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Abstract

In modern machine learning, users often have to collaborate to learn distributions
that generate the data. Communication can be a significant bottleneck. Prior
work has studied homogeneous users—i.e., whose data follow the same discrete
distribution—and has provided optimal communication-efficient methods. How-
ever, these methods rely heavily on homogeneity, and are less applicable in the
common case when users’ discrete distributions are heterogeneous. Here we
consider a natural and tractable model of heterogeneity, where users’ discrete
distributions only vary sparsely, on a small number of entries. We propose a novel
two-stage method named SHIFT: First, the users collaborate by communicating
with the server to learn a central distribution; relying on methods from robust
statistics. Then, the learned central distribution is fine-tuned to estimate the indi-
vidual distributions of users. We show that our method is minimax optimal in our
model of heterogeneity and under communication constraints. Further, we provide
experimental results using both synthetic data and n-gram frequency estimation in
the text domain, which corroborate its efficiency.

1 Introduction

Research on learning from data distributed over multiple computational units (machines, users,
devices) has grown in recent years, as data is commonly generated by multiple users, such as smart
devices and wireless sensors. While many works focus on learning predictive models with distributed
data, learning the data distribution itself is also increasingly popular [56, 3, 14, 15, 60]. In various
applications, it is often required to reconstruct the data distribution from scattered measurements.
Examples include sensor networks and P2P (Peer2Peer) systems, load balancing and query processing
(see, e.g., [41, 61, 46] and references therein). In these scenarios, communication costs and bandwidth
are often bottlenecks on the performance of learning algorithms [22, 5, 29, 17]. The bottlenecks
become even more severe in federated analytics [31], where many users coordinate with a server to
learn central models, while communication via the wireless links is typically expensive and operates
at low rates.
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Table 1: Estimation error E[∥p̂t − pt∥22] of various methods when n is sufficiently large: pt is the test
distribution, p̂t is the estimator, δt = T−1 ∑

t′∈[T ] p
t′ − pt is a non-vanishing measure of heterogeneity. See

Section 1.1 for other notations. Constants and logarithmic factors are omitted for clarity. The “data usage”
column indicates whether the estimate is obtained for each cluster separately or by pooling data.

Method Estimation Error Data Usage Bound Type

Unif. Group./Hash. [26] O
(

d
2bn

)
Separate Upper

Unif. Group./Hash. [26] O
(
∥δt∥22 + d

2bTn

)
Pool Upper

Localize-then-Refine [15] O
(

∥pt∥1/2

2bn

)∗
Separate Upper

Localize-then-Refine [15] O

(
∥δt∥22 +

∥ 1
T

∑
t′∈[T ] p

t′∥1/2

2bTn

)∗

Pool Upper

SHIFT (Theorem 1) Õ
(

max{2b,s}
2bn

+ d
2bTn

)
− Upper

SHIFT (Theorem 3) Ω
(

max{2b,s}
2bn

+ d
2bTn

)
− Lower

∗ This method [15] requires interactive communication protocols, while other methods are non-interactive.

This paper considers learning high-dimensional discrete distributions from user data in the distributed
setting. Many communication-efficient methods have been proposed, and their optimality under
communication constraints has been established under various models [26, 6, 27, 2, 3, 14, 15]. How-
ever, the key challenge of heterogeneity, i.e., that users’ distributions can differ, is rarely considered.
Heterogeneity is common, as users inevitably have unique characteristics [13]. Meanwhile, hetero-
geneity can cause a significant performance drop for learning algorithms designed only for i.i.d data
[37, 34, 20, 59]. To use all the data, one needs to learn some central structure, transferable to all
individual users. Then one may locally learn the unique components for each user [21, 53, 16, 57].

To study this paradigm, we first need to introduce a suitable model of heterogeneity. We consider,
as an example, the heterogeneous frequencies of words across different texts, e.g., news articles,
books, plays (tragedies and comedies), viewed as users. Most words appear with almost the same
probabilities in different texts, however, a few can have very different probabilities, such as “sorrowful”
being common in tragedies and “convivial” being common in comedies. Motivated by this, we
formulate a model of sparse heterogeneity. Specifically, suppose that the discrete distributions of all
users differ from an underlying central distribution in at most s entries, where s is much smaller than
the dimension d. Sparse heterogeneity is relevant to applications such as recommendation systems
[28, 42, 35, 7] and medical risk scoring [50, 43, 40].

However, given data generated by multiple distributions with sparse heterogeneity, previous works
[26, 2, 3, 15] either do not use all the data, or suffer from bias due to heterogeneity that does not vanish
as the sample size increases. Here we propose a novel sparse heterogeneity inspired collaboration
and fine-tuning method (SHIFT) where we first collaboratively learn the central distribution, and then
fine-tune the central estimate to individual distributions. Our method makes full use of heterogeneous
data, leading to a significant improvement in error rates compared to prior methods. See Table 1 for
an overview, explained in detail later.

1.1 Contributions

We consider the problem of learning d-dimensional distributions with s-sparse heterogeneity. We
assume there are T clusters of user datapoints, and allow each datapoint to be transmitted with b
bits of information to the server. Our setting embraces heterogeneous data and thus is a significant
generalization of the models from [26, 6, 27, 2]. Our technical contributions are as follows:

• We propose the SHIFT method to learn heterogeneous distributions with collaboration
and tuning, in a sample-efficient manner. Our method can in principle be used with an
arbitrary robust estimate for the probability of each entry/coordinate. When entry-wise
median and trimmed mean are used, we provide upper bounds on the estimation error of
individual distributions in the ℓ2 and ℓ1 norms. We show a factor of min{T, d/max{s, 2b}}
improvement in sample complexity compared to previous works; showing the benefit
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of collaboration (large T ) and sparsity (small s), despite communication constraints and
heterogeneity.

• To justify the optimality of our method, we prove minimax lower bounds on the estimation
errors for individual distributions in the ℓ2 and ℓ1 norms, holding for all, possibly interactive,
methods. These lower bounds, combined with our upper bounds, imply that our median-
based method is minimax optimal.

• We support our method with experiments on both synthetic and empirical datasets, showing
a significant improvement over previous methods.

1.2 Related Works

Learning with heterogeneity. Learning with heterogeneity is commonly found in the broader
context of multi-task learning [12, 52, 8] and federated learning [4, 44, 24, 47], where a central model
or representation is learned from multiple heterogeneous datasets. These central representations can
be useful for few-shot learning tasks [51, 23] due to their ability to adapt to new tasks efficiently.
In heterogeneous linear regression, [53, 21] show improved sample complexities by assuming a
low dimensional central representation, compared to the i.i.d. setting [24, 36]. Related results are
proved by [16] for personalized federated learning. [57] study a bandit problem where the unknown
parameter in each dataset equals a global parameter plus a sparse instance-specific term. We study a
different setting: learning distributions with sparse heterogeneity under communication constraints.

Estimating distributions under communication constraints. Estimating discrete distributions
has a rich literature [10, 18, 45, 19]. Under communication constraints, [26, 6, 27, 2] consider the
non-interactive scenario and establish the minimax optimal rates, in terms of data dimension and
communication budget, via potentially shared randomness, when all users’ data is homogeneous.
The optimality for the general interactive (blackboard) methods is developed by [1]. A few works
study the estimation of sparse distributions. In particular, [3] consider s-sparse distributions and
establish minimax optimal rates under communication and privacy constraints, which are further
improved by localization strategies in [14]. Complementary to minimax rates, [15] provides pointwise
rates, governed by the half-norm of the distribution instead of its dimension. Our setting embraces
heterogeneous data, and thus is a generalization of the one studied in above works.

Robust estimation & learning. Robust statistics and learning study algorithms resilient to unknown
data corruption [30, 25]. The median-of-means method [32, 38, 39], partitions the data into subsets,
computes an estimate from each, and takes their median. Similarly, some works study robustness
from the optimization perspective, proposing to robustly aggregate gradients of the loss functions
[48, 49, 9, 58]. We adapt some analysis techniques from [39, 58] to the significantly different setting
of estimation with heterogeneity and communication constraints.

1.3 Notations

Throughout the paper, for an integer d ≥ 1, we write [d] for both {1, . . . , d} and {e1, . . . , ed} ⊆ Rd,
where ek is the k-th canonical basis vector of Rd. For a vector v ∈ Rd, we refer to the entries of v
by both [v]1, . . . , [v]d and v1, . . . , vd. We denote ∥v∥p = (

∑
k∈[d] |vk|p)

1
p for all p > 0 with ∥v∥0

defined additionally as the number of non-zero entries. We let Pd := {p = (p1, . . . , pd) ∈ [0, 1]d :
p1+ · · ·+pd = 1} be the simplex of all d-dimensional discrete probability distributions. For p ∈ Pd,
we denote by Bs(p) the s-distinct neighborhood {p′ ∈ Pd : ∥p′ − p∥0 ≤ s}. For a random variable
X , we denote n i.i.d. copies of X by X [n]. Given any index set I , we write |I| for its cardinality and
denote by [v]I the sub-vector ([v]k)k∈I indexed by I. We use the Bachmann-Landau asymptotic
notations Ω(·), Θ(·), O(·) to hide constant factors, and use Ω̃(·), Õ(·) to also hide logarithmic factors.
We denote the categorical distribution with class probability vector p ∈ Pd by Cat(p). We useq· and
·̂ to indicate the intermediate estimate and the final estimate, respectively.

2 Problem Setup

We consider the problem of collaboratively learning distributions defined according to the following
model of heterogeneity (see Figure 1 for an illustration). There are T ≥ 1 clusters {Ct ≜ (Xt,j)j∈[n] :
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t ∈ [T ]} of user datapoints, each of which contains n i.i.d. local datapoints. Each datapoint Xt,j is
in a one-hot format, i.e., Xt,j ∈ {e1, e2, . . . , ed}, and follows the categorical distribution Cat(pt)
where pt ∈ Pd is unknown. Thus, user datapoints in the same cluster have an identical distribution
pt, while the distribution pt can vary, i.e., be heterogeneous, across clusters t ∈ [T ]. The datapoint
Xt,j is encoded by its user into a message Y t,j , and then transmitted to a central server. We assume
that the message sent by each datapoint is encoded into no more than b bits and b can be significantly
smaller than log2 d so that the communication is efficient. We also assume the server knows which
cluster t ∈ [T ] each Y t,j belongs to, as well as the number of clusters T . This paper mainly addresses
the communication bottleneck and does not involve privacy concerns.

The goal here is to collaboratively learn the distributions pt from the collection of messages {Y t′,[n] ≜
(Y t′,j)j∈[n] : t

′ ∈ [T ]} despite heterogeneity. More precisely, we aim to design per-cluster estimators
p̂t : {Y t′,[n] : t′ ∈ [T ]} → Pd to minimize the ℓ2 errors

E[∥p̂t − pt∥22], for all t ∈ [T ].

We also study the widely-used ℓ1 error metric (in addition to the ℓ2 metric). When T = 1, i.e., all
user datapoints are homogeneous and there is a single distribution to learn, the problem reduces to
the one studied by [26, 6, 27, 2, 1].

Figure 1: Learning distributions with heterogeneity and
communication constraints.

Model of heterogeneity. In heterogeneous set-
tings, collaboration among the users is most ben-
eficial if the local distributions are related. We
model this by assuming that the local distribu-
tions are sparse perturbations of an unknown
central distribution p⋆ ∈ Pd. The distribution
pt of each cluster t differs from p⋆ in at most
s ≥ 0 entries:

∥pt − p⋆∥0 ≤ s, ∀ t ∈ [T ]. (1)

The central distribution p⋆ can be viewed as
the central structure across heterogeneous clus-
ters of datapoints. The level of heterogeneity is
controlled by the parameter s. When s is much
smaller than d, the local distributions differ from
the center in a small number of entries.

While motivated by word frequencies of dif-
ferent texts, our model of sparse heterogeneity
is also relevant for recommendation systems,
where the high-dimensional item-preference
vectors of users can vary sparsely [28, 42, 35, 7];

and medical risk scoring, where hospitals enjoy similar predicted results but with a few systematic
differences in diagnosis behavior, healthcare utilization, etc [50, 43, 40].

3 Algorithm

We now introduce our method for leveraging heterogeneous data to improve per-cluster sample
efficiency. We first discuss a hashing-based method to handle the communication constraint. Since
communication between each user datapoint and the server is restricted to at most b > 0 bits
(where we may have 2b ≪ d), the datapoint Xt,j needs to be encoded by an encoding function
W t,j : X ≜ [d] → Y . The b-bit constraint enforces |Y| ≤ 2b. Then the encoded message
Y t,j := W t,j(Xt,j) is sent to the server, where it is decoded and used.

Under relatively sophisticated protocols, the design of encoding functions can be interactive [15, 14,
1], i.e., depend on previously sent messages. Here we adopt a non-interactive encoding-decoding
scheme, based on uniform hashing [3, 14] where W t,j depends only on Xt,j and is independent
of other messages. Specifically, each datapoint Xt,j is encoded via an independent random hash
function ht,j : [d]→ [2b]. Upon receiving all messages, the server counts the empirical frequencies
of all symbols, leading to hashed estimates qbt. The communication scheme based on uniform hashing
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Algorithm 1 SHIFT: Sparse Heterogeneity Inspired collaboration and Fine-Tuning

input: individual hashed estimators qb1, . . . , qbT , threshold parameter α
▷ Stage I: Collaborative Learning

Estimate b⋆ via robust statistical methods: qb⋆ ← robust_estimate({qbt : t ∈ [T ]})
▷ Stage II: Fine-Tuning
for k = 1, . . . , d do

for t = 1, . . . , T do

[b̂t]k ← [qb⋆]k if |[qb⋆]k − [qbt]k| ≤
√

α[qbt]k/n, else [qbt]k

[p̂t]k ← Proj[0,1](
2b[b̂t]k−1

2b−1
)

end for
end for
output: estimates p̂1, . . . , p̂T

is summarized below.

(Encoding) : Send the message Y t,j = ht,j(Xt,j) encoded by a hash function ht,j : [d]→ [2b];

(Decoding) : Count N t
k(Y

t,[n]) = |{j ∈ [n] : ht,j(k) = Y t,j}| and return [qbt]k = N t
k/n.

It is easy to verify that E[qbt] = [(2b − 1)pt + 1]/2b ≜ bt; and thus the hashed estimate qbt is biased
for pt. We also write b⋆ = [(2b − 1)p⋆ + 1]/2b for the mean of a hashed datapoint sampled from
the central distribution. More details on the hashed estimator qbt are given in Appendix A.

3.1 The SHIFT Method

We now introduce the SHIFT method, which consists of two stages: collaborative learning and
fine-tuning. The first stage estimates the central hashed distribution b⋆ using all hashed estimates
{qbt : t ∈ [T ]}. This is achieved via tools from robust statistics such as the median or trimmed mean.
The key insight here is that, since the heterogeneity is sparse, for each entry at which the individual
distributions less mismatch with the central one, most datapoints (used to estimate that entry) are
sampled from the probability of the central distribution. Hence, to estimate those entries of the central
distribution, we can treat the datapoints generated by heterogeneous users as corrupted, and leverage
robust statistical methods to mitigate their influences.

In the second stage—fine-tuning—we detect mismatched entries between individual hashed estimates
qbt and the central estimate qb⋆. Recall that the central and individual distributions differ in only a
few entries. For entries k ∈ [d] such that |[qb⋆]k − [qbt]k| is below (α[qb⋆]k/n)

1/2 for some threshold
parameter α, we may expect that ptk = p⋆k. As a result, the estimate [qb⋆]k of b⋆k can be more accurate
as it is learned collaboratively. Thus, we assign [qb⋆]k as the final estimate [b̂t]k of btk.

On the other hand, for the entries where the central and individual distributions differ, i.e., ptk ̸= p⋆k,
the threshold is more likely to be exceeded. In this case, we keep the individual estimate [qbt]k as
[b̂t]k. Finally, since the hashed distributions bt are biased, we debias them in the final estimates of
pt where Proj[0,1](·) indicates truncating the input with upper/lower bound 1 and 0. Our method
does not require sample splitting, despite using two stages, leading to increased sample-efficiency.
We remark that the SHIFT does not require the knowledge of the sparse heterogeneity s.

Knowledge transfer to new clusters. The collaboratively learned central distribution from Algorithm
1 is adaptable to new clusters, with possibly few datapoints. This can be particularly beneficial
for sample efficiency because most entries of the target distribution are well-estimated through
collaborative learning. One can transfer those entries, and it suffices to estimate the few remaining
entries, instead of the whole distribution. See Theorem 2 for the details. The knowledge transfer
utility further motivates the importance of collaborative learning.
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3.2 The Median-Based SHIFT

In this section, we provide statistical guarantees, in the form of upper bounds on the error, for
the median-based SHIFT method, where robust_estimate({qbt : t ∈ [T ]}) in Algorithm 1 is the
entry-wise median. Specifically, we let

[qb⋆]k = median
(
{[qbt]k : t ∈ [T ]}

)
, for each k ∈ [d].

When there is no ambiguity, we write qb⋆ = median
(
{qbt}t∈[T ]

)
. We also provide results for the

trimmed-mean-based SHIFT method, see Appendix D.

By setting the threshold parameter α in Algorithm 1 as α = Θ(ln(n)), we prove the upper bounds on
the final individual ℓ2 estimation errors as follows. The results for the ℓ1 error are in Appendix C.
Theorem 1. Suppose n ≥ 2b+6 ln(n) and α = Θ(ln(n))2. Then, for the median-based SHIFT
method, for any t ∈ [T ],

E
[
∥p̂t − pt∥22

]
= Õ

(
max{2b, s}

2bn
+

d

2bTn
+

d

n2

)
.

When n ≥ 2b+6 ln(n) and n = Ω(2b min{T, d/max{2b, s}}), the rate further becomes

E
[
∥p̂t − pt∥22

]
= Õ

(
max{2b, s}

2bn
+

d

2bTn

)
. (2)

The upper bound in (2) consists of two terms. The first term max{2b, s}/(2bn) is independent of
the dimension d, and is a factor d/max{2b, s} smaller compared to the rate d/(2bn) obtained by
the minimax optimal method using only homogeneous datapoints [26]. Thus, it brings a significant
benefit under sparse heterogeneity, i.e., when s≪ d. Meanwhile, the second, dimension-dependent,
term d/(2bTn) is T times smaller than d/(2bn), since it depends on the total sample-size Tn used col-
laboratively, despite heterogeneity. Therefore, our method shows a factor of min{T, d/max{2b, s}}
improvement in sample efficiency, compared to previous work designed for homogeneous datapoints.

For completeness, we also consider a heuristic version of estimators of prior works [26, 15] in
which all datapoints are pooled to learn a global distribution T−1

∑
t∈[T ] p

t, which is then used
by each cluster. While this uses all datapoints, it inevitably introduces a non-vanishing bias δt =
pt − T−1

∑
t′∈[T ] p

t′ in estimating individual distributions, and can behave poorly when the bias is
large. See Table 1 for more details.

Finally, we discuss our results on knowledge transfer. The central estimator qb⋆ is adaptable to a
new cluster CT+1 in the following way. We adjust the fine-tuning procedure in Algorithm 1 to

[b̂T+1]k ← [qb⋆]k if |[qb⋆]k − [qbT+1]k| ≤
√
α[qbT+1]k/ñ, and [b̂T+1]k ← [qbT+1]k otherwise,

where ñ is the size of CT+1. We then show the following result.

Theorem 2. Let qbT+1 be the hashed estimate of any new cluster CT+1 with ñ datapoints such
that n ≥ ñ ≥ 2b+6 ln(ñ) and ñ = Ω(2b min{T, d/max{2b, s}}). Let the threshold parameter be
α = Θ(ln(ñ)). Then, the median-based SHIFT method has error bounded by

E
[
∥p̂T+1 − pT+1∥22

]
= Õ

(
max{2b, s}

2bñ
+

d

2bTn

)
.

Similarly, one can see that adaptation to new clusters with the median-based SHIFT method achieves a
factor of min{Tn/ñ, d/max{2b, s}} improvement in sample-efficiency compared to the case where
the distribution of the new cluster is estimated from scratch (i.e.without any knowledge transfer).

3.2.1 Highlights of Theoretical Analysis

In this section, we introduce the key analytical ideas behind the proof of Theorems 1 and 2. Our
analysis is novel compared to previous analyses for methods with homogeneous datapoints. The

2To be precise, we require α = O(ln(n)) and α ≥ c ln(n) for some absolute constant c. The analogous
statement applies in Theorem 2.
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final individual estimation errors relate to the error of estimating the central hashed distribution b⋆.
However, we only expect high accuracy at the center for entries at which the heterogeneity is mild.
To quantify the influence of heterogeneity, for any 0 < η ≤ 1, we define the set of η-well-aligned
entries as

Iη := {k ∈ [d] : |Bk| < ηT}, where Bk ≜ {t ∈ [T ] : btk ̸= b⋆k, i.e., ptk ̸= p⋆k}
is the set of clusters whose distribution differs from p⋆ in the k-th entry. We aim to estimate the
η-well-aligned entries accurately by using robust statistical methods.

Further, we argue that there are few poorly-aligned entries, and they affect the final per-cluster error
only mildly. By the pigeonhole principle, the number of entries that are not η-well-aligned is upper
bounded by |Icη| ≜ |[d]\Iη| ≤ sT

ηT = s
η . Therefore, given an estimator qb⋆ that is accurate for the

η-well-aligned entries, the entries of b⋆ can be estimated accurately except for at most s/η entries.
The following technical lemma bounds the error for each entry k ∈ Iη .

Lemma 1. Suppose qb⋆ = median
(
{qbt}t∈[T ]

)
. Then for any 0 < η ≤ 1/5 and k ∈ Iη , it holds that

E[([qb⋆]k − [b⋆]k)
2] = Õ

(
|Bk|2b⋆k(1− b⋆k)

T 2n
+

b⋆k(1− b⋆k)

Tn
+

1

n2

)
.

Lemma 1 provides an upper bound relating to the frequency |Bk|/T of misalignment (smaller than
η), and a variance term b⋆k(1− b⋆k). This result cannot be obtained by directly applying the standard
Chernoff or Hoeffding bounds to random variables distributed in [0, 1] as in previous works [15]
for two reasons: 1) the datapoints are heterogeneous, 2) the variance b⋆k(1− b⋆k) here can be small,
compared to general random variables in [0, 1], implying more concentration than follows from
Hoeffding’s inequality. To address these issues, we analyze the concentration of the empirical
(1/2 ± |Bk|/T )-quantiles to mitigate the influence of heterogeneity, and we also use Bernstein’s
inequality, which is variance-dependent [54], to obtain bounds relying on both the sample size Tn
and the variance b⋆k(1− b⋆k).

Also, the constant 1/5, controlling the heterogeneity, is not essential (we choose 1/5 for clarity). It
can be replaced with any number below 1/2 so that estimating the central probability distribution
becomes possible, as the information conveyed by homogeneous datapoints dominates.

Lemma 1 reveals that well-aligned entries of the central distribution are accurately estimated. Thus
one can use the central estimate for the entries where the central distribution pt aligns with the target
distribution pt. The remaining entries, that are neither well-aligned nor satisfy p⋆k = ptk, can be
estimated by the individual estimator. We argue that a properly chosen threshold parameter α filters
out the desired entries to be estimated individually with high probability, leading to Theorems 1 and
2.

While estimating p⋆ is not our main goal, one can readily obtain from Lemma 1 the following bound
on estimating p⋆ by summing up the errors for all entries k ∈ [d] = Iη with η = maxk∈[d] |Bk|.
Corollary 1 reveals that the central distribution can be accurately estimated if the mismatching of
distributions happens uniformly across all entries, i.e., each entry differs in O(sT/d) of clusters.

Corollary 1. Let p̂⋆ = Proj[0,1](
2b qb⋆−1
2b−1

) be obtained by the debiasing operation from Algorithm
1. Suppose |Bk| = O(sT/d) for any k ∈ [d], with η = maxk∈[d] |Bk|/T , the median-based SHIFT
method enjoys

E[∥p̂⋆ − p⋆∥22] = Õ

(
s2

d2bn
+

d

2bTn
+

d

n2

)
.

4 Lower Bounds

To complement our upper bounds, we now provide minimax lower bounds for estimating distributions
under heterogeneity. Since our setting contains T heterogeneous clusters of datapoints, our minimax
error metric is slightly different from the one studied in [26, 6, 27, 2]. Using the ℓ2 error as the loss,
the lower bound metric is defined as

inf
(W t′,[n])t′∈[T ]

p̂t

sup
p⋆∈Pd

{pt′ :t′∈[T ]}⊆Bs(p
⋆)

E
[∥∥p̂t − pt

∥∥2
2

]
, (3)
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Figure 2: Average ℓ2 estimation error in synthetic experiment. (Left): Fixing s = 5, T = 30 and
varying n. (Middle): Fixing s = 5, n = 100, 000 and varying T . (Right): Fixing T = 30, n =
100, 000 and varying s. The standard error bars are obtained from 10 independent runs.

where the supremum is taken over all possible central distributions p⋆ ∈ Pd and individual distribu-
tions {pt : t ∈ [T ]} in Bs(p

⋆) ≜ {p ∈ Pd : ∥p− p⋆∥0 ≤ s}, and the infimum is taken over all esti-
mation methods p̂t that use all heterogeneous messages {Y t′,j ≜ W t′,j(Xt′,j) : j ∈ [n], t′ ∈ [T ]}
encoded (possibly interactively) by any encoding functions {W t′,j : j ∈ [n], t′ ∈ [T ]} with output
in [2b], e.g., the random hashing maps. The measure (3) characterizes the best possible worst-case
performance of estimating distributions under our model of heterogeneity.

Since the supremum is taken over all distributions p⋆,p1, . . . ,pT in Pd such that ∥pt − p⋆∥0 ≤ s
for all t ∈ [T ], we consider two representative cases therein: 1) The homogeneous case where
p1 = · · · = pT = p⋆ ∈ Pd. Then the setting essentially reduces to the single-cluster problem but
with nT datapoints, and the goal here is to estimate p⋆, leading to the lower bound Ω(d/(2bTn)). 2)
The s/2-sparse case where ∥p⋆∥0 ≤ s/2 and ∥pt∥0 ≤ s/2 for all t ∈ [T ]. Then it naturally holds
that {pt : t ∈ [T ]} ⊆ Bs(p

⋆). By constructing independent priors for {pt : t ∈ [T ]} and p⋆, one
can show that only datapoints generated by pt itself are informative for estimating pt. In this case,
we show the lower bound Ω(max{2b, s}/(2bn)). Combining the two cases, we find the following
lower bound. The formal argument is provided in Appendix E.
Theorem 3. For any—possibly interactive—estimation method, and for any t ∈ [T ], we have

inf
(W t′,[n])t′∈[T ]

p̂t

sup
p⋆∈Pd

{pt′ :t′∈[T ]}⊆Bs(p
⋆)

E[∥p̂t − pt∥22] = Ω

(
max{2b, s}

2bn
+

d

2bTn

)
. (4)

By a similar argument but with an additional (T + 1)-st cluster of ñ users, we obtain a lower bound
for adapting to a new cluster.
Theorem 4. For any—possibly interactive—estimation method, and a new cluster CT+1, we have

inf
(W t′,[n])t′∈[T ]

WT+1,[ñ],p̂T+1

sup
p⋆∈Pd

{pt′ :t′∈[T+1]}⊆Bs(p
⋆)

E[∥p̂T+1 − pT+1∥22] = Ω

(
max{2b, s}

2bñ
+

d

2bTn

)
. (5)

Theorem 3 and 4, combined with the upper bounds in Section 3, imply that our method is minimax
optimal up to logarithmic terms. We provide similar lower bounds for the ℓ1 error in Appendix E.

5 Experiments

We test SHIFT on synthetic data as well as the Shakespeare dataset [11]. As a baseline method, we
use the estimator based on uniform grouping in [26] that is minimax optimal under homogeneity, i.e.,
in the single-task regime. We apply the baseline method both locally and globally. In the local case,
the estimator p̂t for each cluster is computed without datapoints from other clusters. In the global
case, we pool data from all clusters, and compute estimators p̂ = p̂1 = · · · = p̂T . The performance
measure for estimating p̂t, t ∈ [T ] is taken as T−1

∑T
t=1 ∥pt − p̂t∥22.
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k = 2 b = 2 b = 4 b = 6 b = 8
Unif. Group. (local) 640± 6.0 142± 1.2 40± 0.40 14± 0.13
Unif. Group. (global) 33± 1.8 17± 0.37 14± 0.081 13± 0.037
SHIFT (median) 47± 2.4 21± 0.66 14± 0.17 11± 0.10
SHIFT (trimmed mean) 36± 2.2 19± 0.51 13± 0.24 10± 0.062

k = 3 b = 2 b = 4 b = 6 b = 8
Unif. Group. (local) 15000± 21 3000± 5.9 720± 2.1 180± 0.39
Unif. Group. (global) 4400± 5.7 100± 1.4 38± 0.35 23± 0.090
SHIFT (median) 7300± 9.6 180± 2.1 53± 1.0 20± 0.18
SHIFT (trimmed mean) 5100± 6.3 140± 2.3 43± 0.66 18± 0.18

Table 2: Average ℓ2 error for estimating distributions of k-grams in the Shakespeare dataset. Numbers
are scaled by 10−5.

5.1 Synthetic Data

We set the uniform distribution, p⋆ = (1/d, . . . , 1/d) as the central distribution. In Appendix F, we
also experiment on the truncated geometric distribution and compare our method with the localization-
refinement method [15]. Among the d entries of p⋆, we draw s entries uniformly at random and
assign new values for them uniformly at random over [0, 1], with re-normalization to preserve their
sum. We repeat this procedure T times to obtain sparsely perturbed distributions p1, . . . ,pT ∈ Pd.
Then, n i.i.d. datapoints Xt,1, . . . , Xt,n ∼ Cat(pt) are generated for each cluster t ∈ [T ]. We set
the dimension to d = 300 and run the simulation by varying n, T, s. As we see from (2), the error of
our method depends on s only when 2b < s. For this reason, we let b = 2 in our experiments.

We run SHIFT with the entry-wise median and entry-wise trimmed mean as the robust estimate.
We set the threshold parameter α = ln(n) and the trimming proportion ω = 0.1. In Appendix
F, we provide results for other choices of the hyperparameters α, ω and discuss a heuristic for
choosing α. Figure 2 illustrates that our method outperforms the baselines for most choices of
n, T, s. Specifically, as Theorem 1 predicts, the ℓ2 error of our method decreases as the number of
clusters T increases. On the other hand, when the baseline methods are applied globally, without
considering heterogeneity, they show a bias that does not disappear as the sample size n or the
number of clusters T increases. This shows that the fine-tuning step in SHIFT is crucial for the
estimation of heterogeneous distributions. Finally, the right panel of Figure 2 shows that our method
is effective only when s is small compared to the dimension d; which highlights the crucial role of
sparse heterogeneity. When s is close to d, the distributions p1, . . .pT could be considerably different
without any meaningful central structure, making collaboration less useful than local estimation.

5.2 Shakespeare Dataset

The Shakespeare dataset was proposed as a benchmark for federated learning in [11]. The dataset
consists of dialogues of 1,129 speaking roles in Shakespeare’s 35 different plays. In our experiment,
we study the distribution of k-grams (k-tuples of consecutive letters from the 26-letter English
alphabet, see Chapter 3 of [33]) appearing in the dialogues. We consider each play as a cluster Ct
and estimate the distribution pt ∈ Pd, d = 26k of k-grams. Since the ground-truth distribution pt is
unknown, we regard the empirical frequency as pt.

To verify the heterogeneity, we run the chi-squared goodness-of-fit test for each pair of distributions
from distinct clusters pu and pv . Resulting p-values were essentially zero within machine precision,
which suggests that the distributions of k-grams are strongly heterogeneous. We also perform entry-
wise tests comparing [pu]i and [pv]i for all u ̸= v ∈ [T ], i ∈ [d]. In total, 25.8% of the tests were
rejected at the significance level of 5%. This again supports the heterogeneity.

We draw n = 20, 000 datapoints with replacement from each cluster and test SHIFT with communica-
tion budgets b ∈ {2, 4, 6, 8}. We set the fine-tuning threshold α = ln(n) and the trimming proportion
ω = 0.1, which we choose following the heuristic discussed in Appendix F. We repeat the experiment
ten times by taking different datapoints and report the average ℓ2 error of estimation in Table 2. The
standard deviations are small even over ten repetitions. SHIFT shows competitive performance on
the empirical dataset, even though we do not rigorously know if the sparse heterogeneity model (1)
applies.

9



6 Conclusion and Future Directions

We formulate the problem of learning distributions under sparse heterogeneity and communication
constraints. We propose the SHIFT method, which first learns a central distribution, and then fine-
tunes the estimate to adapt to individual distributions. We provide both theoretical and experimental
results to show its sample-efficiency improvement compared to classical methods that target only
homogeneous data. Many interesting directions remain to be explored, including investigating if
there is a point-wise optimal method with rate depending on {pt : t ∈ [T ]} and p⋆; and designing
methods for other information constraints, such as local differential privacy constraints.
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