\left[\left\|\widehat{\mathbf{p}}^{t}-\mathbf{p}^{t}\right\|_{q}^{q}\right]=\Omega\left(s^{1-q / 2}\left(\frac{\max \left\{2^{b}, s\right\}}{2^{b} n}\right)^{q / 2}+\frac{d}{\left(2^{b} T n\right)^{q / 2}}\right) . \tag{57}
\end{equation*}
$$

Theorem 9 (Detailed statement of Theorem. 4). For any—possibly interactive—estimation method, and a new cluster \mathcal{C}^{T+1}, we have

$$
\begin{aligned}
& \inf _{\left(W^{t^{\prime},[n]}\right]} \sup _{\substack{\mathbf{p}^{\star} \in \mathcal{P}_{d} \\
W^{T+1,[\tilde{n}]}, \widehat{\mathbf{p}}^{T+1} \\
\left\{\mathbf{p}^{t^{\prime}}: t^{\prime} \in[T+1]\right\} \subseteq \mathbb{B}_{s}\left(\mathbf{p}^{\star}\right)}} \mathbb{E}\left[\left\|\widehat{\mathbf{p}}^{T+1}-\mathbf{p}^{T+1}\right\|_{q}^{q}\right] \\
= & \Omega\left(s^{1-q / 2}\left(\frac{\max \left\{2^{b}, s\right\}}{2^{b} \tilde{n}}\right)^{q / 2}+\frac{d}{\left(2^{b} T n\right)^{q / 2}}\right) .
\end{aligned}
$$

We omit the proof of Theorem 9 since it follows from the same analysis as Theorem 8 .

E. 1 Proof of Theorem 8

As discussed in Section 4 , we will prove (57) by considering two special cases of our sparse heterogeneity model:

1. The homogeneous case where $\mathbf{p}^{1}=\cdots=\mathbf{p}^{T}=\mathbf{p}^{\star} \in \mathcal{P}_{d}$.
2. The $s / 2$-sparse case where $\left\|\mathbf{p}^{\star}\right\|_{0} \leq s / 2$ and $\left\|\mathbf{p}^{t}\right\|_{0} \leq s / 2$ for all $t \in[T]$.

Therefore, it naturally holds that

$$
\begin{equation*}
\inf _{\left(W^{t^{\prime},[n]}\right)_{t^{\prime} \in[T]}^{\widehat{\mathbf{p}}^{t}}} \sup _{\substack{\mathbf{p}^{\star} \in \mathcal{P}_{d} \\\left\{\mathbf{p}^{t^{\prime}}: t^{\prime} \in[T]\right\} \subseteq \mathbb{B}_{s}\left(\mathbf{p}^{\star}\right)}} \mathbb{E}\left[\left\|\widehat{\mathbf{p}}^{t}-\mathbf{p}^{t}\right\|_{q}^{q}\right] \geq \inf _{\left(W^{t,[n]}\right)_{t \in[T]}}^{\widehat{\mathbf{p}}^{\star}} \sup _{\mathbf{p}^{\star} \in \mathcal{P}_{d}} \mathbb{E}\left[\left\|\widehat{\mathbf{p}}^{\star}-\mathbf{p}^{\star}\right\|_{q}^{q}\right] \tag{58}
\end{equation*}
$$

and

For the first case, combining (58) with the existing lower bound result [6, Cor 7] and [26, Thm 2] for the homogeneous setup, where all datapoints are generated by a single distribution, that for any estimation method (possibly based on interactive encoding),

$$
\inf _{\substack{\left(W^{t,[n]}\right) \\ \widehat{\mathbf{p}}^{\star}}} \sup _{t \in[T]} \mathbf{p}^{\star} \in \mathcal{P}_{d} .
$$

we prove that the lower bound is at least of the order of the second term in 57.
For the second case, without loss of generality, we assume s is even. This can be achieved by considering $s-1$ instead of s, if necessary. Recall that $\operatorname{supp}(\cdot)$ denotes the indices of non-zero entries of a vector. Fixing any $t \in[T]$, we further consider the scenario where

$$
\begin{equation*}
\operatorname{supp}\left(\mathbf{p}^{t}\right) \cap\left(\cup_{t^{\prime} \neq t} \operatorname{supp}\left(\mathbf{p}^{t^{\prime}}\right)\right)=\emptyset \tag{60}
\end{equation*}
$$

One example where 60) holds is when $\operatorname{supp}\left(\mathbf{p}^{t}\right) \subseteq[s / 2]$ and $\operatorname{supp}\left(\mathbf{p}^{t^{\prime}}\right) \subseteq\{s / 2+1, \ldots, d\}$ for all $t^{\prime} \neq t$. If 60) holds, then the support of the datapoints generated by $\left\{\mathbf{p}^{t^{\prime}}: t^{\prime} \neq t\right\}$ does not

Truncated geometric, $\beta=0.95$

Figure 3: Average ℓ_{2} estimation error in synthetic experiment using the truncated geometric distribution. (Left): Fixing $s=5, T=30$ and varying n. (Middle): Fixing $s=5, n=100,000$ and varying T. (Right): Fixing $T=30, n=100,000$ and varying s. The standard error bars are obtained from 10 independent runs.
overlap with the support of those generated by \mathbf{p}^{t}, and hence former are not informative for estimating \mathbf{p}^{t}. Therefore, by further combining (59) with the existing lower bound result [14, Thm 2] for the $s / 2$-sparse homogeneous setup, where all datapoints are generated by a single $s / 2$-sparse distribution, that for any estimation method (possibly based on interactive encoding),

$$
\begin{aligned}
\inf _{\left(W^{t,[n]}\right)} \sup _{\substack{t \mathbf{p}^{t} \|_{0} \leq s / 2 \\
\mathbf{p}^{t} \in \mathcal{P}_{d}}} \mathbb{E}\left[\left\|\widehat{\mathbf{p}}^{t}-\mathbf{p}^{t}\right\|_{q}^{q}\right] & =\Omega\left((s / 2)^{1-q / 2}\left(\frac{\max \left\{2^{b}, s / 2\right\}}{2^{b} n}\right)^{q / 2}\right) \\
& =\Omega\left(s^{1-q / 2}\left(\frac{\max \left\{2^{b}, s\right\}}{2^{b} n}\right)^{q / 2}\right)
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
& =\Omega\left(s^{1-q / 2}\left(\frac{\max \left\{2^{b}, s\right\}}{2^{b} n}\right)^{q / 2}\right) .
\end{aligned}
$$

This proves that the lower bound is at least of the order of the first term in 57. Overall, we conclude the desired result.

F Supplementary Experiments

Truncated geometric distribution We consider the truncated geometric distribution with parameter $\beta \in(0,1), \mathbf{p}^{\star}=\frac{1-\beta}{1-\beta^{d}}\left(1, \beta, \ldots, \beta^{d-1}\right)$, as the central distribution and repeat the experiment in Section 5.1. We use $d=300, \beta=0.95, b=2$ and vary n, T, s. Figure 3 summarizes the results. As in Section 5.1, we observe that our methods outperform the baseline methods in most cases, especially when s is small. Also, we see the benefit of collaboration, i.e., decreasing trend of the error as T increases, only in our methods.

Figure 4: Effect of the hyperparameters α and ω. The top row shows results for the uniform distribution and the bottom row shows the results for the truncated geometric distribution with $\beta=0.8$.

Hyperparmeter selection. We provide additional experiments using different hyperparameters α and ω from discussed in Section 5.1. All other settings are identical to Section 5.1. We test the hyperparameters $(\alpha, \omega)=\left(2^{r} \ln (n), 0.1\right)$ for $r \in\{-5,-4, \ldots, 4\}$ and $(\alpha, \omega)=(\ln (n), \omega)$ for $\omega \in\{0.05,0.1, \ldots, 0.25\}$. Figure 4 summarizes the results.
We find that setting the threshold α too small leads to replacing almost all coordinates of the central estimate $\widehat{\mathbf{p}}^{\star}$ with local ones. In the extreme case of $\alpha \approx 0$, our method is essentially returns the local minimax estimates. On the other hand, we observe that the performance of our method is less sensitive to the trimming proportion ω.
While the choice of α is crucial to the performance of our method, we argue that it is possible to select a reasonably good α by checking the number of fine-tuned entries, i.e.,

$$
\frac{1}{T} \sum_{t=1}^{T}\left|\left\{k \in[d]:\left|\left[\widehat{\mathbf{b}}^{\star}\right]_{k}-\left[\widehat{\mathbf{b}}^{t}\right]_{k}\right|>\sqrt{\frac{\alpha[\widehat{\mathbf{b}}]_{k}}{n}}\right\}\right|
$$

In Figure 5, we observe that more than half $(d / 2=150)$ of the entries are fine-tuned when $r \in$ $\{-5,-4,-3\}$. These correspond to the three curves in the top left of Figure 4 that perform no better than the baseline methods. In conclusion, by selecting α such that the number of fine-tuned entries are small enough compared to d, it is possible to reproduce the results in Section 5 .

Figure 5: Average number of fine-tuned entries for different values of $\alpha=2^{r} \ln (n)$. We use the trimmed mean with $\omega=0.1$ and the uniform distribution with $d=300$. This corresponds to the top left of Figure 4

[^0]: ${ }^{3}$ To be precise, one can either trim $\lceil\omega T\rceil$ or $\lfloor\omega T\rfloor$ elements. From now on, we write ωT for conciseness without further notice.

