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Abstract

There has been a rapidly growing interest in Automatic Symptom Detection (ASD)
and Automatic Diagnosis (AD) systems in the machine learning research literature,
aiming to assist doctors in telemedicine services. These systems are designed
to interact with patients, collect evidence about their symptoms and relevant an-
tecedents, and possibly make predictions about the underlying diseases. Doctors
would review the interactions, including the evidence and the predictions, collect
if necessary additional information from patients, before deciding on next steps.
Despite recent progress in this area, an important piece of doctors’ interactions with
patients is missing in the design of these systems, namely the differential diagnosis.
Its absence is largely due to the lack of datasets that include such information
for models to train on. In this work, we present a large-scale synthetic dataset
of roughly 1.3 million patients that includes a differential diagnosis, along with
the ground truth pathology, symptoms and antecedents for each patient. Unlike
existing datasets which only contain binary symptoms and antecedents, this dataset
also contains categorical and multi-choice symptoms and antecedents useful for
efficient data collection. Moreover, some symptoms are organized in a hierarchy,
making it possible to design systems able to interact with patients in a logical way.
As a proof-of-concept, we extend two existing AD and ASD systems to incorporate
the differential diagnosis, and provide empirical evidence that using differentials
as training signals is essential for the efficiency of such systems or for helping
doctors better understand the reasoning of those systems. The dataset is available
at https://figshare.com/articles/dataset/DDXPlus_Dataset/20043374.

1 Introduction

In a clinical conversation between a doctor and a patient, the patient usually initiates the discussion
by specifying an initial set of symptoms they are experiencing. The doctor then iteratively inquires
about additional symptoms and antecedents (describing the patient’s medical history and potential
risk factors), and considers, throughout the interaction, a differential diagnosis, i.e., a short list of
plausible diseases the patient might be suffering from (Henderson et al., 2012; Guyatt et al., 2002;
Rhoads et al., 2017), which is refined based on the patient’s responses. During this multi-step process,
the doctor tries to collect all relevant information to narrow down the differential diagnosis. Once
the differential diagnosis is finalized, the doctor can ask the patient to undergo medical exams to
eliminate most pathologies included in it and confirm the one(s) the patient is suffering from, or can
decide to directly prescribe a treatment to the patient.
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Aiming to aid doctors in such clinical interactions, there has recently been significant progress
in building Automatic Symptom Detection (ASD) and Automatic Diagnosis (AD) systems, using
machine learning and Reinforcement Learning (RL) techniques (Wei et al., 2018; Xu et al., 2019;
Chen et al., 2022; Zhao et al., 2021; Guan and Baral, 2021; Yuan and Yu, 2021; Liu et al., 2022).
These systems are meant to collect symptoms and antecedents relevant to the patient’s condition,
while minimizing the length of the interaction to improve efficiency and avoid burdening the patient
with unnecessary questions. In addition, AD systems are tasked to predict the patient’s underlying
disease to further aid doctors in deciding appropriate next steps. However, this setting differs from
real patient-doctor interactions in an important way, namely the absence of the differential diagnosis.
Based on the conversation alone, without further information such as the results of medical exams,
doctors tend to consider in their reasoning a differential diagnosis rather than a single pathology
(Henderson et al., 2012). In addition to presenting a more comprehensive view of the doctor’s opinion
on the patient’s underlying condition, the differential diagnosis helps account for the uncertainty in the
diagnosis, since a patient’s antecedents and symptoms can point to multiple pathologies. Moreover,
the differential diagnosis can help guide the doctor in determining which questions to ask the patient
during their interaction. Thus, considering the differential diagnosis is especially important for
better and more efficient evidence collection, for accounting for the uncertainty in the diagnosis,
and for building systems that doctors can understand and trust. We believe that the absence of this
key ingredient in recent AD/ASD systems is mainly due to the lack of datasets that include such
information. The most commonly used public datasets, such as DX (Wei et al., 2018), Muzhi (Xu
et al., 2019) and SymCAT (Peng et al., 2018), are all designed for predicting the pathology a patient
is experiencing and do not contain differential diagnosis data.

To close this gap and encourage future research that focuses on the differential diagnosis, we introduce
DDXPlus, a large-scale synthetic dataset for building AD and ASD systems. This dataset is similar in
format to other public datasets such as DX (Wei et al., 2018) and Muzhi (Xu et al., 2019), but differs in
several important ways. First, it makes a clear distinction between symptoms and antecedents which
are not of equal importance from a doctor’s perspective when interacting with patients. Second, it is
larger in scale, in terms of the number of patients, as well as the number of represented pathologies,
symptoms and antecedents. Third, contrary to existing datasets which only include binary symptoms
and antecedents, it also includes categorical and multi-choice symptoms and antecedents useful
for efficient evidence collection. Moreover, some symptoms are organized in a hierarchy making
it possible to design systems able to interact with patients in a logical way. Finally, each patient
is characterized by a differential diagnosis as well as the pathology they are actually suffering
from. To the best of our knowledge, this is the first large-scale dataset that includes both ground
truth pathologies and differential diagnoses, as well as non-binary symptoms and antecedents. To
summarize, we make the following contributions:

• We release a large-scale synthetic benchmark dataset of roughly 1.3 million patients covering
49 pathologies, 110 symptoms and 113 antecedents. The dataset is generated using a
proprietary medical knowledge base and a commercial AD system, and contains a mixture of
multi-choice, categorical and binary symptoms and antecedents. Importantly, it also contains
a differential diagnosis for each patient along with the patient’s underlying pathology.

• We extend two existing AD and ASD systems to incorporate the differential diagnosis and
show that using this information as a training signal improves their performance or helps
doctors understand their reasoning by comparing the collected evidence and the differential.

2 Existing datasets and limitations

To build machine learning-based AD or ASD systems that medical doctors can trust, one needs to
have access to related patient data, namely, the whole set of symptoms experienced by the patient, the
relevant antecedents, the underlying pathology, and lastly the differential diagnosis associated with
the experienced symptoms and antecedents. Unfortunately, there is no public dataset with all these
characteristics. Existing public datasets of medical records, such as the MIMIC-III dataset (Johnson
et al., 2016), often lack symptom-related data and are therefore inappropriate for training AD/ASD
models. Other datasets, such as DX (Wei et al., 2018) or Muzhi (Xu et al., 2019), are of small
scale, and don’t necessarily provide a holistic view of the symptoms and antecedents experienced by
patients since they are derived from medical conversations. Indeed, if a symptom is not mentioned in
a conversation, there is no way to determine if it was experienced by the underlying patient or not.
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Figure 1: Overview of the data generation process of DDXPlus.

To tackle these limitations, previous works (Peng et al., 2018; Kao et al., 2018) relied on the SymCAT
database (AHEAD Research, 2011) for data synthesis. Unfortunately, SymCAT includes binary-only
symptoms, which can lead to unnecessarily long interactions with patients, compared to categorical
or multi-choice questions that collect the same information in fewer turns. For example, to ask about
pain location, systems built using SymCAT need to ask several questions, such as Do you have
pain in your arm?, Do you have pain in your ankle?, · · · , until every relevant location is inquired
about. The same information can be obtained by asking a more generic question such as Where
is your pain located? and obtain all the locations at once. Moreover, as noted by (Yuan and Yu,
2021), the symptom information in SymCAT is incomplete and, as a consequence, the synthetic
patients generated using SymCAT are not sufficiently realistic for testing AD and ASD systems.
Other datasets with more realistic synthetic patients have recently been proposed based on the Human
Phenotype Ontology or HPO (Köhler et al., 2021) and MedlinePlus (Yuan and Yu, 2021). However,
like SymCAT, they contain only binary symptoms.

Most importantly, a critical shortcoming that is common to all aforementioned datasets is they do not
contain differential diagnosis data. In what follows, we introduce the DDXPlus dataset and describe
the undertaken steps towards its creation.

3 DDXPlus dataset

To generate the dataset, we proceed in two steps. For each patient, we first use a proprietary
medical knowledge base (Section 3.1), public census data, and SyntheaTM (Walonoski et al., 2017) to
synthesize their socio-demographic data, underlying disease, symptoms and antecedents (Section 3.2).
Next, we generate the patient’s corresponding differential diagnosis using an existing commercial
rule-based AD system (Section 3.3)2. Figure 1 illustrates the data generation process.

3.1 Medical knowledge base

The dataset we propose relies on a proprietary medical knowledge base (KB) which was constructed
by compiling over 20,000 medical papers including epidemiological studies, disease specific articles
and meta-analysis papers. From those, the diseases’ incidence and prevalence, and symptoms and
risk factors’ likelihood ratios across various geographies, age and sex groups were extracted. The
KB was organized by diseases and reviewed by several doctors, ensuring the diseases’ descriptions
included atypical presentations. This KB was used to design DXA, a rule-based AD system that has
been deployed in a commercial telemedicine platform. In total, the knowledge base covers a set of
440 pathologies and 802 symptoms and antecedents. The pathologies are grouped in overlapping
subgroups based on common characteristics referred to as chief complaints (Aronsky et al., 2001;
Thompson et al., 2006). In this work, we focus on pathologies belonging to the chief complaint
related to cough, sore throat, or breathing issues. This group contains 49 pathologies covering 110
symptoms and 113 antecedents. Extending the dataset to all pathologies is left for future work.

Each disease d in the KB is characterized by either an incidence rate, a prevalence rate, or both values.
Both rates are conditioned on the age, sex, and geographical region of the patient. The incidence

2Both the knowledge base and the rule-based AD system used throughout this work are provided by Dialogue
Health Technologies Inc. More information about both components is provided in Appendix A
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rate measures the proportion of new occurrences of a disease in a population over a period of time
while the prevalence rate captures the proportion of individuals in a population that have a disease
at a particular time (Friis and Sellers, 2020). For each disease, a set of symptoms and antecedents
describing the disease are provided together with their related probabilities. These probabilities
are conditioned on the age and sex of the patient. Thus, the probability values p(s|d, age, sex) and
p(a|d, age, sex) are provided for each symptom s and each antecedent a. In some cases, a symptom
fs (e.g., pain location) may be dependent on another symptom s (e.g., presence of pain), in which
case the KB provides means to extract the corresponding conditional probability p(fs|s, d, age, sex).
Unlike existing datasets mentioned above, evidences (i.e., symptoms and antecedents) within this KB
are of several types. They can be binary (e.g., Are you coughing?), categorical (e.g., What is the pain
intensity on a scale of 0 to 10?), or multi-choice (e.g., Where is your pain located?). Finally, each
disease is characterized by its level of severity ranging from 1 to 5 with the lowest values describing
the most severe pathologies.

3.2 Patient generation

A synthetic patient is an entity characterized by an age, a sex, a geographical region geo, and who is
suffering from a pathology d and is experiencing a set E of symptoms and antecedents. As a first
step for modeling patients, we consider the following rule:

p(age, sex, geo, d, E) = p(age, sex, geo)× p(d|age, sex, geo)× p(E|d, age, sex). (1)

This formulation relies on the fact that the set of evidence E experienced by a patient given a disease
doesn’t depend on the geographical region. In what follows, we present other rules and assumptions
required to exploit the KB.

Assumptions on the socio-demographic data As we only have access to the marginal distribu-
tions, we assume that age, sex, and geographical region are independent. That is,

p(age, sex, geo) = p(age)× p(sex)× p(geo). (2)

This assumption was reviewed by doctors, who deemed it reasonable, as the diseases in the KB,
unless specified, are well distributed across populations. The distributions of age and sex can be
obtained from census data. For this dataset, we used the 2010-2015 US Census data from the State of
New York (US Government, 2015). For more details, see Appendix B. As a result of this choice, the
default geographical region of a patient is “North America”. Given that some pathologies in the KB
can be contracted only if the patient is from a different geographical region, we embed the notion of
recent travel when synthesizing a patient. Each synthesized patient is generated by simulating the
fact that they recently travelled or not, and if they travelled, in which geographical region. We thus
assume the availability of a prior distribution p(travel) representing the proportion of the population
travelling each month and we consider that the distribution regarding the geographical regions of
destination is uniform3. Based on these assumptions, we derive the following prior distribution p(geo)
over the geographical regions:

• Sample u ∼ U(0, 1).
• If u < p(travel), then randomly select a geographical region from the available set of

geographical regions (see Appendix C). We used p(travel) = 0.25 for this dataset.
• If u ≥ p(travel), then set the geographical region to be “North America”.

Assumptions on pathologies We use the disease’s incidence rate, when available, as the disease
prior distribution p(d|age, sex, geo), and fall back on the disease’s prevalence rate when the incidence
rate is missing. This is one of the major limitations of the data generation process which needs to be
addressed in future work. The incidence rate can be approximated by dividing the prevalence rate
with a constant factor representing the average duration of the disease, and which may be different for
each disease. Out of the 49 considered diseases, 8 are affected by this limitation (see Appendix D).

When the resulting rate is greater than 100% (e.g., an incidence rate of 200% means that an individual
will likely develop the pathology twice a year on average), we cap it at 100% to avoid having a highly
imbalanced dataset. Indeed, without this capping, the dataset would have been dominated by only

3The dataset can be improved by using real travel and geographical destination statistics.
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a few pathologies, with more than half of the patients suffering from the three pathologies whose
incidence rate is greater than 100% (i.e., URTI, Viral pharyngitis, and Anemia).

Finally, the KB also contains some diseases that have extremely low incidence rates, and therefore
patients suffering from those pathologies are barely generated. To increase the chance of those
pathologies to be represented within the dataset, we decide to cap the rate at a minimum of 10%.
Thus, the rates used to generate the dataset lie between 10% and 100%. This alteration of the original
rates leads to a more balanced dataset (see Figure 2).

Assumptions on symptoms and antecedents Given a sampled disease d, the next step is to gener-
ate all the evidences (i.e., symptoms and antecedents) the synthesized patient will be experiencing.
Given that the KB doesn’t contain the joint distribution of all symptoms and antecedents conditioned
on the disease, sex and age, a simplifying assumption is made according to which the evidences
are independent of each other when conditioned on the disease, age and sex unless explicitly stated
otherwise in the KB. In other words, we have:

p(E|d, age, sex) =
∏

e∈E\Eh

p(e|d, age, sex)
∏

fs∈Eh

p(fs|s, d, age, sex), (3)

where s is the symptom which fs depends on, E is the set of evidences experienced by the patient,
and Eh is the subset of symptoms experienced by the patient which are dependent on other symptoms
also experienced by the patient.

Some evidences, such as pain intensity, are described as integer values on a scale from 0 to 10.
However, the knowledge base only provides the average value of each such evidence given the disease,
the age, and the sex of the patient. To inject some randomness in the patient generation process, the
values of those evidences are uniformly sampled from the interval [max(0, v − 3),min(10, v + 3)]
where v is the average value present in the knowledge base.

Finally, in order to reflect the deployed AD system that is based on the KB, we limit to 5 the maximum
number of choices associated with multi-choice evidences such as pain location.

Tools As mentioned above, we use SyntheaTM to synthesize patients. To generate the value
associated with a categorical or multi-choice evidence, SyntheaTM must be provided with a list
of possible values together with their related conditional probabilities. SyntheaTM then goes through
that list incrementally and decides, for each possible value, if it is “on” or not based on its probability.
The process stops as soon as 1 (resp. 5) possible value(s) is (are) “on” for categorical (resp. multi-
choice) evidences or the provided list is fully processed. In this work, the possible values of an
evidence are ordered in ascending order based on their conditional probability of occurrence to make
sure rare values appear in the dataset.

3.3 Differential diagnosis generation

As mentioned above, the KB was used to build a rule-based AD system which was deployed in a
real-world telemedicine platform and which is capable of generating differential diagnoses. The
system was tested in a real world clinical environment, and was vetted by doctors. In the production
environment, this platform expects to be given the age, sex and an initial symptom. Based on
this information, it determines a set of chief complaints (and their associated pathologies) that are
compatible with the provided information, and it engages in a question-answering session with the
patient to collect information about the patient’s symptoms and antecedents. It then generates a
differential diagnosis of ranked pathologies. We leverage this platform to compute the differential
diagnosis of each synthesized patient. In order to bypass the limitations of the platform and the errors
it might make in the question-answering session by omitting to ask some relevant questions, we
provide all evidences in one shot, as opposed to providing each evidence iteratively upon request of
the platform. More specifically, we proceed according to the following high-level steps:

• We provide the age and the sex of the patient, the appropriate chief complaint, and we
answer "yes" to the question "Are you consulting for a new problem?".

• We provide all the symptoms and antecedents experienced by the patient in one shot, at the
beginning of the interaction. The motivation behind this is to make sure that the system
is aware of all this information and doesn’t miss on any of the patient’s symptoms and
antecedents.
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• The platform may still inquire about additional questions. If that is the case, we answer
"no" to those questions until we see a “QUIT” response from the platform or the maximum
interaction length (30) is reached.

• When the maximum interaction length is reached, the platform does not produce a differential
diagnosis. The corresponding patient is discarded from the dataset.

• When a "QUIT" response is provided by the platform, it contains a differential diagnosis.
We further proceed by verifying if the underlying synthesized disease is part of the generated
differential diagnosis. If it is not (because the platform itself is not a perfect system or
because the patient didn’t have enough evidences for the rule-based system to include the
simulated disease in the differential diagnosis), the patient is discarded from the dataset.
Each pathology within the generated differential diagnosis has a score. Those scores are
normalized to obtain a probability distribution.

Given that the platform treats the provided chief complaint as a clue instead of a hard constraint
and given that the platform was built to consider all 440 pathologies found in the KB, it sometimes
returns a differential diagnosis that contains pathologies which do not belong to the specified chief
complaint. There are several options for handling this situation: (1) create an “other pathologies”
category and assign it the cumulative mass of the corresponding pathologies, or (2) manually remove
those pathologies from the differential diagnosis and re-normalize the distribution. We opt for the
second option because we want to restrict the set of pathologies to the universe of 49 pathologies
used to synthesize patients. On average, we removed 1.78 (±1.68) pathologies from the generated
differential diagnosis for an average cumulative probability mass of 0.10 (±0.11). Statistics regarding
the rank from which those pathologies are excluded are described in Appendix E.

3.4 Dataset characteristics

With the above assumptions and limitations, we generate, under the CC-BY licence, a dataset of
roughly 1.3 million patients, where each patient is characterized by their age, sex, geographical
region or recent travel history, pathology, symptoms, antecedents, as well as the related differential
diagnosis. We divide the dataset into training, validation, and test subsets based on an 80%-10%-10%
split, using stratified sampling on the simulated pathology.

Compared to existing datasets from the AD and ASD literature, our dataset has several advantages:

• To the best of our knowledge, this is the first large-scale dataset containing differential
diagnoses. This information is important because doctors reason in terms of a differential
and not a single pathology, as the evidence collected from a patient can sometimes point to
multiple pathologies, some of which requiring additional medical exams before they can be
safely ruled out.

• Unlike the SymCAT (AHEAD Research, 2011) and the Muzhi (Wei et al., 2018) datasets,
which only contain binary evidences, our dataset also includes categorical and multi-choice
evidences which can naturally match the kind of questions a doctor would ask a patient, and
which can lead to more efficient evidence collection. Moreover, some related evidences are
defined according to a hierarchy which can be used to design systems able to interact with
patients in a logical way.

• Our dataset makes a clear distinction between antecedents and symptoms.

• Each pathology in our dataset is characterized by a severity level. This information can be
used to design solutions that properly handle severe pathologies.

3.5 Data analysis

We present summary statistics of the generated dataset. Those statistics are based on the entire set.
Statistics on the train, validation, and test subsets are presented in Appendix F.

Types of evidences: The distribution of the types of evidences related to the 49 pathologies selected
from the KB is provided in Table 1. 6.7% of evidences are categorical and multi-choice.

Number of evidences: Table 2 shows an overview of the synthesized patients in terms of the number
of simulated evidences. On average, a patient has roughly 10 symptoms and 3 antecedents.
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Table 1: Distribution of the evidence types corresponding to the 49 pathologies selected from the KB.
Binary Categorical Multi-choice Total

Evidences 208 10 5 223
Symptoms 96 9 5 110

Antecedents 112 1 0 113

Table 2: Statistics describing the number of evidences of the synthesized patients.
Avg Std dev Min 1st quartile Median 3rd quartile Max

Evidences 13.56 5.06 1 10 13 17 36
Symptoms 10.07 4.69 1 8 10 12 25

Antecedents 3.49 2.23 0 2 3 5 12

Pathology statistics: Figure 2 shows the histogram of the pathologies of patients in the generated
dataset. Although there are three dominating pathologies (URTI, Viral pharyngitis, and Anemia),
other pathologies are also well represented.
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Figure 2: Histogram of the pathologies experienced by the synthesized patients.

Socio-demographic statistics: The statistics of the socio-demographic data of the synthesized
patients are shown in Figure 3. As expected, these statistics are compliant with the 2015 US Census
data of the state of New York used during the generation process (see Appendix B).
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Figure 3: The socio-demographic statistics of the synthesized patients.

Differential diagnosis statistics: The distribution of the length of the differential diagnosis of the
synthesized patients is depicted in Figure 4 (left). As observed, the generated differential diagnosis
can contain more than one pathology. It is also interesting to observe that the simulated pathology is
ranked first for more than 70% of patients (see Figure 4 (right)).

Sample patient: We present a DDXPlus patient along with a doctor’s analysis of this patient and the
differential diagnosis. Additional samples are provided in Appendix J.

Sex: F, Age: 79
Geographical region: North America
Ground truth pathology: Spontaneous pneumothorax
Symptoms:
---------

- I have chest pain even at rest.
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Figure 4: Statistics regarding (left) the length of the differential diagnosis, and (right) the rank of the
patient’s simulated pathology within the differential diagnosis (y-axis on log scale).

- I feel pain.
- The pain is:

* a knife stroke
- The pain locations are:

* upper chest
* breast(R)
* breast(L)

- On a scale of 0-10, the pain intensity is 7
- On a scale of 0-10, the pain’s location precision is 4
- On a scale of 0-10, the pace at which the pain appeared is 9
- I have symptoms that increase with physical exertion but alleviate with

rest.
Antecedents:
-----------

- I have had a spontaneous pneumothorax.
- I smoke cigarettes.
- I have a chronic obstructive pulmonary disease.
- Some family members have had a pneumothorax.

Differential diagnosis:
----------------------
Unstable angina: 0.262, Stable angina: 0.201, Possible NSTEMI / STEMI: 0.160, GERD:

0.145, Pericarditis: 0.091, Atrial fibrillation: 0.082, Spontaneous
pneumothorax: 0.060

The diagnosis is a spontaneous pneumothorax, which is atypical for this patient’s demography. It is
rare, but possible. If we were only to collect the positive evidence and score solely on the true or
false label, a doctor would find the history missing key questions for a 79 year old female presenting
with chest pain that increases with exertion. We definitely need to cover the cardiovascular review
more thoroughly and explore the most specific symptoms and risk factors. Optimizing for an accurate
differential forces a model to ask questions that in that case would be answered “no”, but would have
a really positive impact on the confidence of doctors and medical staff in the model’s capability to
adequately collect a medical history. Without a differential, much would be left out of the medical
history.

3.6 Dataset usage

We provide a description of the released dataset in Appendix I. Based on the previous sections, it
should be clear that the released dataset is meant for research purposes. Any model trained on this
dataset should not be directly used in a real-world system prior to performing rigorous evaluations of
the model performance and verifying that the system has proper coverage and representation of the
population that it will interact with.

4 Experiments

4.1 Models

We consider two existing AD/ASD systems which were originally designed to predict the pathology
a patient is suffering from, and adapt those systems to instead predict the differential diagnosis.
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AARLC AARLC (Yuan and Yu, 2021) is a model that has two branches, an evidence acquisition
branch, trained using RL, whose goal is to determine the next evidence to inquire about, and a
classifier branch trained in a supervised way to predict the patient’s disease. An adaptive approach is
used to align the tasks performed by the two branches using the entropy of the distributions predicted
by the classifier branch. We use the same settings as those described in Yuan and Yu (2021) but tune
the ν and λ parameters together with the learning rate on the validation set. More details about this
approach can be found in Appendix G.1.

BASD This supervised learning approach builds on top of the ASD module proposed in Luo et al.
(2020) (with the exception of the knowledge graph) and adds a classifier network to predict the
underlying patient diagnosis at the end of the acquisition process. The agent is made of an MLP
with a number nh of hidden layers of size 2048 which is tuned together with the learning rate on the
validation set. More details about this approach can be found in Appendix G.2.

To assess the impact of the differential diagnosis as a training signal, we train two versions of each
approach, one focused on predicting the patient’s disease and one trained to predict the differential
diagnosis. After training, we use the probability distribution predicted by each version at the end of
an interaction as the predicted differential diagnosis. The hyper-parameters of each version are tuned
independently and the resulting optimal set is used to report model performance.

4.2 Experimental setup

Each patient provides their age, sex, and an initial evidence to the model at the beginning of the
interaction. The model then iteratively inquires about a symptom or an antecedent, until either all the
relevant symptoms and antecedents have been collected or a maximum number of turns T is reached.
At the end of the interaction, a differential diagnosis is predicted. We use T = 30 in all experiments.
Training is performed using a NVIDIA V100 GPU.

4.3 Results

An AD system is typically tasked to collect (i) relevant evidences from a patient, (ii) make accurate
predictions regarding the patient’s differential, and (iii) operate in a minimum number of turns. As
such, we report on the interaction length (IL), and evaluate the evidence collection by measuring the
recall (PER). We do not measure the evidence precision as it is sometimes necessary to ask negative
questions. Additionally, we calculate the recall (DDR), precision (DDP) and F1 score (DDF1) of the
differentials. Finally, we report the accuracy of the inclusion of the ground truth pathology (i.e., the
pathology a patient was simulated from) in the predicted differential diagnosis (GTPA@1 and GTPA).
Note that GTPA@1, which measures the ground truth pathology accuracy when considering the top
entry in the differential, is only relevant for models trained to predict the ground truth pathology.
It is not relevant for models trained to predict the differential as the ground truth pathology is not
necessarily the top entry in the differential. When predicting the differential, the metrics that matter
are the DD-based metrics as well as GTPA (to make sure that the ground truth pathology is in the
differential). Definitions of these metrics and other details can be found in Appendix H. To compute
these metrics, we post-process both the ground truth differentials and the predicted ones to remove
pathologies whose mass is less than or equal to 0.01. This threshold is selected to reduce the size of
the differentials by removing highly unlikely pathologies.

Table 3 shows the results obtained for the two approaches. Looking at the performance of AARLC
which is an AD system, we observe a significant improvement in the differential performance (i.e.,
the DD-based metrics) when the model is directly trained to predict the differential. This indicates
the importance of using the differential as a training signal as the posterior pathology distribution
generated by a model trained to predict the ground truth pathology doesn’t correspond to the desired
differential. We also observe a significant improvement in the recall of the positive evidence.
Interaction length increases when predicting the differential as the model collects more evidence. For
the BASD model, the collection of positive evidence doesn’t improve; this is expected as the disease
classifier branch is only enabled at the end of the interaction. But the system’s explainability in the
form of the differential significantly improves given that doctors can evaluate the alignment between
the collected evidence and the differential. This has the potential of increasing the trust of doctors in
such systems. Looking at the GPTA-based metrics, models trained to predict the patient’s disease
exhibit better GTPA@1 scores than the ones trained to predict the differential diagnosis. This is
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expected given that the patient’s ground truth pathology is not always ranked at the first position in the
corresponding differential diagnosis (see Figure 4 (right)). As for the GTPA metric, all approaches
do well, even those trained to predict the full differential without knowing what the ground truth
pathology is.

We present in Appendix K the sequence of question-answer pairs and the differential generated by
each model for the patient introduced in Section 3.5. The behavior of the models is commented by a
doctor, including the alignment between the collected evidence and the predicted differential.

The results that we presented should be viewed as initial baselines. The release of DDXPlus opens
the possibility for improving the two models described here as well as developing new ideas for ASD
and AD systems capable of collecting useful evidence and generating differentials as doctors do.

Table 3: Interaction length, ground truth pathology accuracy, evidence collection, and differential
diagnosis metrics of the trained agents as measured on the test set. Diff indicates whether the agent
was trained to predict the differential diagnosis (X) or not (×). Except IL, all values are expressed in
%. Values indicate the average of 3 runs, and numbers in brackets indicate 95% confidence intervals.
A higher GPTA@1 is desired for models trained to predict the ground truth pathology, while a higher
GTPA is desired for models trained to predict a differential. For all models, higher PER, DDR, DDP
and DDF1 is better.

Method Diff IL GTPA@1 GTPA PER DDR DDP DDF1

AARLC X 25.75 (2.75) 75.39 (5.53) 99.92 (0.03) 54.55 (14.73) 97.73 (1.21) 69.53 (8.51) 78.24 (6.82)
× 6.73 (1.35) 99.21 (0.78) 99.97 (0.01) 32.78 (13.92) 21.96 (0.30) 99.19 (0.56) 31.28 (0.38)

BASD X 17.86 (0.88) 67.71 (1.19) 99.30 (0.27) 88.18 (1.12) 85.03 (3.46) 88.34 (1.14) 83.69 (1.57)
× 17.99 (3.57) 97.15 (1.70) 98.82 (1.03) 88.45 (5.78) 21.89 (0.19) 99.38 (0.07) 31.31 (0.29)

5 Conclusion

We release a large-scale benchmark dataset of roughly 1.3 million patients suffering from pathologies
that include cough, sore throat or breathing problems as symptoms. The dataset contains binary, cate-
gorical and multi-choice symptoms and antecedents. Each patient within the dataset is characterized
by their age, sex, geographical region or recent travel history, pathology, symptoms, antecedents, as
well as the related differential diagnosis. We extended two existing approaches from the AD/ASD
literature (based on RL and non-RL settings) to leverage the differential diagnosis available in the
proposed dataset. The obtained results provide empirical evidence that using the differential diagnosis
as a training signal enhances the performance of such systems or helps doctors better understand the
reasoning of those systems by evaluating the collected evidence, the predicted differential and their
alignment. We hope that this dataset will encourage the research community to develop automatic
diagnosis systems that can be trusted by medical practitioners as the latter operate with differential
diagnoses when interacting with real patients. In constructing this dataset, we guarantee that the
differentials are informed by all relevant positive evidences the patients may have. However, while
the rule-based AD system which generates the differentials may further inquire about negative evi-
dences, it is not guaranteed that all relevant negative evidences, i.e., evidences that may change the
differentials, are considered. Doing so would be much harder practically as the scope of negative
evidences is much larger, and we leave this to future work. While extending the above mentioned
approaches, we considered all pathologies as equally important. But in general, when establishing a
differential diagnosis, medical practitioners likely ask questions to specifically explore and rule out
severe pathologies. The proposed dataset has a severity flag associated with each pathology. This
leaves room for exploring approaches that better handle severe pathologies. Finally, we would like
to emphasize that this dataset should not be used to train and deploy a model prior to performing
rigorous evaluations of the model performance and verifying that the system has proper coverage and
representation of the population that it will interact with.
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