
BEER: Fast O(1/T ) Rate for Decentralized Nonconvex
Optimization with Communication Compression

Haoyu Zhao
Princeton University

haoyu@princeton.edu

Boyue Li
Carnegie Mellon University
boyuel@andrew.cmu.edu

Zhize Li∗
Carnegie Mellon University
zhizel@andrew.cmu.edu

Peter Richtárik
King Abdullah University of Science and Technology

peter.richtarik@kaust.edu.sa

Yuejie Chi
Carnegie Mellon University
yuejiec@andrew.cmu.edu

Abstract

Communication efficiency has been widely recognized as the bottleneck for large-
scale decentralized machine learning applications in multi-agent or federated envi-
ronments. To tackle the communication bottleneck, there have been many efforts
to design communication-compressed algorithms for decentralized nonconvex op-
timization, where the clients are only allowed to communicate a small amount
of quantized information (aka bits) with their neighbors over a predefined graph
topology. Despite significant efforts, the state-of-the-art algorithm in the nonconvex
setting still suffers from a slower rate of convergence O((G/T )2/3) compared with
their uncompressed counterpart, where G measures the data heterogeneity across
different clients, and T is the number of communication rounds. This paper pro-
poses BEER, which adopts communication compression with gradient tracking, and
shows it converges at a faster rate of O(1/T ). This significantly improves over the
state-of-the-art rate, by matching the rate without compression even under arbitrary
data heterogeneity. Numerical experiments are also provided to corroborate our
theory and confirm the practical superiority of BEER in the data heterogeneous
regime.

1 Introduction

Decentralized machine learning is gaining attention in both academia and industry because of its
emerging applications in multi-agent systems such as the internet-of-things (IoT) and networked
autonomous systems [31, 43]. One of the key problems in decentralized machine learning is on-
device training, which aims to optimize a machine learning model using the datasets stored on
(geographically) different clients, and can be formulated as a decentralized optimization problem.

Decentralized optimization aims to solve the following optimization problem without sharing the
local datasets with other clients:

min
x∈Rd

{
f(x;D) :=

1

n

n∑
i=1

f(x;Di)

}
, (1)

where f(x;Di) := Eξi∼Di
f(x; ξi) for i ∈ [n], and n is the total number of clients. Here, x ∈ Rd is

the machine learning model, f(x;D), f(x;Di), and f(x; ξi) denote the loss functions of the model
x on the entire dataset D, the local dataset Di, and a random data sample ξi, respectively. Different
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from the widely studied distributed or federated learning setting where there is a central server
to coordinate the parameter sharing across all clients, in the decentralized setting, each client can
only communication with its neighbors over a communication network determined by a predefined
network topology.

The main bottleneck of decentralized optimization—when it comes to large-scale machine learning
applications—is communication efficiency, due to the large number of clients involved in the net-
work [43] and the enormous size of machine learning models [4], exacerbated by resource constraints
such as limited bandwidth availability and stringent delay requirements. One way to reduce the
communication cost is communication compression, which only transmits compressed messages
(with fewer bits) between the clients using compression operators. The compression operators come
with many design choices and offer great flexibility in different trade-offs of communication and
computation in practice. Even though communication compression has been extensively applied to
distributed or federated optimization with a central server [47, 12, 6, 26, 11, 25, 40, 41, 27], its use in
the decentralized setting has been relatively sparse. Most of the existing approaches only apply to
the strongly convex setting [39, 17, 30, 19, 29, 23], and only a few consider the general nonconvex
setting [16, 51, 45].

Our contributions This paper considers decentralized optimization with communication compres-
sion, focusing on the nonconvex setting due to its critical importance in modern machine learning,
such as training deep neural networks [21], word embeddings, and other unsupervised learning
models [42]. Unfortunately, existing algorithms [16, 51, 45] suffer from several important drawbacks
in the nonconvex setting: they need strong bounded gradient or bounded dissimilarity assumptions
to guarantee convergence, and the convergence rate is order-wise slower than their uncompressed
counterpart in terms of the communication rounds (see Table 1).

In this paper, we introduce BEER, which is a decentralized optimization algorithm with communica-
tion compression using gradient tracking. BEER not only removes the strong assumptions required in
all prior works, but enjoys a faster convergence rate in the nonconvex setting. Concretely, we have
the following main contributions (see Tables 1 and 2).

1. We show that BEER converges at a fast rate of O(1/T ) in the nonconvex setting, which im-
proves over the state-of-the-art rate O(1/T 2/3) of CHOCO-SGD [16] and Deepsqueeze [51],
where T is the number of communication rounds. This matches the rate without compression
even under arbitrary data heterogeneity across the clients.

2. We also provide the analysis of BEER under the Polyak- Łojasiewicz (PL) condition (As-
sumption 4), and show that BEER converges at a linear rate (see Table 2). Note that strong
convexity implies the PL condition, and thus BEER also achieves linear convergence in the
strongly convex setting.

3. We run numerical experiments on real-world datasets and show BEER achieves superior or
competitive performance when the data are heterogeneous compared with state-of-the-art
baselines with and without communication compression.

To the best of our knowledge, BEER is the first algorithm that achieves O(1/T ) rate without the
bounded gradient or bounded dissimilarity assumptions, supported by a strong empirical performance
in the data heterogeneous setting.

Notation Throughout this paper, we use boldface letters to denote vectors, e.g., x ∈ Rd. Let [n]
denote the set {1, 2, · · · , n}, 1 be the all-one vector, I be the identity matrix, ∥·∥ denote the Euclidean
norm of a vector, and ∥·∥F denote the Frobenius norm of a matrix. Let ⟨u,v⟩ denote the standard
Euclidean inner product of two vectors u and v. In addition, we use the standard order notation O(·)
to hide absolute constants.

Due to space constraints, additional discussions of related work, further experiments, and the proof
details can be found in the appendix.

2 Problem Setup

In this section, we formally define the decentralized optimization problem with communication
compression, and introduce a few important quantities and assumptions that will be used in developing
our algorithm and theory.

2



Algorithm Convergence rate Strong assumption

SQuARM-SGD [45] O
(

1√
nT

+ nG2

T

)
Bounded Gradient

DeepSqueeze [51] O
((

G
T

)2/3)
Bounded Dissimilarity

CHOCO-SGD [16] O
((

G
T

)2/3)
Bounded Gradient

BEER (Algorithm 1) O
(
1
T

)
—

Table 1: Comparison of convergence rates for existing decentralized methods with communication
compression in the nonconvex setting. Here, the parameter G refers the quantity either in the
bounded gradient assumption Eξi∼Di

∥∇f(x, ξi)∥2 ≤ G2 or the bounded dissimilarity assumption
Ei ∥∇f(x,Di)−∇f(x,D)∥2 ≤ G2, both of which are very strong assumptions (the bounded
dissimilarity assumption is slightly weaker) that BEER does not require. All algorithms support the
use of stochastic gradients with bounded local variance at local clients.

Assumptions Convergence rate Theorem

fi is L-smooth 1
T

∑T−1
t=0 E ∥∇f(x̄t)∥2 ≤ 2(Φ0−ΦT )

ηT Theorem 1
fi is L-smooth

f satisfies PL condition ΦT ≤ (1− µη)TΦ0 Theorem 3

Table 2: Summary of the established convergence rates for the proposed BEER algorithm in the
nonconvex setting. Here, x̄t is the average model of all clients, η is the step size, Φt is the Lyapunov
function (cf. (4)), and µ is the PL-condition parameter (cf. Assumption 4). We do not assume the
bounded gradient or bounded dissimilarity assumption.

Decentralized optimization The goal of decentralized optimization is to solve

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
,

where n is the number of clients, f(x) is the global objective function, and fi(x) := f(x;Di) :=
Eξi∼Di

f(x; ξi) is the local objective function, with x the parameter of interest, ξi a random data
sample drawn from the local dataset Di.

In the decentralized setting, the clients can only communicate with their local neighbors over a
prescribed network topology, which is specified by an undirected weighted graph G([n], E). Here,
each node in [n] represents a client, and E is the set of possible communication links between
different clients. Information sharing across the clients is implemented mathematically by the use of
a mixing matrix W = [wij ] ∈ [0, 1]n×n, which is defined in accordance with the network topology:
we assign a positive weight wij for any (i, j) ∈ E and wij = 0 for all (i, j) /∈ E. We make the
following standard assumption on the mixing matrix [36].

Assumption 1 (Mixing matrix) The mixing matrix W = [wij ] ∈ [0, 1]n×n is symmetric (W⊤ =
W ) and doubly stochastic (W1 = 1,1⊤W = 1⊤). Let its eigenvalues be 1 = |λ1(W )| >
|λ2(W )| ≥ · · · ≥ |λn(W )|. The spectral gap is denoted by

ρ := 1− |λ2(W )| ∈ (0, 1]. (2)

The spectral gap of a mixing matrix is closely related to the network topology, see Nedić et al. [36]
for its scaling with respect to the network size (i.e. the number of clients n) for representative network
topologies.

Compression operators Compression, in the forms of quantization or sparsification, can be used
to reduce the total communication cost. We now introduce the notion of a randomized compression
operator, which is widely used in the decentralized/federated optimization literature, e.g. Tang et al.
[49], Stich et al. [47], Koloskova et al. [16], Richtárik et al. [40], Fatkhullin et al. [8].
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Definition 1 (Compression operator) A randomized map C : Rd 7→ Rd is an α-compression
operator if for all x ∈ Rd, it satisfies

E
[
∥C(x)− x∥2

]
≤ (1− α) ∥x∥2 . (3)

In particular, no compression (C(x) ≡ x) implies α = 1.

Compared with the unbiased compression operator used in, e.g., Alistarh et al. [1], Khirirat et al.
[15], Mishchenko et al. [33], Li and Richtárik [24], the compression operator in Definition 1 does
not impose the additional constraint on the expectation such that E[C(x)] = x. Besides, it is always
possible to convert an unbiased compression operator into a biased one satisfying Definition 1,
and thus Definition 1 is a generalization of the unbiased compression operator that allows biased
compression. Practical examples of the compression operators are provided in Appendix B.

Assumptions on functions We now state the assumptions on the functions {fi} and f . Throughout
this paper, we assume that f∗ = minx f(x) exists and f∗ > −∞.

In the nonconvex setting, we assume that the functions {fi}i∈[n] are arbitrary functions that satisfy
the following standard smoothness assumption.

Assumption 2 (Smoothness) The function f is L-smooth if there exists L ≥ 0 such that

∥∇f(x1)−∇f(x2)∥ ≤ L ∥x1 − x2∥ ,∀x1,x2 ∈ Rd.

In addition, we allow local computation to be performed via stochastic gradient updates, where
∇̃fi(x) := ∇fi(x; ξi) denotes a local stochastic gradient computed via a sample ξi drawn i.i.d. from
Di, and ∇̃bfi(x) :=

1
b

∑b
j=1 ∇fi(x; ξi,j) denotes the stochastic gradient computed by a minibatch

with size b drawn i.i.d. from Di. We assume ∇̃fi(x) and ∇̃bfi(x) have bounded variance, which is
again standard in the decentralized/federated optimization literature [32, 13, 16].

Assumption 3 (Bounded variance) There exists a constant σ ≥ 0 such that for all i ∈ [n] and
x ∈ Rd,

E
∥∥∥∇̃fi(x)−∇fi(x)

∥∥∥2 ≤ σ2.

For a stochastic gradient with minibatch size b, we have

E
∥∥∥∇̃bfi(x)−∇fi(x)

∥∥∥2 ≤ σ2

b
.

In addition, we consider the setting when the function f additionally satisfies the following Polyak-
Łojasiewicz (PL) condition [37], which can lead to fast linear convergence even when the function is
nonconvex.

Assumption 4 (PL condition) There exists some constant µ > 0 such that for any x ∈ Rd,

∥∇f(x)∥2 ≥ 2µ(f(x)− f∗).

Note that the PL condition is a weaker assumption than strong convexity, which means that if the
objective function f is µ-strongly convex, then the PL condition also holds with the parameter µ.

3 Proposed Algorithm

In this section, we introduce our proposed algorithm BEER for decentralized nonconvex optimization
with compressed communication. Before embarking on the description of BEER, we introduce some
convenient matrix notation. Since in a decentralized setting, the parameter estimates at different clients
are typically different, we use X = [x1,x2, . . . ,xn] to denote the collection of parameter estimates
from all clients, where xi is from client i. The average of {xi}i∈[n] is denoted by x̄ := 1

nX1. Other
quantities are defined similarly. With slight abuse of notation, we define

∇F (X) := [∇f1(x1),∇f2(x2), . . . ,∇fn(xn)] ∈ Rd×n,

4



Algorithm 1 BEER: BEtter comprEssion for decentRalized optimization
1: Input: Initial point X0 = x01

⊤, G0 = 0, H0 = 0, V 0 = ∇F (X0), step size η, mixing step
size γ, minibatch size b.

2: for t = 0, 1, . . . do
3: Xt+1 = Xt + γHt(W − I)− ηV t

4: Qt+1
h = C(Xt+1 −Ht) // client i sends qt+1

h,i to all its neighbors

5: Ht+1 = Ht +Qt+1
h

6: V t+1 = V t + γGt(W − I) + ∇̃bF (Xt+1)− ∇̃bF (Xt)
7: Qt+1

g = C(V t+1 −Gt) // client i sends qt+1
g,i to all its neighbors

8: Gt+1 = Gt +Qt+1
g

9: end for

which collects the local gradients computed at the local parameters. Similarly, the stochastic
variant is defined as ∇̃bF (X) := [∇̃bf1(x1), ∇̃bf2(x2), . . . , ∇̃bfn(xn)]. We also allow the
compression operator to take vector values, which are applied in a column-wise fashion, i.e.,
C(X) := [C(x1), . . . , C(xn)] ∈ Rd×n.

We now proceed to describe BEER, which is detailed in Algorithm 1 using the matrix notation
introduced above. At the t-th iteration, BEER maintains the current model estimates Xt and the
global gradient estimates V t across the clients. At the crux of its design, BEER also tracks and
maintains two control sequences Ht and Gt that serve as compressed surrogates of Xt and V t,
respectively. In particular, these two control sequences are updated by aggregating the received
compressed messages alone (cf. Line 5 and Line 8).

It then boils down to how to carefully update these quantities in each iteration with communication
compression, which we now explain in details. To begin, note that for each client i, BEER not
only maintains its own parameters {xt

i,v
t
i ,h

t
i, g

t
i}, but also the control variables from its neighbors,

namely, {ht
j}j∈N (i) and {gt

j}j∈N (i).

Update the model estimate Each client i first updates its model xt+1
i according to Line 3. By thinking

of {ht
j}j∈N (i) as a surrogate of {xt

j}j∈N (i), the second term aims to achieve better consensus among
the clients through mixing, while the last term performs a gradient descent update.

Update the global gradient estimate Each client i updates the global gradient estimate vt+1
i

according to Line 6, where the last correction term—based on the difference of the gradients at
consecutive models—is known as a trick called gradient tracking [38, 7, 35]. The use of gradient
tracking is critical: as shall be seen momentarily, it contributes to the key difference from CHOCO-
SGD that enables the fast rate of O(1/T ) without any bounded dissimilarity or bounded gradient
assumptions. Indeed, if we remove the control sequence Gt and substitute Lines 6-8 by V t+1 =
∇̃bF (Xt+1), we recover CHOCO-SGD from BEER.

Update the compressed surrogates with communication To update {ht
j}j∈N (i), each client i

first computes a compressed message qt+1
h,i that encodes the difference xt+1

i − ht
i, and broadcasts

to its neighbors (cf. Line 4). Then, each client i updates {ht
j}j∈N (i) by aggregating the received

compressed messages {qt+1
h,j }j∈N (i) following Line 5. The updates of {gt

j}j∈N (i) can be performed
similarly. Moreover, all the compressed messages can be sent in a single communication round at
one iteration, i.e., the communications in Lines 4 and 7 can be performed at once. This leverages
EF21 [40] for communication compression, which is a better and simpler algorithm that deals with
biased compression operators compared with the error feedback (or error compensation, EF/EC)
framework [12, 46]. Using the control sequence Gt, BEER does not need to apply EF/EC explicitly
and can deal with the error implicitly.

4 Convergence Guarantees

In this section, we show the convergence guarantees of BEER under different settings: the O(1/T )
rate in the nonconvex setting in Section 4.1, and the improved linear rate under the PL condition
(Assumption 4) in Section 4.2. In Section 4.3, we briefly sketch the proof.
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Our convergence guarantees are based on an appropriately designed Lyapunov function, given by

Φt = Ef(x̄t)− f∗ +
c1L

n
Ωt

1 +
c2ρ

2

nL
Ωt

2 +
c3L

n
Ωt

3 +
c4ρ

4

nL
Ωt

4, (4)

where the choice of constants {ci}4i=1 might be different from theorem to theorem, Ef(x̄t) − f∗

represents the sub-optimality gap, and the errors {Ωt
i}4i=1 are defined by

Ωt
1 := E

∥∥Ht −Xt
∥∥2
F
, Ωt

2 := E
∥∥Gt − V t

∥∥2
F
, (5)

Ωt
3 := E

∥∥Xt − x̄t1⊤∥∥2
F
, Ωt

4 := E
∥∥V t − v̄t1⊤∥∥2

F
.

Here, Ωt
1 and Ωt

2 denote the compression errors for Xt and V t when approximated using the
compressed surrogates Ht and Gt respectively, and Ωt

3 and Ωt
4 denote the consensus errors of Xt

and V t.

4.1 Convergence in the nonconvex setting

First, we present the following convergence result of BEER in the nonconvex setting when there is
no local variance (σ2 = 0), i.e., we can use the local full gradient ∇F (Xt) instead of ∇̃bF (Xt) in
Line 6 of Algorithm 1.

Theorem 1 (Convergence in the nonconvex setting without local variance) Suppose Assump-
tions 1, and 2 hold, and we can compute the local full gradient ∇fi(x) for any x. Then there exist
absolute constants c1, c2, c3, c4, cγ , cη > 0, such that if we set γ = cγαρ, η = cηγρ

2/L, then for the
Lyapunov function Φt in (4), it holds

1

T

T−1∑
t=0

E
∥∥∇f(x̄t)

∥∥2 ≤ 2(Φ0 − ΦT )

ηT
.

Theorem 1 shows that BEER converges at a rate of O(1/T ) when there is no local variance (σ2 = 0),
which is faster than the O(1/T 2/3) rate by CHOCO-SGD [16] and DeepSqueeze [51], and the
O(1/

√
T ) rate by SQuARM-SGD [45]; see also Table 1.

More specifically, to achieve 1
T

∑T−1
t=0 E ∥∇f(x̄t)∥2 ≤ ϵ2, BEER needs O

(
1

ρ3αϵ2

)
iterations or

communication rounds, where ρ and α are the spectral gap (cf. (2)) and the compression parameter
(cf. (3)), respectively. In comparison, the state-of-the-art algorithm CHOCO-SGD [16] converges at a
rate of O((G/ρ2αT )2/3), which translates to an iteration complexity of O

(
G

ρ2αϵ3

)
, with G being

the bounded gradient parameter, namely, Eξi∼Di ∥∇f(x, ξi)∥2 ≤ G2. Therefore, BEER improves
over CHOCO-SGD not only in terms of a better dependency on ϵ, but also removing the bounded
gradient assumption, which is significant since in practice, G can be excessively large due to data
heterogeneity across the clients.

The dependency on α of BEER is consistent with other compression schemes, such as CHOCO-SGD,
DeepSqueeze and SQuARM-SGD for the nonconvex setting, as well as LEAD [30] and EF-C-GT [29]
for the strongly convex setting.

As for the dependency on ρ, BEER is slightly worse than CHOCO-SGD, where CHOCO-SGD has a
dependency of O(1/ρ2) whereas BEER has a dependency of O(1/ρ3). This degeneration is also seen
in the analysis of uncompressed decentralized algorithms using gradient tracking [48, 54], where the
rate O(1/ρ2) is worse than the rate of O(1/ρ) for basic decentralized SGD algorithms [14, 28] by
a factor of ρ. In addition, both BEER and CHOCO-SGD use small mixing step size γ to guarantee
convergence, which makes the dependency on ρ worse than their uncompressed counterparts.

Stochastic gradient oracles BEER also supports the use of stochastic gradient oracles with bounded
local variance (Assumption 3). More specifically, we have the following theorem, which generalizes
Theorem 1.

Theorem 2 (Convergence in the nonconvex setting) Suppose Assumptions 1, 2 and 3 hold. Then
there exist absolute constants c1, c2, c3, c4, cγ , cη > 0, such that if we set γ = cγαρ, η = cηγρ

2/L,
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Algorithm Communication rounds Gradient complexity

SQuARM-SGD [45] O
(

nG2

ϵ2 + σ2

bnϵ4

)
O
(

σ2

nϵ4 + nG2

ϵ2

)
DeepSqueeze [51] O

(
G
ϵ3 + σ2

bnϵ4

)
O
(

σ2

nϵ4 + G
ϵ3

)
CHOCO-SGD [16] O

(
G
ϵ3 + σ2

bnϵ4

)
O
(

σ2

nϵ4 + G
ϵ3

)
BEER (Algorithm 1) O

(
1
ϵ2

)
O
(

σ2

ϵ4 + 1
ϵ2

)
Table 3: A more detailed comparison of the communication complexity and the gradient complexity
with existing decentralized stochastic methods in the nonconvex setting to reach ϵ-accuracy. Here,
G again measures the bounded gradient or bounded dissimilarity assumption, σ2 and b denote the
gradient variance and batch size respectively. We omit the dependency on the compression ratio and
the network topology parameter for brevity.

then for the Lyapunov function Φt in (4), it holds

1

T

T−1∑
t=0

E
∥∥∇f(x̄t)

∥∥2 ≤ 2(Φ0 − ΦT )

ηT
+

6c4σ
2

cγbαL
.

In the presence of local variance, the squared gradient norm of BEER has an additional term
that scales on the order of O

(
σ2

αb

)
(ignoring other parameters). By choosing a sufficiently large

minibatch size b, i.e. b ≥ O
(

σ2

αϵ2

)
, BEER maintains the iteration complexity O

(
1

ρ3αϵ2

)
to reach

1
T

∑T−1
t=0 E ∥∇f(x̄t)∥2 ≤ ϵ2, without the bounded gradient assumption, thus inheriting similar

advantages over CHOCO-SGD as discussed earlier.

While our focus is on communication efficiency, to gain more insights, Table 3 summarizes both the
communication rounds and the gradient complexity for different decentralized stochastic methods.
While BEER does not require the bounded gradient assumption, it may lead to a worse gradient
complexity in the data homogeneous setting due to the use of large minibatch size. Fortunately, this
only impacts the local computation cost, and does not exacerbate the communication complexity,
which is often the bottleneck. It is of great interest to further refine the design and analysis of BEER
in terms of the gradient complexity.

4.2 Linear convergence with PL condition

Now, we show that the convergence of BEER can be strengthened to a linear rate with the addition of
the PL condition (Assumption 4). Similar to the nonconvex setting, we first show the convergence
result without local gradient variance (σ2 = 0).

Theorem 3 (Convergence under the PL condition without local variance) Suppose Assump-
tions 1, 2, and 4 hold, and we can compute the local full gradient ∇fi(x) for any x. Then there
exist constants c1, c2, c3, c4, cγ , cη > 0, such that if we set γ = cγαρ, η = cηγρ

2/L, then for the
Lyapunov function Φt in (4), it holds

ΦT ≤ (1− µη)TΦ0.

Theorem 3 demonstrates that under the PL condition, BEER converges linearly to the global optimum
f∗, where it finds an ϵ-optimal solution in O

(
κ

ρ3α log
(
1
ϵ

))
iterations, with κ := L/µ the condition

number. Note that in the strongly convex case, Liao et al. [29] proposed an algorithm that also uses
error feedback compression and gradient tracking simultaneously, which achieves a linear rate of
convergence with unclear dependencies with salient problem parameters. In comparison, BEER
achieves an explicit linear rate of convergence in the strongly convex case as well, given strong
convexity implies the PL condition. In fact, our analysis for the nonconvex setting—as will be made
evident in our proof—almost implies immediately the linear convergence under the PL condition,
thus provides a major step forward compared with prior analyses that only considered the strongly
convex setting.
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Stochastic gradient oracles Under the PL condition, BEER also supports the use of stochastic
gradient oracles with bounded local variance (Assumption 3). The following theorem shows that
BEER linearly converges to a neighborhood of size O

(
σ2

αb

)
around the global optimum.

Theorem 4 (Convergence under PL condition) Suppose Assumptions 1, 2, 3, and 4 hold. Then
there exist absolute constants c1, c2, c3, c4, cγ , cη > 0, such that if we set γ = cγαρ, η = cηγρ

2/L,
then for the Lyapunov function Φt in (4), it holds

ΦT ≤ (1− µη)TΦ0 +
6c4σ

2

cγLbα
.

4.3 Proof sketch

We now provide a proof sketch of Theorem 1, which establishes the O(1/T ) rate of BEER in the
nonconvex setting using full gradient, highlighting the technical reason of the rate improvement of
BEER over CHOCO-SGD. The full proofs of our theorems are delegated to Appendix D.

Recalling the quantities Ωt
1 to Ωt

4 from (5), which capture the approximation errors using compression
and the consensus errors of Xt and V t, we would like to control these errors by obtaining inequalities
of the form:

Ωt+1
i ≤ (1− ai)Ω

t
i + bi, ∀i ∈ {1, 2, 3, 4},

where 0 < ai < 1 denotes the size of the contraction, and bi > 0 wraps together other terms which
may be dependent on Ωt

j for j ̸= i as well as the expected squared gradient norm of v̄t, i.e.,

Ωt
5 = E

∥∥v̄t
∥∥2 . (6)

Then, by choosing the Lyapunov function properly (cf. (4)), we can show that the Lyapunov function
actually descends, and small manipulations lead to the claimed convergence results in Theorem 1.

We now explain briefly how gradient tracking helps in BEER. Note that CHOCO-SGD also has the
control variable Ht for the model Xt, therefore in its analysis, it also deals with the quantities Ωt

1

and Ωt
3. However, CHOCO-SGD also needs to bound the term ∥V t∥2F, where V t = ∇F (Xt) for

CHOCO-SGD when using full gradients. Thus, CHOCO-SGD needs to assume the bounded gradient
assumption and only obtain a slower O(1/T 2/3) convergence rate. In contrast, BEER deals with the
term ∥V t∥2F by decomposing it using Young’s inequality, leading to∥∥V t

∥∥2
F
≤ (1 + β)(Ωt

4)
2 + (1 + 1/β)(Ωt

5)
2

for some β > 0. Here, Ωt
4 can be controlled via the gradient tracking technique (see Line 6 in

Algorithm 1) without the bounded gradient assumption, and Ωt
5 can be handled using the smoothness

assumption (Assumption 2).

5 Numerical Experiments

This section presents numerical experiments on real-world datasets to showcase BEER’s superior
ability to handle data heterogeneity across the clients, by running each experiment on unshuffled
datasets and comparing the performances with the state-of-the-art baseline algorithms both with and
without communication compression. The code can be accessed at:

https://github.com/liboyue/beer.

Experiment setup We run experiments on two nonconvex problems to compare with the baseline
algorithms both with and without communication compression: logistic regression with a nonconvex
regularizer [52] on the a9a dataset [5], and training a 1-hidden layer neural network on the MNIST
dataset [20].

For logistic regression with a nonconvex regularizer, following Wang et al. [52], the objective function
over a datum (a, b) is defined as

f(x; (a, b)) = log
(
1 + exp(−ba⊤x)

)
+ α

d∑
j=1

x2
j

1 + x2
j

,
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Figure 1: The training gradient norm and testing accuracy against communication rounds (left
two panels) and communication bits (right two panels) for logistic regression with nonconvex
regularization on unshuffled a9a dataset. Both BEER and CHOCO-SGD employ the biased gsgdb
compression [1] with b = 5.

where the last term is the nonconvex regularizer and the regularization parameter is set to α = 0.05.

For 1-hidden layer neural network training, we use 32 hidden neurons, sigmoid activation functions
and cross-entropy loss. The objective function over a datum (a, b) is defined as

f(x; (a, b)) = ℓ(softmax(W2 sigmoid(W1a+ c1) + c2), b),

where ℓ(·, ·) denotes the cross-entropy loss, the optimization variable is collectively denoted by
x = vec(W1, c1,W2, c2), where the dimensions of the network parameters W1, c1, W2, c2 are
64× 784, 64× 1, 10× 64, and 10× 1, respectively.

For both experiments, we split the unshuffled datasets evenly to 10 clients that are connected by a ring
topology. By using unshuffled data, we can simulate the scenario with high data heterogeneity across
clients. Approximately, for the a9a dataset, 5 clients receive data with label 1 and others receive data
with label 0; for the MNIST dataset, client i receives data with label i. We use the FDLA matrix [53]
as the mixing matrix to perform weighted information aggregation to accelerate convergence.

Results We compare BEER with 1) CHOCO-SGD [17], which is the state-of-the-art nonconvex
decentralized optimizing algorithm using communication compression, and 2) DSGD [28] and
D2 [50], which are decentralized optimization algorithms without compression. All algorithms are
initialized in the same experiment by the same initial point. Moreover, we use the same best-tuned
learning rate η = 0.1, batch size b = 100, and biased compression operator (gsgdb) [1] for BEER
and CHOCO-SGD on both experiments.

Figure 1 and Figure 2 plot the training gradient norm and testing accuracy against communication
rounds and communication bits for logistic regression with nonconvex regularization and 1-hidden-
layer neural network training, respectively.

In the nonconvex logistic regression experiment (cf. Figure 1), the algorithms with communication
compression (BEER and CHOCO-SGD) converge faster than the uncompressed algorithms (DSGD
and D2) in terms of the communication bits. However, CHOCO-SGD fails to converge to a small
gradient norm solution since it cannot tolerate a high level of data dissimilarity across different
clients, and its performance is not comparable to D2. In contrast, BEER can converge to a point with
a relatively smaller gradient norm, which is comparable to D2. The performance of testing accuracy
is similar to that of the training gradient norm, where BEER achieves the best testing accuracy and
also learns faster than the uncompressed algorithms.

Turning to the neural network experiment (cf. Figure 2), in terms of the final training gradient
norm, BEER converges to a solution comparable to D2, but at a lower communication cost, while
CHOCO-SGD and DSGD cannot converge due to the data heterogeneity. In terms of testing accuracy,
BEER and D2 have very similar performance, and outperform CHOCO-SGD and DSGD.

Convolutional neural network training We further compare the performance of BEER and
CHOCO-SGD on training a convolutional neural network using the unshuffled MNIST dataset. Specif-
ically, the network is consist of three modules: the first module is a 2-d convolution layer (1 input
channel, 16 output channels, kernel size 5, stride 1 and padding 2) followed by 2-d batch normal-
ization, ReLU activation and 2-d max pooling (kernel size 2 and stride 2); the second module is the
same as the first module, except the convolution layer has 16 input channels and 32 output channels;
the last module is a fully-connected layer with 1568 inputs and 10 outputs. We adopt the standard
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Figure 2: The training gradient norm and testing accuracy against communication rounds (left two
panels) and communication bits (right two panels) for classification on unshuffled MNIST dataset
using a 1-hidden-layer neural network. Both BEER and CHOCO-SGD employ the biased gsgdb
compression [1] with b = 20.

cross-entropy loss, and simply average each agent’s model with its neighbors. Figure 3 shows the
testing gradient norm and accuracy against the communication bits. It can be seen that BEER outper-
forms CHOCO-SGD in terms of both testing gradient norm and testing accuracy. Both algorithms
converge fast initially, however, due to to the extreme data heterogeneity, their convergence speeds
significantly degenerate after a short time. BEER keeps improving the objective when CHOCO-SGD
hits its error floor, which highlights BEER’s advantage to deal with data heterogeneity.
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Figure 3: The testing gradient norm and testing accuracy against communication bits on unshuffled
MNIST dataset using a 3-layer convolutional neural network. Both BEER and CHOCO-SGD employ
the biased gsgdb compression [1] with b = 5.

In summary, BEER has much better performance in terms of communication efficiency than CHOCO-
SGD in heterogeneous data scenario, which corroborates our theory. BEER also performs similarly or
even better than the uncompressed baseline algorithm D2, and much better than DSGD. In addition,
by leveraging different communication compression schemes, BEER allows more flexible trade-offs
between communication and computation, making it an appealing choice in practice.

6 Conclusion
This paper presents BEER, which achieves a faster O(1/T ) convergence rate for decentralized non-
convex optimization with communication compression, without imposing the bounded dissimilarity
or bounded gradient assumptions. In addition, a faster linear rate of convergence is established for
BEER under the PL condition. Numerical experiments are provided to corroborate our theory on
the advantage of BEER in the data heterogeneous scenario. An interesting direction of future work
is to investigate the lower bounds for decentralized (nonconvex) optimization with communication
compression. In addition, improving the dependency of BEER with the network topology parameter
ρ, possibly leveraging the analysis in Koloskova et al. [18], is of interest.
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