
Learning Generalizable Models for Vehicle Routing
Problems via Knowledge Distillation (Appendix)

A Details of the considered distributions

In this paper, we consider various distributions for the node coordinates in VRPs, followed which
we randomly generate instances for both training and testing. Below we present details on how
to generate those instances. Specifically, we follow the recent work [10] and benchmark dataset
TSPLIB [42] to generate instances of Uniform, Cluster and Mixed distributions, and follow the
settings in [21, 43] for the Expansion, Implosion, Explosion, and Grid ones.

Uniform distribution. It considers uniformly distributed nodes. Following [10], we generate the
two-dimensional coordinates (x, y) of each node by sampling from a uniform space U([0, 1]2). An
exemplary instance is displayed in Figure 1(h).

Cluster distribution. It considers multiple (nc) clusters, where we set nc = 3. In specific, each
cluster follows a normal distribution N (µ, σ2)2 with the mean sampled uniformly, i.e., µ ∼ U([0.2,
0.8]2) and the standard deviation σ = 0.07. According to the 3σ rule, each node has a 99.7%
probability of being generated in the [0, 1]2 square region, and outliers will have their coordinates
re-modified, where values less than 0 are changed to 0 and those greater than 1 are changed to 1, to
ensure all coordinates are constrained to ([0, 1]2). An exemplary instance is displayed in Figure 1(i).

Mixed distribution. It considers a mixture of the two distributions above, each with half of the nodes.
For the latter, we only consider nc=1 cluster. An exemplary instance is displayed in Figure 1(j).

Expansion distribution. It considers a linear function to mutate the nodes in Uniform distribution.
Gvien a randomly generated linear function y = ax+ b, all nodes, orthogonal to the linear function
within the distance r (r = 0.3), are moved away from their original coordinates to a farther position,
whose orthogonal distance is r+ γ, where γ obeys an exponential distribution with the rate parameter
λ = 10, i.e. γ ∼ E(λ). Regarding the linear function, we first sample b (intercept) from [0, 1], then
a (slope) is sampled uniformly from [0, 3] (if b < 0.5) or [-3, 0] (if b ≥ 0.5). Finally, we normalize all
node coordinates X as follows to ensure that they are constrained to [0, 1]2,

X ′ =
X −min(X)

max(X)−min(X)
, (8)

where X ′ denotes the normalized coordinates. An exemplary instance is displayed in Figure 1(k).

Implosion distribution. It considers an implosion to mutate the nodes in Uniform distribution. To
simulate an implosion, it first samples a centroid ϵi, then gathers all nodes within the circle of ϵi
(with the radius Ric = 0.3) together towards a new circle with the same centroid ϵi but a (randomly
sampled) smaller radius (Ri ≤ 0.3). An exemplary instance is displayed in Figure 1(l).

Explosion distribution. It considers to mutate the nodes in Uniform distribution by imitating the
particles affected by an explosion. Similar to Implosion, it first randomly samples a centroid. Then,
instead of gathering all nodes towards the centroid in Implosion distribution, it moves away those
nodes from the circle (radius Rec = 0.3) and explode them outside the circle, which follow the
direction vector between the centroid ϵe and the corresponding nodes. The additive distance γ is
randomly sampled from an exponential distribution with a rate parameter, i.e. γ ∼ E(λ). All nodes
are them normalized using Eq. (8). An exemplary instance is displayed in Figure 1(m).

Grid distribution. It considers to mutate the nodes in Uniform distribution by imposing a grid
permutation. We first generate the four vertex of a square with the width and height equal to
Rg(Rg = 0.3) and then place it within the region [0, 1]2. All the pre-generated nodes inside the
box are re-arranged as a quadratic grid instead. In this case, all nodes are constrained to [0, 1]2. An
exemplary instance is displayed in Figure 1(n).

The above distributions are considered in both TSP and CVRP. For extra settings in CVRP, we follow
the convention [10, 12, 14]. In specific, the demand δi of each node is sampled uniformly from U(1,

1



2, · · · , 9) and the capacity Q of the vehicle varies with the problem scale, where we set Q20 = 30,
Q50 = 40 and Q100 = 50. For instances from CVRPLIB, we exactly follow their settings.

B Details of compared baselines

Implementation Details. We compare our AMDKD with various types of baselines. Regarding the
neural baselines, we re-train LCP [13], HAC [17] and DACT [14] on our machine based on the code
that are publicly available on Github. By default, we follow their original settings and the suggestion
on the hyper-parameters. More details of the baselines are presented below.

• Gurobi [5]: we use Gurobi to obtain the optimal solutions to TSP instances, which are
implemented under the default settings.

• LKH [4]: For CVRP, it is usually hard to obtain the optimal solutions. Thus, we use the
strong LKH solver to find near-optimal solutions. Note that the LKH solver is also a widely
used baseline to evaluate and compare the recent learning based methods for VRPs, where
we run it following the conventions in [10, 12, 14, 23].

• LCP [13]: LCP is a two-stage method, where a seeder generates diverse initial solutions
and a reviser rewrites the current solutions partially. We re-train the LCP on a mixed dataset
containing instances from the three exemplar distributions. For inference of TSP-50 and
TSP-100, we employ the LCP* (the best version reported in [13]) with two revisers (the
lengths of the tour for revision are set to ℓr1=10 and ℓr2=20) and a sampling strategy (1,280),
and set the total number of revision iteration Tr to 45 (i.e., Tr1=25, Tr2=20, respectively).
For TSP-20, we exploit one reviser (ℓr=10) since the revision length must be less than the
problem size according to its design, and set the number of revision iteration Tr to 10.

• HAC [17]: HAC designs a hardness-adaptive Gaussian instances generator to produce
instances to fine-tune the given pre-trained AM model. In its original design, the dataset
used for fine-tuning contains half instances uniformly distributed and the other half produced
by its own generator. In this paper, we substitute the instances of uniform distribution with a
mixed dataset containing instances from the three exemplar distributions.

• DACT [14]: DACT learns to guide the pairwise operator to perform local search. We
adopt the 2-opt version since it reports the best result for TSP and CVRP according to its
original paper [14]. We re-train DACT on a mixed dataset containing instances from the
three exemplar distributions, and set the iteration number to 1,280 for inference.

Effects of distribution mixture augmentation. To ensure fair comparisons, we re-train the baselines
on a mixed dataset containing instances from the three exemplar distributions (with #). However,
we notice that this simple distribution augmentation does not always lead to a better generalization,
espicially for the methods that have an improvement component. For example, regarding the im-
provement method DACT, we find that DACT# performs even worse than DACT trained on Uniform
distribution for CVRP-100; and regarding the hybrid method, LCP (U) performs slightly better than

Table 6: Effects of distribution mixture during training.

Model
n = 50 n = 100

Uniform Cluster Mixed Grid Implosion Expansion Explosion Avg. Uniform Cluster Mixed Grid Implosion Expansion Explosion Avg.

T
SP

Gurobi 5.70 2.65 4.92 5.69 5.60 4.38 4.62 - 7.76 3.66 6.73 7.79 7.61 5.39 5.83 -

POMO (U) 5.70 2.66 4.93 5.69 5.60 4.38 4.62 0.12% 7.78 3.73 6.79 7.8 7.62 5.43 5.85 0.61%
POMO# 5.70 2.66 4.93 5.69 5.60 4.38 4.62 0.06% 7.78 3.67 6.75 7.81 7.63 5.42 5.84 0.29%
AM (U) 5.73 2.71 4.99 5.73 5.63 4.43 4.65 1.02% 7.93 3.93 7.00 7.95 7.78 5.64 5.98 3.58%
AM# 5.73 2.72 4.99 5.73 5.64 4.43 4.65 1.06% 7.92 3.90 7.00 7.95 7.77 5.66 5.98 3.40%

LCP (U) 5.72 3.58 5.01 5.71 5.62 4.44 4.65 5.70% 7.95 6.91 7.34 7.98 7.81 6.23 6.26 18.31%
LCP # 5.73 3.11 5.04 5.72 5.63 4.47 4.65 3.44% 7.99 6.81 7.34 8.02 7.85 6.41 6.30 18.72%

HAC (U) 5.81 2.87 5.07 5.80 5.71 4.48 4.70 3.00% 8.14 4.24 7.26 8.17 7.99 5.96 6.16 7.78%
HAC# 5.72 2.70 4.97 5.72 5.63 4.41 4.64 0.78% 7.96 3.94 6.98 7.98 7.81 5.60 6.01 3.70%

DACT (U) 5.70 2.69 4.98 5.70 5.61 4.43 4.63 0.61% 7.90 3.90 6.98 7.92 7.75 5.80 5.99 3.67%
DACT# 5.71 2.66 4.94 5.71 5.62 4.40 4.63 0.33% 7.96 3.74 6.88 7.98 7.80 5.67 5.98 2.80%

C
V

R
P

LKH3 10.38 5.13 9.42 10.40 10.26 8.15 8.74 - 15.65 7.81 14.19 15.64 15.44 11.39 12.32 -

POMO (U) 10.46 5.21 9.52 10.49 10.35 8.23 8.81 0.98% 15.80 7.99 14.38 15.87 15.59 11.55 12.45 1.36%
POMO # 10.47 5.18 9.50 10.50 10.36 8.23 8.82 0.93% 15.83 7.91 14.32 15.82 15.62 11.55 12.46 1.18%
AM (U) 10.64 5.35 9.70 10.66 10.52 8.39 8.96 2.92% 16.13 8.58 14.84 16.13 15.93 11.93 12.77 4.59%
AM# 10.63 5.37 9.71 10.66 10.52 8.40 8.97 2.97% 16.16 8.46 14.85 16.15 15.95 11.93 12.78 4.47%

DACT (U) 10.54 5.24 9.57 10.56 10.42 8.26 8.88 1.62% 16.15 8.17 14.74 16.14 15.94 12.33 12.74 4.22%
DACT# 10.54 5.21 9.57 10.57 10.43 8.27 8.89 1.59% 16.52 8.25 14.97 16.51 16.30 12.02 13.01 5.56%

2



LCP# on TSP-100. Nevertheless, this distribution augmentation improves the generalization of
construction methods POMO [12] and AM [10] on larger instances, i.e., TSP-100 and CVRP-100.

Why AMDKD could be better than distribution mixture augmentation? Recall that we conclude
from Table 2 that our AMDKD usually achieves better cross-distribution generalization performance
when compared to the above distribution mixture method (# models). Though this still remains a
open question, we list some possible intuitions on why AMDKD works better as follow:

• Different exemplar distributions may have different levels of difficulty for solving. Without
additional intervention, reinforcement learning tends to learn those easier things to get
a higher reward. This means that training on mixed data may possibly bias the learning
towards distributions that are easier to solve (a "winner-take-all" issue). On the contrary, our
AMDKD selects a specific teacher model based on the weakness of the current student model
(by our adaptive strategy), which encourages it to learn those hard-to-solve distributions.
And this adaptive strategy echoes how humans learn knowledge, where more time is always
required for harder subjects.

• Directly training on a mixed dataset may not be efficient or stable. On one hand, it would be
hard for deep reinforcement learning to directly learn good patterns from mixed data that
follow different distributions, due to the possibly limited representation capability of the
neural networks for handling such hard optimization problems, even without the diversity
in distributions. On the other hand, the tasks for different distributions may have different
reward ranges (such as the route length), which may cause instability in the RL training. For
example, the average total rewards for solving CVRP-100 instances following Uniform and
Cluster distributions are around 16 and 7, respectively. Our AMDKD tackles this issue in a
way that only one distribution is leveraged in a training epoch. Further empowered by the
knowledge distillation, our AMDKD framework efficiently and effectively transfers useful
knowledge (patterns) from various teacher models to a unified and light student model.

C Additional analysis of AMDKD

C.1 Effects of multiple teacher co-training.

Recall that AMDKD selects only one distribution and its corresponding teacher in each epoch.
Different from ours, some existing multi-teacher knowledge distillation approaches exploit multiple
teachers simultaneously in each epoch. We term such strategy as MT, whose loss function follows
Eq. (4). In Figure 4, we draw the boxplot of the overall gaps (on all seven test distributions for
CVRP-50) of AMDKD-POMO and its MT version, and compare the results using the Wilcoxon test.
As clearly demonstrated, allowing unprofessional teachers to advise for distributions in which they
are not specialized will interfere with the process of knowledge distillation, inducing significantly
inferior performance compared to ours.

Figure 4: Boxplot of the overall gaps of AMDKD and its MT version. Here, ⋆ in the plot means that
the two models are much different with statistical significance p-value = 0.02 < 0.05 (Wilcoxon test).

C.2 Effects of validation datasets.

Recall that the adaptive probability of teacher selection in Eq. (5) is calculated by the real-time
performance of student model on the validation datasets, we further investigate whether the size
of the validation datasets V will largely influence AMDKD. As displayed in Figure 5 and Figure
6, increasing the size of V (from 1,000 to 2,000) slightly improves the performance of AMDKD

3



(but with no statistical significance), whereas decreasing the size of V (from 1,000 to 500) slightly
impairs the performance of AMDKD (also with no statistical significance), which indicates that
the good performance of AMDKD may not rely on the size of the validation datasets. Meanwhile,
performing student model evaluation in each epoch inevitably introduces additional computation cost,
where larger size of the validation datasets will cause longer training time. However, we note that the
increment of validation in training time is acceptable when we use V = 1,000. Taking AMDKD-AM
training on CVRP-100 as an example, the total evaluation time is 2.7s (0.9s per exemplar distribution
on average) for each epoch, which is approximately 1% of the total training time (i.e., 4 min). What’s
more, we note that the likelihood of selecting different teacher models would eventually converge to
a stable one, which means that we may stop such evaluation early to speed up the training further
if needed. For example, for training AMDKD-AM on CVRP-100 (see Figure 7), we may stop the
student evaluation early at around 3,000 epochs.

Figure 5: Boxplot of the overall gaps of AMDKD-AM (with size of V=1,000, red) and AMDKD-AM
(with size of V=2,000, blue) on CVRP-50. The "ns" in the plot means that the two models are not
sigificantly different with statistical significance p-value = 0.25 > 0.1 (Wilcoxon test).

Figure 6: Boxplot of the overall gaps of AMDKD-AM (with size of V=1,000, red) and AMDKD-AM
(with size of V=500, blue) on TSP-50. The "ns" in the plot means that the two models are not
sigificantly different with statistical significance p-value = 0.36 > 0.1 (Wilcoxon test).

2000 4000 6000 8000 10000
0.325

0.330

0.335

0.340

0.345 Uniform
Cluster
Mixed

Figure 7: Likelihood of teacher selection along the epochs (AMDKD-AM on CVRP-100).

C.3 Effects of different hyper-parameters.

We further discuss the influence of the hyper-parameters on the performance of AMDKD.

• The starting epoch of the adaptive teacher selection strategy (E′): it indicates the epoch to
start our adaptive strategy for teacher selection. We include this hyper-parameter because
preliminary experiments revealed that there could be a point in the learning curve (i.e., the
reward convergence curve) where the training curves without and with (starting at the first
epoch E′=1) the adaptive strategy may meet. This suggests that there might be a sweet spot

4



to implement the proposed adaptive strategy. For AMDKD-AM, the sweet spot is around
E′=500. And for AMDKD-POMO, we do not observe such a pattern and thus we use E′)=1.
In figure 8, we provide an example of how E′ will affect the performance of AMDKD-AM.

• Number of steps per epoch (T ): it indicates how long will the student model learn from the
selected teacher before it possibly switches to a new one, which should not be too small or
too large. As for POMO, the original T is about 20, and we did not change it. As for AM,
the original T is about 2,500, and we empirically reduce it to 250 for a better trade-off.

• The total number of training epochs (E): it mainly follows the settings of the original
backbone. In this paper, we employ different training epochs for different sizes and tasks
since the hardness of the task itself may grow with size, which may require more steps to
converge. Training curves of AMDKD-POMO (for CVRP) are depicted in Figure 9.

Figure 8: Boxplot of the overall gaps of AMDKD-AM (E′=500, red) and AMDKD-AM (E′=1, blue)
on CVRP-50. The "ns" in the plot means that the two models are not significantly different with
statistical significance p-value = 0.37 > 0.1 (Wilcoxon test).

(a) CVRP-20 (b) CVRP-50 (c) CVRP-100

Figure 9: Training curves of AMDKD-POMO for solving CVRP. The x-axis is the epoch and the
y-axis is the average gaps on the used three exemplar distributions.

C.4 Stability studies of AMDKD.

To demonstrate the stability of our experiment results, we take CVRP-50 as an example and inde-
pendently run our trained AMDKD-AM and AM# for 10 times, where we adopt different random
seeds during the sampling process. As shown in Figure 10, both AMDKD-AM and AM# exhibit
extremely small fluctuations (even less than 0.001) when running with different seeds. Based on the
Wilcoxon test, our AMDKD-AM significantly (with p-value < 0.001) outperforms AM# on every
unseen in-distributions and OoD distributions. As for AMDKD-POMO and POMO#, the greedy
decoding strategy is adopted, hence the results are expected to be stable with almost no fluctuation.

MixedUniform Cluster ExplosionExpansion Implosion Grid

Figure 10: Experiment results of AMDKD-AM (red) and AM# (blue) with different random seeds.

5



D Detailed results on benchmark datasets

We present the detailed results of benchmark dataset in Table 8 (TSPLIB) and Table 9 (CVRPLIB),
respectively. As displayed, models that have only been trained on the uniform distribution, i.e.,
AM and POMO, perform extremely poorly when inferring instances that may follow unknown
distributions from the benchmark. The upgraded POMO# significantly outperforms POMO, which
seemingly alleviates this issue through training on our exemplar distributions, however, this simple
strategy does not work well with AM. Regarding the prior cross-distribution generalization methods
including GANCO, HAC, PSRO and DROP which show the potential to improve AM or POMO, their
results are still far from satisfactory, where the performance of DROP are even inferior to POMO#

trained on our exemplar distributions. Nevertheless, our AMDKD not only outperforms all these
baselines, but also brings a much more significant improvement over the backbone AM and POMO
than those baselines do. Meanwhile, our AMDKD-POMO exhibits a much better generalization
over POMO# on CVRPLIB. Finally, we note that AMDKD equipped with EAS performs the best
among all baselines, even achieving the optimal solution on some instances (e.g., KroA100, KroD100,
lin105 in TSPLIB and X-n110-k14 in CVRPLIB). This leads to a new state-of-the-art performance
for neural methods on these benchmark datasets. Finally, we list the full generalization results of our
AMDKD in Table 10 (TSPLIB) and Table 11 (CVRPLIB), respectively.

Table 8: Detailed generalization results on selected instances from TSPLIB.

Instance Opt. PSRO AM GANCO HAC AM# AMDKD-AM POMO DROP POMO# AMDKD-POMO AMDKD+EAS

KroA100 21282 21703 46621 21908 21838 22138 21650 38452 24623 21285 21285 21282
KroB100 22141 22855 37921 22956 23110 23189 22350 33521 24874 22197 22233 22195
KroC100 20749 21079 34258 21139 21068 22326 21279 30736 24785 20751 20752 20947
KroD100 21294 21828 36141 21929 22625 23093 21863 29512 23257 21352 21314 21294
KroE100 22068 22532 29628 23174 22807 22865 22327 26829 26057 22179 22185 22111

lin105 14379 15372 15148 15478 15003 16865 14988 14922 14688 14430 14430 14379
pr107 44303 45288 53846 45393 47250 76152 46146 52846 47853 44647 45022 44347

Avg. Gap 0.00% 2.93% 55.19% 3.80% 4.16% 16.80% 2.50% 37.63% 12.14% 0.31% 0.44% 0.21%(n=100-150)

ch150 6528 6866 6930 6704 6852 6680 6669 6844 6709 6574 6609 6554
rat195 2323 2600 2612 2585 2638 3237 2550 2554 2403 2422 2432 2406

kroA200 29368 31450 35637 31741 33174 34294 31112 34972 34275 29840 29906 29931

Avg. Gap 0.00% 8.06% 13.32% 7.36% 10.50% 19.48% 5.96% 11.29% 7.64% 2.19% 2.59% 1.96%(n=150-200)

Table 9: Detailed generalization results on selected instances from CVRPLIB.

Instance Opt. AM AM# AMDKD-AM POMO DROP POMO# AMDKD-POMO AMDKD+EAS

X-n101-k25 27591 38264 30327 30782 29484 28949 30510 29299 27855
X-n106-k14 26362 27923 27958 27279 27762 27308 27077 26847 26550
X-n110-k13 14971 16320 15668 15348 15896 15386 15175 15315 14971
X-n115-k10 12747 14055 14638 13366 13952 13783 13609 13418 12883
X-n120-k6 13332 14456 16094 14162 14351 14058 13997 13604 13457

X-n125-k30 55539 74329 68870 58507 69560 61382 62383 58570 56596
X-n129-k18 28940 30869 30833 29851 30155 30075 29597 29449 29007
X-n134-k13 10916 13952 12709 12573 13483 12846 11325 11330 11073
X-n139-k10 13590 14893 14953 14097 14132 13979 14053 13955 13704
X-n143-k7 15700 18251 18345 16509 17923 17682 16487 16346 15871

Avg. Gap 0.00% 16.65% 13.00% 6.12% 10.66% 7.25% 5.32% 3.54% 0.92%(n =100-150)

X-n153-k22 21220 38423 24722 23766 26386 24386 23629 23590 21849
X-n157-k13 16876 22051 19890 17539 19978 18378 17950 17450 17093
X-n181-k23 25569 27826 27314 26415 27428 27094 29014 26756 25736
X-n190-k8 16980 37820 21020 21162 22310 19864 18912 17575 17228

X-n200-k36 58578 76528 66298 62335 73135 64921 62228 62967 60562

Avg. Gap 0.00% 54.79% 15.63% 10.06% 21.25% 11.52% 9.76% 6.04% 1.95%(n =150-200)

E Used assets and licenses

Table 12 lists the used assets in our work, which are all open-source for academic research. For our
code and used data (new assets), we are using the MIT License.

6



Table 10: Full generalization results on TSPLIB (instances ranged from 100 to 200).

Instance Opt.
AM# AMDKD-AM POMO# AMDKD-POMO AMDKD+EAS

Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

kroA100 21282 22138 4.02% 21650 1.73% 21285 0.02% 21285 0.02% 21282 0.00%
kroB100 22141 23189 4.73% 22350 0.94% 22197 0.25% 22233 0.41% 22195 0.24%
kroC100 20749 22326 7.60% 21279 2.55% 20751 0.01% 20752 0.02% 20947 0.95%
kroD100 21294 23093 8.45% 21863 2.67% 21352 0.27% 21314 0.09% 21294 0.00%
kroE100 22068 22865 3.61% 22327 1.17% 22179 0.50% 22185 0.53% 22111 0.19%
eil101 629 663 5.45% 647 2.82% 641 1.90% 645 2.55% 629 0.00%
lin105 14379 16865 17.29% 14988 4.24% 14430 0.36% 14430 0.36% 14379 0.00%
pr107 44303 76152 71.89% 46146 4.16% 44647 0.78% 45022 1.62% 44347 0.10%
pr124 59030 62075 5.16% 60042 1.71% 59031 0.00% 59281 0.43% 59030 0.00%

bier127 118282 275748 133.13% 123211 4.17% 119232 0.80% 119052 0.65% 118729 0.38%
ch130 6110 6231 1.98% 6171 1.00% 6146 0.60% 6152 0.69% 6115 0.08%
pr136 96772 100194 3.54% 99912 3.24% 98478 1.76% 98215 1.49% 97487 0.74%
pr144 58537 66628 13.82% 60807 3.88% 59034 0.85% 58956 0.72% 58794 0.44%
ch150 6528 6680 2.33% 6669 2.16% 6574 0.70% 6609 1.25% 6554 0.40%

kroA150 26524 29501 11.22% 27354 3.13% 26723 0.75% 26808 1.07% 26538 0.05%
kroB150 26130 28585 9.39% 26820 2.64% 26334 0.78% 26328 0.76% 26152 0.08%

pr152 73682 85703 16.31% 78120 6.02% 74673 1.35% 75270 2.16% 75250 2.13%
rat195 2323 3237 39.35% 2550 9.77% 2422 4.25% 2432 4.68% 2406 3.57%

kroA200 29368 34294 16.77% 31112 5.94% 29840 1.61% 29906 1.83% 29931 1.92%
kroB200 29437 34074 15.75% 31968 8.60% 29665 0.77% 30132 2.36% 29765 1.11%

Avg. Gap 19.59% 3.63% 0.92% 1.18% 0.62%

Table 11: Full generalization results on CVRPLIB (instances ranged from 100 to 200).

Instance Opt.
AM# AMDKD-AM POMO# AMDKD-POMO AMDKD+EAS

Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

X-n101-k25 27591 30327 9.92% 30782 11.57% 30510 10.58% 29299 6.19% 27855 0.96%
X-n106-k14 26362 27958 6.06% 27279 3.48% 27077 2.71% 26847 1.84% 26550 0.71%
X-n110-k13 14971 15668 4.66% 15348 2.52% 15175 1.36% 15315 2.30% 14971 0.00%
X-n115-k10 12747 14638 14.83% 13366 4.86% 13609 6.76% 13418 5.27% 12883 1.07%
X-n120-k6 13332 16094 20.71% 14162 6.23% 13997 4.99% 13604 2.04% 13457 0.94%

X-n125-k30 55539 68870 24.00% 58507 5.34% 62383 12.32% 58570 5.46% 56596 1.90%
X-n129-k18 28940 30833 6.54% 29851 3.15% 29597 2.27% 29449 1.76% 29007 0.23%
X-n134-k13 10916 12709 16.43% 12573 15.18% 11325 3.74% 11330 3.79% 11073 1.44%
X-n139-k10 13590 14953 10.03% 14097 3.73% 14053 3.41% 13955 2.69% 13704 0.84%
X-n143-k7 15700 18345 16.84% 16509 5.15% 16487 5.01% 16346 4.12% 15871 1.09%

X-n148-k46 43448 61800 42.24% 52627 21.13% 53217 22.48% 46993 8.16% 44075 1.44%
X-n153-k22 21220 24722 16.50% 23766 12.00% 23629 11.35% 23590 11.17% 21849 2.96%
X-n157-k13 16876 19890 17.86% 17539 3.93% 17950 6.36% 17450 3.40% 17093 1.29%
X-n162-k11 14138 14762 4.41% 14663 3.72% 14951 5.75% 14903 5.41% 14543 2.86%
X-n167-k10 20557 21686 5.49% 21468 4.43% 21573 4.94% 21401 4.11% 20890 1.62%
X-n172-k51 45607 62419 36.86% 64444 41.30% 49844 9.29% 49741 9.06% 46340 1.61%
X-n176-k26 47812 53263 11.40% 51102 6.88% 54149 13.25% 53189 11.25% 49241 2.99%
X-n181-k23 25569 27314 6.83% 26415 3.31% 29014 13.47% 26756 4.64% 25736 0.65%
X-n186-k15 24145 25845 7.04% 25526 5.72% 25827 6.97% 26332 9.06% 24893 3.10%
X-n190-k8 16980 21020 23.79% 21162 24.63% 18912 11.38% 17575 3.50% 17228 1.46%

X-n195-k51 44225 57830 30.76% 60882 37.66% 48907 10.59% 51284 15.96% 45758 3.47%

Avg. Gap 15.87% 10.76% 8.05% 5.77% 1.55%

Table 12: Used assets and their licenses.

Type Asset License Usage

Code

Gurobi [5] Free Academic lisence Evaluation
LKH3 [4] Available for academic use Evaluation
AM [10] MIT License Remodification and evaluation

POMO [12] MIT License Remodification and evaluation
LCP [13] MIT License Remodification and evaluation
HAC [17] MIT License Remodification and evaluation
EAS [23] MIT License Remodification and evaluation

DACT [14] MIT License Remodification and evaluation
tspgen [43] GNU General Public License v3.0 Generating datasets

Datasets
TSPLIB [42] Available for any non-commerial use Testing

CVRPLIB [22] Available for any non-commerial use Testing

7


