
A Missing Material From Section 3.2

Theorem 3.2. There is an algorithm that given a tree T computes #freq(DTGS) using polynomially
many arithmetic operations with respect to the number of nodes in T .

Proof. Let T be the input tree, and let C = {c1, . . . , cm} be its candidate set. We will give an
algorithm for computing the probability that a given candidate cj appears in position i ∈ [m] in a
vote sampled from DTGS.

Let x be some node of T (either internal or a leaf). Let Tx be the tree obtained from T by deleting
all descendants of x, so that x becomes a leaf, and for each subset S of internal nodes of Tx, let
T Sx be the ordered tree obtained by starting with Tx and reversing the nodes in the set S. For each
t ∈ {0} ∪ [m− 1] we define f(x, t) to be the probability that if we reversed each internal node of Tx
with probability 1/2 then x would be preceded by exactly t candidates in the frontier of the resulting
ordered tree. We compute f(x, t) using dynamic programming.

Let root be the root of T . Then f(root , 0) = 1, and f(root , t) = 0 for t ∈ [1,m− 1]. Next, let x be
some node of T other than the root, let p be the parent of x, and let ` and r be the number of leaves
that are descendants of x’s left siblings and x’s right siblings in T , respectively. We claim that for
each t ∈ {0} ∪ [m− 1] we have:

f(x, t) = 1
2f(p, t− `) + 1

2f(p, t− r).

To see why this formula is correct, observe that if p 6∈ S then x appears in position t in the frontier
of T Sx if and only if p appears in position t− ` in the frontier of T Sp : indeed, in the frontier of T Sx
the node x appears after all predecessors of p in the frontier of T Sp as well as after the ` leaves that
are the descendants of x’s left siblings in T . Similarly, if p ∈ S then x appears in position t in the
frontier of T Sx if and only if p appears in position t − r in the frontier of T S\{p}p : indeed, in the
frontier of T Sx the node x appears after all predecessors of p in the frontier of T S\{p}p as well as after
the r leaves that are the descendants of x’s right siblings in T . Since p is reversed with probability 1

2 ,
the recurrence follows.

The above formula and standard dynamic programming allow us to compute all the values of f using
O(m2) arithmetic operations (note that there are at most O(m) internal nodes). To complete the
proof, observe that the probability that candidate cj ends up in position i is f(cj , i− 1).

B Missing Material From Section 3.3

We use the following lemma, which is implicit in the work of Faliszewski et al. (2020).

Lemma B.1. Let T = CP(c1, . . . , cm). A ranking v over {c1, . . . , cm} belongs to the support of
DTGS if and only if there exists a subset C ′ ⊆ C \ {cm} such that in v:

1. (1) all alternatives in C ′ are ranked above cm and all alternatives in (C \ {cm}) \ C ′ are
ranked below cm;

2. (2) for all ci, cj ∈ C ′ with i < j the alternative ci is ranked above cj;

3. (3) for all ci, cj 6∈ C ′ ∪ {cm} with i < j the alternative ci is ranked below cj .

That is, in v the alternatives in C ′ appear in the increasing order of indices, followed by cm, followed
by the remaining alternatives in the decreasing order of indices, i.e., the sequence of indices in v is
“single-peaked”. Using this observation, we establish a bijection between the votes in the support of
DTGS and single-peaked votes.

Theorem 3.3. Given a ranking v over C = {c1, . . . , cm}, let v̂ be another ranking over C such
that, for each j ∈ [m], if cj is ranked in position i in v then ci is ranked in position m− j + 1 in v̂.
Suppose that v is in the support of DTGS, where T = CP(c1, . . . , cm). Then v̂ is single-peaked with
respect to c1 C · · ·C cm.

Proof. Suppose that cm is ranked in position z in v. Then cz is ranked first in v̂.
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Consider two candidates cx, cy with x < y < z. We will prove that in v̂ candidate cy is ranked above
cx, i.e., posv̂(cx) > posv̂(cy). Let k = posv̂(cx), ` = posv̂(cy). Then, in v, alternative cm−k+1 is
ranked in position x and alternative cm−`+1 is ranked in position y. As we have x < y < z and v is
sampled from DTGS, by Lemma B.1 we have m− k + 1 < m− `+ 1, and hence k > `.

Similarly, if we have two alternatives cx, cy with z < y < x, we can show that posv̂(cx) > posv̂(cy).
Thus, v̂ is single-peaked with respect to c1 C · · ·C cm, as claimed.

C Missing Material From Section 3.4

Recall that our candidate set is C = {c1, . . . , cm} and the societal axis is c1 C · · ·C cm. We consider
the Conitzer distribution. Let f(i, j) be the probability that in a sampled vote candidates ci, . . . , cj
appear in the top j − i+ 1 positions. Next we find the values of f(i, j) for all i, j ∈ [m], and using
them we establish the frequency matrix for the Conitzer distribution.

Proposition C.1. Let i, j be two integers with 1 < i ≤ j < m. Then f(`, `) = 1/m for all ` ∈ [m],
f(1,m) = 1, f(i, j) = 1/m, f(1, i) = (i+1)/2m, and f(j,m) = (m−j+2)/2m.

Proof. The quantity f(`, `) is simply the probability that c` is ranked first, so we have f(`, `) = 1/m
by the definition of the Conitzer distribution.

The equality f(1,m) = 1 is immediate from the definition of f(i, j).

To show that f(i, j) = 1/m, we give a proof by induction on j − i. The base step holds because for
each ` ∈ [m] we have f(`, `) = 1/m. Assume that for all integers x, y such that 1 < x ≤ y < m and
y − x < j − i we have f(x, y) = 1/m. The only way for candidates ci, . . . , cj to be ranked in top
j − i+ 1 positions under the Conitzer model is that, while generating the vote, we placed candidates
ci, . . . , cj−1 in top j − i positions and then extended the vote with cj (the probability of this latter
step is 1/2), or we placed candidates ci+1, . . . , cj in top j − i positions and then extended the vote
with ci (again, the probability of the latter step is 1/2). Thus:

f(i, j) = 1
2f(i, j − 1) + 1

2f(i+ 1, j) = 1
2m + 1

2m = 1
m .

This proves the claim for f(i, j).

Next we show that f(1, i) = (i+1)/2m, using induction over i < m. For i = 1 we have f(1, 1) =
1/m = 2/2m, so our claim holds. Assume that it holds up to i− 1. There are only two ways in which
candidates c1, . . . , ci can be ranked in the top i positions: Either we first place c1, . . . ci−1 in top
i− 1 positions and then extend the vote with ci (the latter step has probability 1, since there is no
candidate to the left of c1), or we first place candidates c2, . . . , ci in the top i− 1 positions and then
extend the vote with c1 (the latter step has probability 1/2, since the vote could also be extended with
ci+1). Thus, we have:

f(1, i) = f(1, i− 1) + 1
2f(2, i) = i

2m + 1
2m = i+1

2m .

This completes the proof for f(1, i). The expression for f(j,m) can be derived by symmetry: we
have f(j,m) = f(1,m− j + 1).

Theorem 3.5. Let c1 C · · · C cm be the societal axis, where m is an even number, and let v be a
random vote sampled from DCon

SP for this axis. For j ∈ [m2 ] and i ∈ [m] we have:

P[posv(cj) = i] =



2/2m if i < j,
(j+1)/2m if i = j,
1/2m if j < i < m− j + 1,
(m−j+1)/2m if i = m− j + 1,
0 if i+ j > m.

Further, for each candidate cj ∈ C and each position i ∈ [m] we have P[posv(cj) = i] =
P[posv(cm−j+1) = i].

Proof. Consider a candidate cj , j ∈ [m2 ], and a position i ∈ [m]. We proceed by case analysis:
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1. If i < j, then there are two ways to generate a vote with cj in position i: Either candidates
cj+1, . . . , ci+j−1 are ranked in the top i− 1 positions or candidates cj−i+1, . . . , cj−1 are
ranked in the top i − 1 positions. In both cases, cj is ranked in the i-th position with
probability 1/2 (indeed, we have i+ j < m/2 + m/2 = m, so in the former case both cj and
ci+j could have been placed in position i, and also j − i ≥ 1, so in the latter case both cj
and cj−i could have been placed in position i). Thus we have:

P[posv(cj) = i] = 1
2 · f(j + 1, i+ j − 1)

+ 1
2 · f(j − i+ 1, j − 1) = 1

2m + 1
2m = 1

m .

2. If i = j, then either candidates c1, . . . , cj−1 are ranked in the top j − 1 positions and the
vote is extended with cj (with probability 1), or candidates cj+1, . . . , c2j−1 are ranked in
the top j − 1 positions and the vote is extended with cj (with probability 1/2). Thus, we
have:

P[posv(cj) = j] = f(1, j − 1) + 1
2 · f(j + 1, 2j − 1)

= j
2m + 1

2m = j+1
2m .

3. If j < i < m − j + 1 then there is only one possibility for cj to be ranked i-th: It must
be that candidates cj+1, . . . , cj+i−1 are ranked in the top i − 1 positions and the vote is
extended with cj (which happens with probability 1

2 because j + i ≤ m).3 Thus, we have:

P[posv(cj) = i] = 1
2 · f(j + 1, i+ j − 1) = 1

2m .

4. If i = m− j + 1, the analysis is similar to the case i = j: candidates cj+1, . . . , cm must
be ranked in the top m − j positions, in which case cj gets ranked in the (m − j + 1)-st
position (with probability 1). Thus, we have:

P[posv(cj) = m− j + 1] = f(j + 1,m) =
m− j + 1

2m
.

5. If i > m− j + 1 then P[posv(cj) = i] = 0, because both to the left of cj and to the right of
cj there are fewer than i− 1 candidates.

The fact that for each candidate cj ∈ C and each position i ∈ [m] we have P[posv(cj) = i] =
P[posv(cm−j+1) = i] follows directly from the symmetry of the Conitzer distribution and the fact
that m is even.

D Missing Material From Section 3.5

Proposition D.1 (OEIS Foundation Inc. (2020)). There is an algorithm that computes S(m, k) using
at most polynomially many operations.

Proof. First, we note that for each m′ ∈ [m] we have S(m′, 0) = 1. Further, for each m′ ∈ [m] and
k′ ∈ [k]0 the following recursion holds:

S(m′, k′) = S(m′, k′ − 1) + S(m′ − 1, k′)− S(m′ − 1, k′ −m′).
Using these two facts and standard dynamic programming, we can compute S(m, k) using O(mk)
arithmetic operations. Since k is at most O(m2), the running time is at most O(m3).

Lemma D.2. There is an algorithm that computes T (m, k, j, i) in polynomial time with respect to
m.

Proof. Our algorithm is based on dynamic programming. Fix some m > 0, k ∈ [m(m−1)/2], and
j, i ∈ [m]. We claim that:

T (m, k,m, i) = S(m− 1, k − (m− i)).
3It is impossible for the candidates from the left side of cj to take the top i− 1 positions because there are

fewer than i− 1 of them.
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Indeed, let v be a vote over C(m) that ranks cm in position i, and let v′ be its restriction to
{c1, . . . , cm−1}. Then v can be obtained from v′ by inserting cm right behind the candidate in
position i − 1. If v′ is at swap distance k′ from v∗m−1, then the resulting vote is at swap distance
k′ + (m− i) from v∗m, since cm contributes m− i additional swaps. Thus, T (m, k,m, i) is equal to
the number of votes in L(C(m− 1)) at swap distance k − (m− i) from v∗m−1.

Next, we claim that for each j < m, we have:

T (m, k, j, i) =
∑m
`=i+1 T [m− 1, k − (m− `), j, i]

+
∑i−1
`=1 T [m− 1, k − (m− `), j, i− 1].

To see why this holds, again consider inserting cm at some position in a vote v′ over {c1, . . . cm−1}.
Candidate cj will end up in position i in the resulting vote if (1) cj was in position i in v′ and cm was
inserted after cj , or if (2) cj was in position i− 1 in v′ and cm was inserted ahead of cj . Considering
all positions in which cm can be inserted, we obtain the above equality.

Using the above equalities and the fact that T (1, 0, 1, 1) = 1 (as there is just a single vote over C(1)),
we can compute T (m, k, j, i) by dynamic programming; our algorithm runs in polynomial time with
respect to m.

E Missing Material From Section 4

E.1 Distance to Compass Matrices

We analyze the distances between our matrices for different numbers of candidates. In Figure 5 we
show these distances for the Conitzer and Walsh matrices and the compass matrices: For Conitzer,
they are nearly constant, and for Walsh they vary significantly. Indeed, the more candidates we
have, the closer the Walsh matrix is to ID (e.g., for 10 candidates their distance is 0.44, and for 300
candidates it is 0.09).

Figure 6 depicts the distance between the frequency matrix for GS/caterpillar and the four compass
matrices, for varying number of candidates. As for the matrix for the Walsh model, its distance to
the compass matrices changes as the number of candidates increases: The matrix moves closer and
closer to AN.

In Figure 7, we display the distance between the frequency matrix for the Mallows model for different
values of the dispersion parameter φ and the compass matrices (in contrast to the previous figures,
we only consider up to 100 candidates, as for more than 100 candidates computing the matrix for
the Mallows model becomes very memory-consuming). Independent of the chosen value of the
dispersion parameter, the distance of the respective matrix to the four compass matrices changes
significantly when we increase the number of candidates. In fact, for any fixed dispersion parameter φ,
the resulting matrix will always move closer and closer to ID as the number of candidates increases.

In contrast, if we use the normalized version of the Mallows model, the matrices remain more or
less at a constant distance from the compass matrices. Figure 8 shows the distance of the frequency
matrix of the normalized version of the Mallows model for different values of norm-φ, as the number
of candidates increases.

E.2 Distances of Pairs of Vote Distributions on the Skeleton Map

As we have observed above, some vote distributions stay more or less at constant normalized
positionwise distance from the four compass matrices. This raises the question whether these
matrices also stay at a constant normalized positionwise distance from each other. This would imply
that the data on which the skeleton map is based is independent of the number of candidates, and
thus that the map is likely to look very similar for different numbers of candidates. To check this,
we conducted the following experiment. We put together a set of vote distributions/matrices that do
not structurally change when increasing the number of candidates (like the change happening for
the Walsh model). First, we add the four compass matrices and the frequency matrix of the Conitzer
model. Second, we add the frequency matrices of different variants of the Mallows model (similar
as on the skeleton map as described in Section 4): the normalized Mallows model, the normalized
Mallows model where the central vote is reversed with probability 1/2, the normalized Mallows model
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Figure 5: Normalized positionwise dis-
tance between the Conitzer [Walsh] ma-
trix and the compass matrices in solid
[dashed] lines, for varying number of
candidates.
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Figure 6: Normalized positionwise dis-
tance between the frequency matrix of
the GS/caterpillar distribution and the
compass matrices, for varying number
of candidates.
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Figure 7: For different values of φ, nor-
malized positionwise distance between
the frequency matrix of the Mallows dis-
tribution and the compass matrices, for
varying number of candidates.
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Figure 8: For different values of norm-φ,
normalized positionwise distance be-
tween the frequency matrix of the nor-
malized Mallows distribution and the
compass matrices, for varying number
of candidates.

where the central vote is reversed with probability 1/4, and the distribution where we first sample a
vote v from the Conitzer distribution and then sample the final vote from the normalized Mallows
model with v as the central vote. For each of these variants, we include their frequency matrix for
norm-φ ∈ {0.2, 0.4, 0.6, 0.8}.
For each pair of matrices from the created set, we compute their normalized positionwise distance for
100 candidates. Subsequently, for m ∈ {4, 6, . . . , 98, 100} candidates, we compute the normalized
positionwise distance of the frequency matrices of the two considered models for this number of
candidates as well as the absolute and relative difference between their normalized distance for m and
100 candidates (where we normalize by their normalized distance for 100 candidates). Finally, for
each m ∈ {4, 6, . . . , 98, 100}, we take the maximum over the computed absolute/relative differences
for all pairs of matrices. In Figure 9, we present these maxima for all considered values of m.
Examining the maximum absolute difference (the blue line in Figure 9), what stands out is that
for 20 or more candidates the normalized positionwise distance of any pair of considered vote
distributions/matrices differs only by at most 0.0287 from the pair’s normalized positionwise distance
for 100 candidates (for 10 or more candidates the error is at most 0.0547). As the diameter of our
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Figure 9: Results from our experiments described in Appendix E.2
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Figure 10: Skeleton map for different number of candidates.

space has at least length 1, this change is quite small, and the considered vote distributions indeed
remain at nearly the same distance for more than 20 candidates. Considering the relative difference
(the red line in Figure 9), the picture appears to be a bit worse: for 20 or more candidates, the
normalized positionwise distance of any pair of considered vote distributions/matrices differs at most
by 11.44% from their normalized positionwise distance for 100 candidates. Nevertheless, this value
is still relatively low, indicating an overall high robustness of the normalized positionwise distances
of each pair of considered distributions with respect to the number of candidates.

E.3 Skeleton Map for Different Number of Candidates

After we have provided various arguments for why large parts of the skeleton map are presumably
quite robust with respect to changing the number of candidates in the previous two subsections, in
Figure 10, we present the skeleton map for 5/10/25/50 candidates. While the map for 5 candidates
looks a bit different from the other maps, the maps for 10, 25, and 50 candidates differ only in that
the frequency matrix for GS/caterpillar moves closer to AN and that the frequency matrix for the
Walsh model moves closer to ID (both phenomena that we have already observed earlier).
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(b) Walsh model
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(c) GS/caterpillar model

Figure 11: For different vote distributions, behavior of the normalized positionwise distance between
elections sampled from this distributions and the distribution’s frequency matrix, for 10/25/50
candidates and between 10 and 200 voters.
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(a) Impartial Culture
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Figure 12: For different vote distributions, behavior of the normalized positionwise distance between
elections sampled from this distributions and the distribution’s frequency matrix, for 10/25/50
candidates and between 10 and 200 voters.

E.4 Variance of a Vote Distribution

As argued in Section 3.1, a frequency matrix of a distribution can be interpreted as a matrix of
an “ideal” election sampled from this distribution. In this section we ask how far, on average, the
elections sampled from our distributions land from the “ideal” ones. This distance may also serve as
a measure of “diversity” for elections sampled from a given distribution.

For each of our distributions, we consider elections with 10, 25, and 50 candidates, and vary the
number of voters from 10 to 200 (with a step of 5). For each combination of these parameters, we
sample 600 elections and, for each election, compute the positionwise distance between its frequency
matrix and the matrix of the respective distribution.4 We show the results in Figures 11 and 12. As
expected, for all vote distributions, increasing the number of votes decreases the average distance of
an election from the distribution’s matrix (indeed, in the limit this distance is zero). What is more
surprising, this distance does not seem to depend on the number of candidates for the Conitzer, IC,
and GS/balanced distribution. For the Walsh distribution (and, to a lesser extent, for GS/caterpillar),
the sampled elections get slightly closer to the respective matrix as we increase the number of
candidates. Moreover, if we fix the number of candidates and voters, then for all our distributions the
elections sampled from them are, roughly, at the same distance from the distribution’s matrix. For an
illustration of this effect consider Figure 11a for the Conitzer distribution; there, the 10th quantile
(dotted) and the 90th quantile (dashed) only differ by a factor of four. Lastly, comparing the plots for
IC and GS/balanced (Figure 12), who both have UN as their frequency matrix, the average distance
of elections sampled form one of these two models to UN (which is their frequency matrix) is the
same for both distributions. However, for IC, the 10th and 90th quantile of the distances of elections
to UN are closer to the average than for GS/balanced, which indicates that IC produces in some sense
less varied elections than GS/balanced.

In Figure 13 we compare the average distances between elections sampled from various vote distribu-
tions and the distribution’s matrices (we fix the number of candidates to 50 and vary the number of
voters). While, on average, IC elections and GS/balanced elections end up at nearly the same distance
from UN (which is their frequency matrix), Conitzer elections and GS/caterpillar elections end up
closer to their distribution’s matrices, and for Walsh this effect is considerably stronger. Overall, it
is remarkable that even for 200 voters, for the Conitzer, IC, GS/balanced, and GS/caterpillar, the
average distance of a sampled election from the respective matrix is still above 0.05 (so at least 5%
of the diameter of the whole space). We also performed the same experiment for the Mallows model
with different values of the normalized dispersion parameter (see Figure 14): For a varying number
of voters, we depict the average distance of 600 elections with 50 candidates sampled from Mallows
model for different values of norm-φ to the distribution’s frequency matrix. Quite intuitively, the
more swaps we make to the central vote (i.e., the higher norm-φ is), the higher is the average distance
of a sampled elections from the distribution’s frequency matrix.

4For the GS/balanced distribution we consider 16, 32, and 64 candidates, as this model requires the number
of candidates to be a power of two and we do not consider GS/flat trees, as this distribution is too simple.
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Figure 13: Average normalized positionwise dis-
tance between elections sampled from various
voter distributions and the frequency matrices of
the respective models, for 50 candidates (64 for
GS) and between 10 and 200 voters.
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It is interesting to contrast the data from Figure 11a with the map of Boehmer et al. (2021b) in Figure 2.
Boehmer et al. considered 10 candidates and 100 voters. For these parameters, in Figure 11a we see
that 10% of the elections are still farther from the Conitzer matrix than about 12% of the distance
from UN to ID. This is roughly reflected by the size of the area taken by Conitzer elections in
Figure 2. Similar observations hold for the other distributions too. While this might be a coincidence,
it confirms the value of their map.

F Validation of Location Framework

Again, in this section, distances and dispersion parameters are always normalized. To validate
whether our approach from Section 5 correctly identifies the “nature” of an election, we test its
capabilities to find for a given election the dispersion parameter of the closest Mallows distribution
with a single central vote. That is, given an election, we computed for all φ ∈ {0, 0.001, . . . , 1}
its distance to Dv,φMal and returned the minimizing φ value. We compare the computed value to the
maximum-likelihood estimator for the dispersion parameter of the underlying Mallows distribution
computed from the Kemeny consensus ranking (Mandhani & Meilǎ, 2009) in two experiments.

We start by sampling for φ ∈ {0, 0.05, . . . , 1} an election with 10 candidates and 100 voters from
Mallows model with dispersion parameter φ and computed estimates for the dispersion parameter
based on our and the Kemeny approach. For all elections, the returned estimates differ by at most
0.01. Thus, the dispersion parameter returned by our approach is always very close to the maximum-
likelihood estimate. However, the estimated dispersion parameter might deviate a bit from the
originally used dispersion parameter: On average, the absolute difference between the dispersion
parameter returned by our approach and the underlying dispersion parameter is 0.0179 with the
maximum difference being 0.069; for Kemeny, the average is 0.016 and the maximum is 0.082. While
it might seem surprising that the estimated dispersion parameter is different from the underlying one,
recall from Appendix E.4 that elections sampled from a vote distribution typically have non-zero
distance from the distribution’s frequency matrix. To illustrate this idea, we can think of a Mallows
distribution as a normal distribution placed in the space of elections with the dispersion parameter
being its mean (in particular as soon as the dispersion parameter is greater zero, all elections have a
non-zero probability of being sampled). So multiple Mallows distributions for different dispersion
parameters translate to multiple partly overlapping normal distributions and it might as well happen
that an election sampled from a Mallows distribution with one dispersion parameter is in fact closer
to the mean of the Mallows distribution with a different dispersion parameter.

We also repeated the above experiment to measure the capabilities of our approach to estimate
the parameters of a mixed Mallows distribution. For each pair of p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
and φ ∈ {0.05, 0.1, . . . , 0.95} we sampled an election with 10 candidates and 100 voters from
p-Dv,φ,φMal (i.e., we sample a vote from the Mallows distribution with dispersion parameter φ and
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Figure 15: Correlation between the predicted dispersion parameter of our real-world data by our
(positionwise) approach and by the maximum-likelihood Kemeny approach.

subsequently flip the sampled vote with probability p). Subsequently we computed for which value
of p ∈ {0, 0.05, . . . , 0.5} and φ ∈ {0, 0.05, . . . , 1} the distance of the sampled election is closest to
the frequency matrix of the induced distribution p-Dv,φ,φMal (the Kemeny consensus ranking can no
longer be used here to provide a maximum-likelihood estimate). The average difference between
the estimated and underlying dispersion parameter is 0.028 and the average difference between the
estimated and underlying flipping probability is 0.068. For 63 out of the 95 elections is the difference
between the estimated and underlying dispersion parameter and weight smaller equal 0.05 (which
is the smallest non-zero difference). The error of the estimated dispersion parameter here is around
three times larger than for Mallows elections with a single central vote. This can be explained by the
fact that for mixtures of Mallows distributions, the “overlap” between different distributions is even
larger; in fact, some paramterizations even result in the same distributions (e.g., for φ = 1 all flipping
probabilities result in the same distribution).

Second, while producing good estimates for elections that have been sampled from a Mallows
distribution is a good sanity check, we are ultimately interested in computing to which distribution
(unknown) real-world elections are closest. To do so, we again compare the estimated dispersion
parameter for a Mallows distribution with a single central vote computed by our approach with the
one estimated via the Kemeny consensus ranking (as described in the beginning of this section);
however, this time instead of considering elections sampled from Mallows model, we examine 165
real-world elections used by Boehmer et al. (2021b) (see the data part of Section 5 for details on
the dataset). The estimated dispersion parameters returned by both methods are highly correlated
with a Pearson correlation coefficient of 0.976 and an average difference of 0.017, median difference
of 0.0105, and maximum difference of 0.197, indicating the power of our approach. Interestingly,
the correlation is particularly strong for larger dispersion parameters (see Figure Figure 15 for a
plot showing the correlation between the two approaches). Together with the estimated normalized
dispersion parameter, both approaches also return the central order v of the closest Mallows model,
which are typically again quite similar: the average swap distance between the two estimators is 2.81
out of 45 possible swaps.
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