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1 Properties of the Relationship Modelling Function

Intuitive Analogy: The problem of local-to-global relation computation can be viewed as a bit-string-
to-integer matching problem. Consider 3 bits, say b1, b2 and b3, corresponding to 3 local views. Let
the global view be represented by an integer that can be encoded with 3 bits, say with a value of g =
6, for this example. The problem then is to find the association of the integer 6 with its corresponding
binary representation of 110. This association represents the cross-view relationship.

The first step towards solving this problem is to enumerate all the possible ways in which the local
views can combine (to produce any global view, not specifically g). The set of all such combinations
will be given by S = {000, 001, 010, ..., 110, 111}. The bit values encode the presence or absence of
a particular view in the cross-view relationship. So, no matter what order we observe b1, b2 and b3
in, we must output the same set S, as it is required to be an exhaustive enumeration. This is exactly
what the property of permutation invariance achieves. Once we have S, the next step is to find the
mapping S, g 7→ 110, i.e, the correct binary encoding for the integer g = 6, which is accomplished
by the property of view-unification.

Purpose: As illustrated through the above analogy, one can view the local-to-global relationship
modelling function as an enumerative search algorithm - given a set of local views, it first enumerates
all possible ways in which they can combine to form a meaningful global view. Given that enumer-
ation, it then finds the target solution by learning to identify the correct combination that matches
with the global-view representation. Thus, the enumerate operation needs to be permutation invariant,
as it has to consider all possible combinations of the inputs, and the find operation needs to be a
view-unifier by construction.

Motivation: Behind our specific design choice was the motivation to keep the enumerate and find
steps separate. This allows the model to have dedicated representation spaces for the two distinct
sub-tasks, which in turn facilitates better convergence.

2 Proofs of Additional Identities

Identity 1. Given a relation-agnostic representation z of x, the only uncertainty that remains
about the label information y can be quantified as the cross-view relational information r, i.e.,
I(x;y|z) = I(x; r).

Proof. Using the chain rule for mutual information [3], we can factorize the label information y
contained in x, i.e., I(x;y) as:

I(x;y) = I(x;y|z) + I(x; z) (1)

As evidenced by recent literature [4, 5, 1, 2], the label information in x can be expressed exclusively
as a function of its global (g) and local (li) views. Thus, in quantitative terms, the label information
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Figure 1: (a) A relation-agnostic representation space. (b) The ϵ-neighborhoods of the global and
local views begin colliding as the information gap is reduced.
y in x can also be factorized into relation-agnostic and relation-aware components as follows:

I(x;y) = I(x;g) +
∑
l∈L

I(x; l)︸ ︷︷ ︸
relation-agnostic

+ I(x; r)︸ ︷︷ ︸
relation-aware

(2)

The relation-aware representation r is, unlike relation-agnostic representations, obtained explicitly
based on the cross-view relationship. However, since f computes z without considering any relational
information, it only models the relation-agnostic component of Equation (2). Thus,

I(x; z) = I(x;g) +
∑
l∈L

I(x; l) (3)

Substituting the relation-agnostic component of Equation (2) with the L.H.S. of Equation (3), and
comparing it with Equation (1), we get:

I(x;y|z) = I(x; r) (4)

3 Geometric Relation Agnosticity

Definition 4 is based on the fact that the information gap (derived in Proposition 1) between the global
and the local views has the effect that the two view families would be mapped to distinct locations in
the representation space, and the separation between them would be proportional to the information
gap, i.e., I(x; r|z). Definition 4 also mentions that relation-agnostic embeddings of the local and the
global views must thus be well separated, i.e., the ϵ-neighborhood of the global embedding nϵ(zg)
must not intersect with those of the local embeddings nϵ(zl). In other words, the global embedding
must be sufficiently far apart from each of the local embeddings.

Figure 1 depicts the geometric effect of removing the information gap from a relation-agnostic
representation space. As proven in Lemma 3, if the information gap is reduced using the same
encoder f that was used to obtain zg and zl, the model starts mapping the global and the local views
to identical regions in the representation space. This could potentially lead to the requirement of
k-distinguishability to not be satisfied, as the unique information pertaining to at least one of the
local views is lost upon merger with the global view (and vice-versa). It is thus a requirement for a
sufficient learner to preserve the relation-agnosticity in the representation space of f .

4 Relation-Agnosticity of Relational Proxies

The representations zg and zli are computed in a relation-agnostic manner and no explicit operation
is performed to reduce the domain gap between the global and the set of local views. This natural
domain gap thus manifests in the representation space of z as its relation-agnostic nature.

Figure 2 diagrammatically illustrates this idea. Given an entangled representation space where the
classes are not entirely separable (left), the encoder f has two choices to map the local and global
views of the corresponding datapoints to completely separable proxy neighborhoods. It could either:
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Figure 2: Embeddings of datapoints from two classes obtained from f before training (left). As f is
trained with an end objective of minimizing Lrporxy, it has two potential choices (right). However, as
proven in Lemma 3, the relation-agnostic nature of f prevents the collapse of the global and local
embeddings even when they share the same set of class proxies.

1. Preserve the relation-agnosticity by maintaining the information gap (equal to the cross-view
relational information) even within the proxy neighborhood (top right), or

2. Collapse the local and global representations in the process of alignment (bottom right) by
mapping them to ϵ-neighborhoods of each other.

However, since the end objective of our model is to minimize Lrproxy, which is cross-entropic in
nature, we prove via Lemma 3 that f cannot collapse the local and global representations, as that
would lead to an increase in the downstream cross-entropy loss. f would thus choose to preserve
the relational gap in the representation space while mapping them to the neighborhood of their
corresponding proxy.

5 Visual Representations of Cross-View Local Relationships

Figure 3 depicts examples of graphs depicting cross-view local relationships. It can be seen that
images that provide a diverse set of local views, and thus, a larger space of possible cross-view
relationships are the ones that get classified correctly with full certainty. However, as the number
of unique local views get limited (possibly due to occlusion or an incomplete photographing of the
object), it reduces the amount of relational information that can be mined. Under situations when
even the individual local-views are largely shared between classes, there remains no discriminative
premise (neither local/global, nor relational) for telling their instances (with limited depiction of local
views) apart. It is under such circumstances that the classifier gets confused.

Example: For instance, in the example from the CUB dataset (the top row in Figure 3), the images of
the Acadian Flycatcher and Bank Swallow depict sufficient numbers of local views like the head,
tail, belly and wings, which provide a large space of potential cross-view relationships that favor
classification outcome. On the other hand, the images of the Black-footed Albatross and Laysan
Albatross only depict the head and the neck, thus limiting the number of computable relationships
that can act as discriminators. Moreover, the head and the neck look largely similar between the
two categories, thereby leading to cross-category confusion causing a subsequent misclassification.
However, we believe that such a situation can be addressed by learning different distributional priors
over the set of local views, which we plan to take up as future work.

References

[1] Ardhendu Behera, Zachary Wharton, and Asish Bera. Context-aware Attentional Pooling (CAP)
for Fine-grained Visual Classification. In AAAI, 2021.

[2] Subhabrata Choudhury, Iro Laina, Christian Rupprecht, and Andrea Vedaldi. Unsupervised Part
Discovery from Contrastive Reconstruction. In NeurIPS, 2021.

[3] Marco Federici, Anjan Dutta, Patrick Forré, Nate Kushman, and Zeynep Akata. Learning Robust
Representations via Multi-View Information Bottleneck. In ICLR, 2020.

[4] Wei Luo, Xitong Yang, Xianjie Mo, Yuheng Lu, Larry Davis, Jun Li, Jian Yang, and Ser Nam
Lim. Cross-x learning for fine-grained visual categorization. In ICCV, 2019.

3



Correct Classifications: Acadian Flycatcher (left) and Bank 

Swallow (right).
Misclassifications: Black-footed Albatross (left) and Laysan 

Albatross (right) confused with each other.

Correct Classifications: DR-400 (left) and Hawk T1 (right). Misclassifications: Boeing-727 (left) and Falcon-900 (right) 

confused with each other.

Correct Classifications: Lamborghini Aventador (left) and 

Lamborghini Reventón (right).

Misclassifications: Audi R8 (left) and Audi TT (right) confused 

with each other.

Figure 3: Visual representations of cross-view relationships along with qualitative classification
results on (in order from top) CUB, FGVC Aircraft, Stanford Cars and Cotton Cultivar datasets. The
pairs on the left correspond to correct classifications made by our model, while the ones on the right
are misclassifications occurring out of cross-category confusions.
[5] Fan Zhang, Meng Li, Guisheng Zhai, and Yizhao Liu. Multi-branch and Multi-scale Attention
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