
TCT: Convexifying Federated Learning using
Bootstrapped Neural Tangent Kernels

Yaodong Yu
UC Berkeley

yyu@eecs.berkeley.edu

Alexander Wei
UC Berkeley

awei@berkeley.edu

Sai Praneeth Karimireddy
UC Berkeley

sp.karimireddy@berkeley.edu

Yi Ma
UC Berkeley

yima@eecs.berkeley.edu

Michael I. Jordan
UC Berkeley

jordan@cs.berkeley.edu

Abstract

State-of-the-art federated learning methods can perform far worse than their cen-
tralized counterparts when clients have dissimilar data distributions. For neural
networks, even when centralized SGD easily finds a solution that is simultaneously
performant for all clients, current federated optimization methods fail to converge
to a comparable solution. We show that this performance disparity can largely be
attributed to optimization challenges presented by nonconvexity. Specifically, we
find that the early layers of the network do learn useful features, but the final layers
fail to make use of them. That is, federated optimization applied to this non-convex
problem distorts the learning of the final layers. Leveraging this observation, we
propose a Train-Convexify-Train (TCT) procedure to sidestep this issue: first, learn
features using off-the-shelf methods (e.g., FedAvg); then, optimize a convexified
problem obtained from the network’s empirical neural tangent kernel approxima-
tion. Our technique yields accuracy improvements of up to +36% on FMNIST and
+37% on CIFAR10 when clients have dissimilar data.

1 Introduction

Federated learning is a newly emerging paradigm for machine learning where multiple data holders
(clients) collaborate to train a model on their combined dataset. Clients only share partially trained
models and other statistics computed from their dataset, keeping their raw data local and private [53,
37]. By obviating the need for a third party to collect and store clients’ data, federated learning has
several advantages over the classical, centralized paradigm [14, 31, 23]: it ensures clients’ consent is
tied to the specific task at hand by requiring active participation of the clients in training, confers
some basic level of privacy, and has the potential to make machine learning more participatory in
general [43, 36]. Further, widespread legislation of data portability and privacy requirements (such as
GDPR and CCPA) might even make federated learning a necessity [59].

Collaboration among clients is most attractive when clients have very different subsets of the combined
dataset (data heterogeneity). For example, different autonomous driving companies may only be able
to collect data in weather conditions specific to their location, whereas their vehicles would need
to function under all conditions. In such a scenario, it would be mutually beneficial for companies
in geographically diverse locations to collaborate and share data with each other. Further, in such
settings, clients are physically separated and connected by ad-hoc networks with large latencies and
limited bandwidth. This is especially true when clients are edge devices such as mobile phones, IoT
sensors, etc. Thus, communication efficiency is crucial for practical federated learning. However, it is
precisely under such circumstances (large data heterogeneity and low communication) that current

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

algorithms fail dramatically [27, 48, 39, 61, 71, 1, 46, 3, 72, etc.]. This motivates our central question:
Why do current federated methods fail in the face of data heterogeneity—and how can we fix them?

Our solution. We make two main observations: (i) We show that, even with data heterogeneity,
linear models can be trained in a federated manner through gradient correction techniques such as
SCAFFOLD [39]. While this observation is promising, it alone remains limited, as linear models
are not rich enough to solve practical problems of interest (e.g., those that require feature learning).
(ii) We shed light on why current federated algorithms struggle to train deep, nonconvex models. We
observe that the failure of existing methods for neural networks is not uniform across the layers. The
early layers of the network do in fact learn useful features, but the final layers fail to make use of
them. Specifically, federated optimization applied to this nonconvex problem results in distorted final
layers.

These observations suggest a train-convexify-train federated algorithm, which we call TCT: first, use
any off-the-shelf federated algorithm [such as FedAvg, 53] to train a deep model to extract useful
features; then, compute a convex approximation of the deep model using its empirical Neural Tangent
Kernel (eNTK) [34, 44, 20, 51, 75], and use gradient correction methods such as SCAFFOLD to train
the final model. Effectively, the second-stage features freeze the features learned in the first stage
and fit a linear model over them. We show that this simple strategy is highly performant on a variety
of tasks and models—we obtain accuracy gains up to 36% points on FMNIST with a CNN, 37%
points on CIFAR10 with ResNet18-GN, and 16% points on CIFAR100 with ResNet18-GN. Further,
its convergence remains unaffected even by extreme data heterogeneity. Finally, we show that given a
pre-trained model, our method completely closes the gap between centralized and federated methods.

2 Related Work

Federated learning. There are two main motivating scenarios for federated learning (FL). The
first is where internet service companies (e.g., Google, Facebook, Apple, etc.) want to train machine
learning models over their users’ data, but do not want to transmit raw personalized data away from
user devices [60, 8]. This is the setting of cross-device federated learning and is characterized by an
extremely large number of unreliable clients, each of whom has very little data and the collections of
data are assumed to be homogeneous [37, 10, 38, 8]. The second motivating scenario is when valuable
data is split across different organizations, each of whom is either protected by privacy regulation or is
simply unwilling to share their raw data. Such “data islands” are common among hospital networks,
financial institutions, autonomous-vehicle companies, etc. This is known as cross-silo federated
learning and is characterized by a few highly reliable clients, who potentially have extremely diverse
data. In this work, we focus on the latter scenario.

Metrics in FL. FL research considers numerous metrics, such as fairness across users [55, 47, 62],
formal security and privacy guarantees [9, 60, 21, 56], robustness to corrupted agents and corrupted
training data [7, 64, 19, 40, 26], preventing backdoors at test time [6, 66, 69, 52], etc. While these
concerns are important, the main goal of FL (and our work) is to achieve high accuracy with minimal
communication [53]. Clients are typically geographically separated yet need to communicate large
deep learning models over unoptimized ad-hoc networks [37]. Finally, we focus on the setting where
all users are interested in training the same model over the combined dataset. This is in contrast
to model-agnostic protocols [49, 58, 3] or personalized federated learning [16, 18, 78, 13, 42, 12].
Finally, we focus on minimizing the number of rounds required. Our approach can be combined with
communication compression, which reduces bits sent per round [67, 4, 24, 65].

Federated optimization. Algorithms for FL proceed in rounds. In each round, the server sends a
model to the clients, who partially train this model using their local compute and data. The clients
send these partially trained models back to the server who then aggregates them, finishing a round.
FedAvg [53], which is the de facto standard FL algorithm, uses SGD to perform local updates on
the clients and aggregates the client models by simply averaging their parameters. Unfortunately,
however, FedAvg has been observed to perform poorly when faced with data heterogeneity across the
clients [27, 48, 39, 61, 71, 1, 46, 3, 72, 17, etc.]. Theoretical investigations of this phenomenon [39,
76] showed that this was a result of gradient heterogeneity across the clients. Consider FedAvg
initialized with the globally optimal model. If this model is not also optimal for each of the clients as
well, the local updates will push it away from the global optimum. Thus, convergence would require
a careful tuning of hyper-parameters. To overcome this issue, SCAFFOLD [39] and FedDyn [1]
propose to use control variates to correct for the biases of the individual clients akin to variance

2

25 50 75 100 125 150 175 200
Communication Round

0.10

0.15

0.20

0.25

0.30

0.35

0.40

To
p-

1
Ac

cu
ra

cy

SCAFFOLD-Train(= 0.1)
SCAFFOLD-Test(= 0.1)
SCAFFOLD-Train(#C = 2)
SCAFFOLD-Test(#C = 2)

FedAvg-Train (= 0.1)
FedAvg-Test (= 0.1)
FedAvg-Train (#C = 2)
FedAvg-Test (#C = 2)

(a) Using linear model.

20 40 60 80 100
Communication Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

To
p-

1
Ac

cu
ra

cy

SCAFFOLD-Train(= 0.1)
SCAFFOLD-Test(= 0.1)
SCAFFOLD-Train(#C = 2)
SCAFFOLD-Test(#C = 2)

FedAvg-Train (= 0.1)
FedAvg-Test (= 0.1)
FedAvg-Train (#C = 2)
FedAvg-Test (#C = 2)

(b) Using ResNet-18.

Figure 1: Performance of FedAvg and SCAFFOLD on CIFAR10 when data are split among ten
clients in two ways (#C=2 and α=0.1). The #C=2 split is more non-i.i.d. than the α=0.1 split. For
convex problems (left), gradient correction methods such as SCAFFOLD are relatively unaffected by
data heterogeneity, and consistently outperform FedAvg. However, for nonconvex problems (right),
FedAvg and SCAFFOLD perform very similarly and both are strongly negatively affected by data
heterogeneity.

reduction [35, 15]. This gradient correction is applied in every local update by the client and provably
nullifies the effect of gradient heterogeneity [39, 54, 12]. However, as we show here, such methods are
insufficient to overcome high data heterogeneity especially for deep learning. Other, more heuristic
approaches to combat gradient heterogeneity include using a regularizer [48] and sophisticated server
aggregation strategies such as momentum [28, 70, 50] or adaptivity [61, 38, 11].

A second line of work pins the blame on performance loss due to averaging nonconvex models. To
overcome this, Singh and Jaggi [63], Yu et al. [81] propose to learn a mapping between the weights
of the client models before averaging, Afonin and Karimireddy [3] advocates a functional perspective
and replaces the averaging step with knowledge distillation, and Wang et al. [74], Li et al. [46], Tan
et al. [68] attempt to align the internal representations of the client models. However, averaging is
unlikely to be the only culprit since FedAvg does succeed under low heterogeneity, and averaging
nonconvex models can lead to improved performance [33, 77].

Neural Tangent Kernels (NTK) and neural network linearization. NTK was first proposed to
analyze the limiting behavior of infinitely wide networks [34, 44]. While NTK with MSE may be a
bad approximation of real-world finite networks in general [22], it approximates the fine-tuning of a
pre-trained network well [57], especially with some minor modifications [2]. That is, NTK cannot
capture feature learning but does capture how a model utilizes learnt features better than last/mid
layer activations.

3 The Effect of Nonconvexity

In this section, we investigate the poor performance of FedAvg [53] and SCAFFOLD [39] empirically
in the setting of deep neural networks, focusing on image classification with a ResNet-18. To
construct our federated learning setup, we split the CIFAR-10 dataset in a highly heterogeneous
manner among ten clients. We either assign each client two classes (denoted by #C=2) or distribute
samples according to a Dirichlet distribution with α = 0.1 (denoted by α=0.1). For more details, see
Section 5.1.

Insufficiency of gradient correction methods. Current theoretical work [e.g., 39, 61, 1, 73]
attributes the slowdown from data heterogeneity to the individual clients having varying local optima.
If no single model is simultaneously optimal for all clients, then the updates of different clients
can compete with and distort each other, leading to slow convergence. This tension is captured
by the variance of the updates across the clients [client gradient heterogeneity, see 72]. Gradient
correction methods such as SCAFFOLD [39] and FedDyn [1] explicitly correct for this and are
provably unaffected by gradient heterogeneity for both convex and nonconvex losses.

3

Table 1: Feature learning by FedAvg. We report the test accuracy of a ResNet-18 after (centralized)
retraining of the last ℓ layers on CIFAR10. The earlier (7 − ℓ) layers are frozen to either random
initialization or to the weights of a FedAvg-trained model. The difference measures utility of the
(7− ℓ) layers learnt by FedAvg. The baseline FedAvg model without additional training gets 56.9%
accuracy. We see that all layers of the FedAvg model contain useful information.

Layers retrained Accuracy (%) Accuracy (%) Improvement (%)
Random init FedAvg init (FedAvg - Random)

1/7 last layer 35.37 77.93 42.56

2/7 last layers 67.33 87.04 19.71

3/7 last layers 80.18 89.28 9.10

4/7 last layers 88.03 90.57 2.54

5/7 last layers 91.34 91.61 0.27

6/7 last layers 91.78 91.91 0.13

These theoretical predictions are aligned with the results of Figure 1(a), where the loss landscape
is convex: SCAFFOLD is relatively unaffected by the level of heterogeneity and consistently
outperforms FedAvg. In particular, performance is largely dictated by the algorithm and not the data
distributions. This shows that client gradient heterogeneity captures the difficulty of the problem well.
On the other hand, when training a ResNet-18 model with nonconvex loss landscape, Figure 1(b)
shows that both FedAvg and SCAFFOLD suffer from data heterogeneity. This is despite the theory
of gradient correction applying to both convex and nonconvex losses. Further, the train and test
accuracies in Figure 1(b) match quite closely, suggesting that the failure lies in optimization (not
fitting the training data) rather than generalization. Thus, while the current theory makes no qualitative
distinctions between convex and nonconvex convergence, the practical behavior of algorithms in
these settings is very different. Such differences between theoretical predictions and practical reality
suggests that black-box notions such as gradient heterogeneity are insufficient for capturing the
difficulty of training deep models.

Ease of feature learning. We now dive into how a ResNet-18 trained with FedAvg (56.9% accuracy)
differs from the centralized baseline (91.9% accuracy). We first apply linear probing to the FedAvg
model (i.e., retraining with all but the output layer frozen). Note that this is equivalent to (convex)
logistic regression over the last-layer activations. This simple procedure produces a striking jump
from 56.9% to 77.9% accuracy. Thus, of the 35% gap in accuracy between the FedAvg and centralized
models, 21% may be attributed to a failure to optimize the linear output layer. We next extend this
experiment towards probing the information content of other layers.

Given a FedAvg-trained model, we can use centralized training to retrain only the last ℓ layers while
keeping the rest of the (7− ℓ) layers (or ResNet blocks) frozen. We can also perform this procedure
starting from a randomly initialized model. The performance difference between these two models
can be attributed to the information content of the frozen (7− ℓ) layers of the FedAvg model. Table 1
summarizes the results of this experiment. The large difference in accuracy (up to 42.6%) indicates
the initial layers of the FedAvg model have learned useful features. There continues to be a gap
between the FedAvg features and random features in the earlier layers as well,1 meaning that all
layers of the FedAvg model learn useful features. We conjecture this is because from the perspective
of earlier layers which perform simple edge detection, the tasks are independent of labels and the
clients are i.i.d. However, the higher layers are more specialized and the effect of the heterogeneity is
stronger.

4 Method

Based on the observations in Section 3, we propose train-convexify-train (TCT) as a method for
overcoming data heterogeneity when training deep models in a federated setting. Our high-level

1The significant decrease in the gap as we go down the layers may be because of the skip connections in
the lower ResNet blocks which allow the random frozen layers to be sidestepped. This underestimates the true
utility and information content in the earlier FedAvg layers.

4

intuition is that we want to leverage both the features learned from applying FedAvg to neural
networks and the effectiveness of convex federated optimization. More specifically, we perform
several rounds of “bootstrap” FedAvg to learn features before solving a convexified version of the
original optimization problem.

4.1 Computing the Empirical Neural Tangent Kernel

To sidestep the challenges presented by nonconvexity, we describe how we approximate a neural
network by its “linearization.” Given a neural network f(· ; θ0) with weights θ0 ∈ RP mapping
inputs x ∈ RD to RC , we replace it by its empirical neural tangent kernel (eNTK) approximation at
θ0 given by

f(x; θ) ≈ f(x; θ0) + (θ − θ0)
⊤ ∂

∂θ
f(x; θ0),

at each x ∈ RD. Under this approximation, f(x; θ) is a linear function of the “feature vector”
(f(x; θ0),

∂
∂θf(x; θ0)) and the original nonconvex optimization problem becomes (convex) linear

regression with respect to these features.2 Leveraging NTK for solving federated optimization
problems has also been studied in previous work [29, 82].

To reduce the computational burden of working with the eNTK approximation, we make two further
approximations: First, we randomly reinitialize the last layer of θ0 and only consider ∂

∂θf(x; θ0)
with respect to a single output logit. Over the randomness of this reinitialization, E[f(x; θ0)] =
0. Moreover, given the random reinitialization, all the output logits of f(x; θ0) are symmetric.
These observations mean each data point x can be represented by a P -dimensional feature vector
∂
∂θf1(x; θ0), where f1(· ; θ0) refers to the first output logit. Then, we apply a dimensionality reduction
by subsampling p random coordinates from this P -dimensional featurization.3 In our setting, this
sub-sampling has the added benefit of reducing the number of bits communicated per round.

In summary, we transform our original (nonconvex) optimization problem over a neural network
initialized at θ0 into a convex optimization problem in three steps: (i) reinitialize the last layer of
θ0; (ii) for each data point x, compute the gradient ϕeNTK(x; θ0) :=

∂
∂θf1(x; θ0); (iii) subsample the

coordinates of ϕeNTK(x; θ0) for each x to obtain a reduced-dimensionality eNTK representation. Let
S : RP → Rp denote this subsampling operation. Finally, we solve the resulting linear regression
problem over these eNTK representations.4

4.2 Convexifying Federated Learning via eNTK Representations

The eNTK approximation lets us convexify the neural net optimization problem: following Section 4.1,
we may extract (from a model trained with FedAvg) eNTK representations of inputs from each client.
It remains to fit an overparameterized linear model using these eNTK features in a federated manner.
For ease of presentation, we denote the subsampled eNTK representation of input x by z ∈ Rp, where
p is the eNTK feature dimension after subsampling. We use zki to represent the eNTK feature of the
i-th sample from the k-th client. Then, for K the number of clients, Y k

i the one-hot encoded labels,
nk the number of data points of the k-th client, n :=

∑
k∈[K] nk the number of data points across all

clients, and pk := nk/n, we can approximate the nonconvex neural net optimization problem by the
convex linear regression problem

min
W

L(W) :=

K∑
k=1

pk · Lk(W), where Lk(W) :=
1

nk

nk∑
i=1

∥W⊤zki − Y k
i ∥22. (1)

To obtain the eNTK representation z of an input x, we take θ0 in Section 4.1 to be the weights of
a model trained with FedAvg. As we will show in Section 5, the convex reformulation in Eq. (1)
significantly reduces the number of communication rounds needed to find an optimal solution.

2For classification problems, we one-hot encoded labels and fit a linear model using squared loss.
3That such representations empirically have low effective dimension due to fast eigenvalue decay [see, e.g.,

75] means that such a random projection approximately preserves the geometry of the data points [5, 83]. For all
of our experiments, we set p = 100, 000.

4Given a fitted linear model with weights W ∈ Rp×C , the prediction at x is argmaxj [W
⊤S(ϕeNTK(x))]j .

5

4.3 Train-Convexify-Train (TCT)

We now present our algorithm train-convexify-train (TCT), with convexification done via the neural
tangent kernel, for federated optimization.

TCT — train-convexify-train with eNTK representations
• Stage 1: Extract eNTK features from a FedAvg-trained model. FedAvg is first

used to train the model for T1 communication rounds. Let θT1
denote the model

weights after these T1 rounds. Then, each client locally computes subsampled eNTK
features, i.e., zki = S(ϕeNTK(x

k
i ; θT1

)) for k ∈ [K] and i ∈ [nk].
• Stage 2: Decentralized linear regression with gradient correction. Given samples
{(zki , Y k

i)}nk
i=1 on each client k, first normalize the eNTK inputs of all clients with a

single communication round.a Then, solve the linear regression problem defined in
Eq. (1) by SCAFFOLD with local learning rate η and local steps M .b

aFor every feature in the eNTK representation, subtract the mean and scale to unit variance.
bThe detailed description of SCAFFOLD for solving linear regression problems can be found in

Algorithm 1, Appendix A. It has the same communication and computation cost as FedAvg.

To motivate TCT, recall that in Section 3 we found that FedAvg learns “useful” features despite its
poor performance, especially in the earlier layers. By taking an eNTK approximation, TCT optimizes
a convex approximation while using information from all layers of the model. Empirically, we find
that these extracted eNTK features significantly reduce the number of communication rounds needed
to learn a performant model, even with data heterogeneity.

5 Experiments

We now study the performance of TCT for the decentralized training of deep neural networks in the
presence of data heterogeneity. We compare TCT to state-of-the-art federated learning algorithms
on three benchmark tasks in federated learning. For each task, we apply these algorithms on client
data distributions with varying degrees of data heterogeneity. We find that our proposed approach
significantly outperforms existing algorithms when clients have highly heterogeneous data across all
tasks. For additional experimental results and implementation details, see Appendix B. Our code is
available at https://github.com/yaodongyu/TCT.

5.1 Experimental Setup

Datasets and degrees of data heterogeneity. We assess the performance of federated learning
algorithms on the image classification tasks FMNIST [80], CIFAR10, and CIFAR100 [41]. FMNIST
and CIFAR10 each consist of 10 classes, while CIFAR100 includes images from 100 classes. There
are 60,000 training images in FMNIST, and 50,000 training images in CIFAR10/100.

To vary the degree of data heterogeneity, we follow the setup of Li et al. [45]. We consider two
types of non-i.i.d. data distribution: (i) Data heterogeneity sampled from a symmetric Dirichlet
distribution with parameter α [49, 71]. That is, we sample pc ∼ DirK(α) from a K-dimensional
symmetric Dirichlet distribution and assign a pkc -fraction of the class c samples to client k. (Smaller
α corresponds to more heterogeneity.) (ii) Clients get samples from a fixed subset of classes [53].
That is, each client is allocated a subset of classes; then, the samples of each class are split into
non-overlapping subsets and assigned to clients that were allocated this class. We use #C to denote
the number of classes allocated to each client. For example, #C=2 means each client has samples
from 2 classes. To allow for consistent comparisons, all of our experiments are run with 10 clients.

Models. For FMNIST, we use a convolutional neural network with ReLU activations consisting of
two convolutional layers with max pooling followed by two fully connected layers (SimpleCNN). For
CIFAR10 and CIFAR100, we mainly consider an 18-layer residual network [25] with 4 basic residual
blocks (ResNet-18). In Appendix B.2, we present experimental results for other architectures.

Algorithms and training schemes. We compare TCT to state-of-the-art federated learning algo-
rithms, focusing on the widely-used algorithms FedAvg [53], FedProx [48], and SCAFFOLD [39].

6

https://github.com/yaodongyu/TCT

Table 2: The top-1 accuracy (%) of our algorithm (TCT) vs. state-of-the-art federated learning algo-
rithms evaluated on FMNIST, CIFAR10, and CIFAR100. We vary the degree of data heterogeneity by
controlling the α parameter of the symmetric Dirichlet distribution DirK(α) and the #C parameter for
assigning how many labels each client owns. Higher accuracy is better. The highest top-1 accuracy in
each setting is highlighted in bold.

Datasets Architectures Methods Non-i.i.d. degree

FMNIST SimpleCNN

#C = 1 #C = 2 α = 0.1 α = 0.5

FedAvg 35.10% 85.18% 86.18% 90.09%
FedProx 50.04% 84.91% 86.31% 89.77%

SCAFFOLD 12.80% 42.80% 83.87% 89.40%
TCT 86.32% 90.33% 90.78% 91.13%

Centralized 91.40%

CIFAR-10 ResNet-18

#C = 1 #C = 2 α = 0.1 α = 0.5

FedAvg 11.27% 56.86% 82.60% 90.43%
FedProx 12.30% 56.87% 83.31% 90.68%

SCAFFOLD 10.00% 46.75% 80.46% 90.72%
TCT 49.92% 83.02% 89.21% 91.10%

Centralized 91.90%

CIFAR-100 ResNet-18

α = 0.001 α = 0.01 α = 0.1 α = 0.5

FedAvg 53.89% 54.22% 63.49% 67.65%
FedProx 52.87% 54.32% 63.47% 67.54%

SCAFFOLD 49.86% 54.07% 65.67% 71.07%
TCT 68.42% 69.07% 69.66% 69.68%

Centralized 73.61%

20 40 60 80 100
Communication Round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
Ac

cu
ra

cy

Train Acc
Test Acc

= 0.1
= 0.01
= 0.001

(a) FedAvg.

20 40 60 80 100
Communication Round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
Ac

cu
ra

cy

Train Acc
Test Acc

= 0.1
= 0.01
= 0.001

(b) SCAFFOLD.

20 40 60 80 100
Communication Round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
Ac

cu
ra

cy

Train Acc
Test Acc

= 0.1
= 0.01
= 0.001

(c) TCT.

Figure 2: Training/test accuracy vs. communication round for FedAvg (left), SCAFFOLD (middle),
and our algorithm TCT (right) on the CIFAR100 dataset with various degrees of non-iid-ness
(DirK(α) with α ∈ {0.1, 0.01, 0.001}). Dotted lines represent the training accuracy, and dashdot
lines with markers represent the test accuracy.

(For comparisons to additional algorithms, see Appendix B.1.) Each client uses SGD with weight
decay 10−5 and batch size 64 by default. For each baseline method, we run it for 200 total communi-
cation rounds using 5 local training epochs with local learning rate selected from {0.1, 0.01, 0.001}
by grid search. For TCT, we run 100 rounds of FedAvg in Stage 1 following the above and use 100
communication rounds in Stage 2 with M = 500 local steps and local learning rate η = 5 · 10−5.

5.2 Main Results

Table 2 displays the top-1 accuracy of all algorithm on the three tasks with varying degrees of data
heterogeneity. We evaluated each algorithms on each task under four degrees of data heterogeneity.
Smaller #C and α in Table 2 correspond to higher heterogeneity.

7

20 40 60 80 100
Communication Round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
Tr

ai
ni

ng
 A

cc
ur

ac
y

FedAvg
TCT-GD
TCT (M=100)
TCT (M=1000)

(a) FMNIST.

20 40 60 80 100
Communication Round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
Tr

ai
ni

ng
 A

cc
ur

ac
y

FedAvg
TCT-GD
TCT (M=100)
TCT (M=1000)

(b) CIFAR10.

20 40 60 80 100
Communication Round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
Tr

ai
ni

ng
 A

cc
ur

ac
y

FedAvg
TCT-GD
TCT (M=100)
TCT (M=1000)

(c) CIFAR100.

Figure 3: Training accuracy vs. communication round for full batch gradient descent (GD) and TCT
on FMNIST-[#C=2] (a), CIFAR10-[#C=2] (b), and CIFAR100-[α = 0.01] (c). Each dotted line with
square markers represents the training accuracy of GD with some learning rate. Dashed lines with
circle markers represent the training accuracy of TCT with different numbers of local steps. We
also include the training accuracy results of FedAvg with learning rate η = 0.1. We use TCT-GD to
denote the variant of TCT which replaces SCAFFOLD with GD in Stage 2.

We find that the existing federated algorithms all suffer when data heterogeneity is high across all
three tasks. For example, the top-1 accuracy of FedAvg on CIFAR-10 is 56.86% when #C=2, which
is much worse than the 90.43% achieved in a more homogeneous setting (e.g. α = 0.5). In contrast,
TCT achieves consistently strong performance, even in the face of high data heterogeneity. More
specifically, TCT achieves the best top-1 accuracy performance across all settings except CIFAR-100
with α = 0.5, where TCT does only slightly worse than SCAFFOLD.

In absolute terms, we find that TCT is not affected much by data heterogeneity, with performance
dropping by less than 1.5% on CIFAR100 as α goes from 0.5 to 0.001. Moreover, our algorithm
improves over existing methods by at least 15% in the challenging cases, including FMNIST with
#C=1, CIFAR-10 with #C=1 and #C=2, and CIFAR-100 with α = 0.01 and α = 0.001. And, perhaps
surprisingly, our algorithm still performs relatively well in the extreme non-i.i.d. setting where each
client sees only a single class.

Figure 2 compares the performances of FedAvg, SCAFFOLD, and TCT in more detail on CIFAR100
dataset with different degrees of data heterogeneity. We consider the Dirichlet distribution with
parameter α ∈ {0.1, 0.01, 0.001} and compare the training and test accuracy of these three algorithms.
As shown in Figures 2(a) and 2(b), both FedAvg and SCAFFOLD struggle when data heterogeneity
is high: for both algorithms, test accuracy drops significantly when α decreases. In contrast, we see
from Figure 2(c) that TCT maintains almost the same test accuracy for different α. Furthermore, the
same set of default parameters for our algorithm, including local learning rate and the number of
local steps, is relatively robust to different levels of data heterogeneity.

5.3 Communication Efficiency

To understand the effectiveness of the local steps in our algorithm, we compare SCAFFOLD (used in
TCT-Stage 2) to full batch gradient descent (GD) applied to the overparameterized linear regression
problem in Stage 2 of TCT on these datasets. For our algorithm, we set local steps M ∈ {102, 103}
and use the default local learning rate. For full batch GD, we vary the learning rate from 10−5 to
10−1 and visualize the ones that do not diverge.

The results are summarized in Figure 3. Each dotted line with square markers in Figure 3 corresponds
to full batch GD with some learning rate. Across all three datasets, our proposed algorithm consistently
outperforms full batch GD. Meanwhile, we find that more local steps for our algorithms lead to faster
convergence across all settings. In particular, our algorithm converges within 20 communication
rounds on CIFAR100 (as shown in Figure 3(c)). These results suggest that our proposed algorithm
can largely leverage the local computation and improve communication efficiency.

5.4 Ablations

Gradient correction. We investigate the role of gradient correction when solving overparameterized
linear regression with eNTK features in TCT. We compare SCAFFOLD (used in TCT) to FedAvg
on solving the regression problems and summarize the results in Figure 4. We use the default

8

20 40 60 80 100
Communication Round

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

To
p-

1
Tr

ai
ni

ng
 A

cc
ur

ac
y

TCT-FedAvg (M=10)
TCT-FedAvg (M=100)
TCT-FedAvg (M=1000)
TCT (M=10)
TCT (M=100)
TCT (M=1000)

(a) FMNIST.

20 40 60 80 100
Communication Round

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

To
p-

1
Tr

ai
ni

ng
 A

cc
ur

ac
y

TCT-FedAvg (M=10)
TCT-FedAvg (M=100)
TCT-FedAvg (M=1000)
TCT (M=10)
TCT (M=100)
TCT (M=1000)

(b) CIFAR10.

20 40 60 80 100
Communication Round

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

To
p-

1
Tr

ai
ni

ng
 A

cc
ur

ac
y

TCT-FedAvg (M=10)
TCT-FedAvg (M=100)
TCT-FedAvg (M=1000)
TCT (M=10)
TCT (M=100)
TCT (M=1000)

(c) CIFAR100.

Figure 4: Comparing TCT to TCT-FedAvg for solving the overparameterized linear regression
problem on (a) FMNIST-[#C=2], (b) CIFAR10-[#C=2], and (c) CIFAR100-[α = 0.01]. We use
TCT-FedAvg to denote a variant of TCT that uses FedAvg instead of SCAFFOLD to perform linear
regression in TCT-Stage 2. Dotted red lines with square markers represent the training accuracy
of TCT-FedAvg with different numbers of local steps. Dashed blue red lines with circle markers
represent the training accuracy of TCT with different numbers of local steps. A darker color means
more local steps.

20 40 60 80 100
Communication Round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
Ac

cu
ra

cy

FedAvg-Train Acc
FedAvg-Test Acc
TCT-Train Acc
TCT-Test Acc

Round T1 = 0
(random init)
Round T1 = 20
Round T1 = 40
Round T1 = 60
Round T1 = 80
Round T1 = 100

(a) Effect of FedAvg communication rounds in Stage 1.

20 40 60 80 100
Communication Round

0.2

0.4

0.6

0.8

1.0

To
p-

1
Tr

ai
ni

ng
 A

cc
ur

ac
y

FedAvg-Train Acc
TCT (woN)-Train Acc
TCT (wN)-Train Acc

(b) Effect of normalization.

Figure 5: (a). We evaluate TCT on using checkpoints save at different communication rounds T1 in
Stage 1. T1 = 0 corresponds to the randmon initialized model weights scenario (without FedAvg
training). Dash lines with square markers represent the training accuracy, and dotted lines with circle
makers represent the test accuracy. (b). We study the effect of pre-conditioning on TCT. TCT (wN)
corresponds to the setting where eNTK features are normalized, and TCT (woN) corresponds to the
without normalization step setting.

local learning rate and consider three different numbers of local steps for both algorithms, i.e.,
M ∈ {10, 100, 1000}. As shown in Figure 4, our approach largely outperforms FedAvg when the
number of local steps is large (M ≥ 100) across three datasets. We also find that the performance
of FedAvg can even degrade when the number of local steps increases. For example, FedAvg with
M = 1000 performs the worst across all three datasets. In contrast to FedAvg, SCAFFOLD converges
faster when the number of local steps increases. These observations highlight the importance of
gradient correction in our algorithm.

Model weights for computing eNTK features. To understand the impact of the model weights
trained in Stage 1 of TCT, we evaluate TCT run with different T1 parameters. We consider
T1 ∈ {0, 20, 40, 60, 80, 100}, where T1 = 0 corresponds to randomly initialized weights. From
Figure 5(a), we find that weights after FedAvg training are much more effective than weights at
random initialization. Specifically, without FedAvg training, the eNTK (at random initialization)
performs worse than standard FedAvg. In contrast, TCT significantly outperforms FedAvg by a large
margin (roughly 20% in test accuracy) when eNTK features are extracted from a FedAvg-trained
model. Also, we find that TCT is stable with respect to the choice of communication rounds T1 in
Stage 1. For example, models trained by TCT with T1 ≥ 60 achieve similar performance.

Effect of normalization. In Figure 5(b), we investigate the role of normalization on TCT by
comparing TCT run with normalized and unnormalized eNTK features. The same number of local

9

steps (M = 500) is applied for both settings. We tune the learning rate η for each setting and plot
the run that performs best (as measured in training accuracy). The results in Figure 5(b) suggest that
the normalization step in TCT significantly improves the communication efficiency by increasing
convergence speed. In particular, TCT with normalization converges to nearly 100% training accuracy
in approximately 40 communication rounds, which is much faster than TCT without normalization.

Pre-training vs. Bootstrapping. In Appendix B.4, we explore the effect of starting from a pre-
trained model instead of relying on bootstrapping to learn the features. We find that pre-training
further improves the performance of TCT and completely erases the gap between centralized and
federated learning.

Additionally, we conduct experiments on investigating the role of training loss function and subsam-
pling approximation in TCT-Stage 2. For TCT-Stage 2, we find that neither using the cross-entropy
loss as the training objective nor applying full eNTK representations significantly improves the
performance of TCT. On the other hand, applying subsampling approximation in TCT-Stage 2 can
largely improve the communication efficiency compared to the full eNTK representations approach.
See Appendix B.7 for detailed experimental results.

6 Conclusion

We have argued that nonconvexity poses a significant challenge for federated learning algorithms.
We found that a neural network trained in such a manner does learn useful features, but fails to use
them and thus has poor overall accuracy. To sidestep this issue, we proposed a train-convexify-train
procedure: first, train the neural network using FedAvg; then, optimize (using SCAFFOLD) a convex
approximation of the model obtained using its empirical neural tangent kernel. We showed that the
first stage extracts meaningful features, whereas the second stage learns to utilize these features to
obtain a highly performant model. The resulting algorithm is significantly faster and more stable to
hyper-parameters than previous federated learning methods. Finally, we also showed that given a
good pre-pretrained feature extractor, our convexify-train procedure fully closes the gap between
centralized and federated learning.

Our algorithm adds to the growing body of work using eNTK to linearize neural networks and obtain
tractable convex approximations. However, unlike most of these past works which only work with
pre-trained models, our bootstrapping allows training models from scratch. Finally, we stress that the
success of our approach underscores the need to revisit theoretical understanding of heterogeneous
federated learning. Nonconvexity seems to play an outsized role but its effect in FL has hitherto been
unexplored. In particular, black-box notions of difficulty such as gradient dissimilarity or distances
between client optima seem insufficient to capture practical performance. It is likely that further
progress in the field (e.g. federated pre-training of foundational models), will require tackling the
issue of nonconvexity head on.

Acknowledgments and Disclosure of Funding

We would like to thank the anonymous reviewers for their constructive suggestions and comments.
Yaodong Yu acknowledges support from the joint Simons Foundation-NSF DMS grant #2031899.
Alexander Wei acknowledges support from an NSF Graduate Research Fellowship under grant
DGE2146752. Sai Praneeth Karimireddy acknowledges support of an SNSF postdoc mobility
fellowship. Yi Ma acknowledges support from ONR grants N00014-20-1-2002 and N00014-22-1-
2102 and the joint Simons Foundation-NSF DMS grant #2031899. Michael Jordan acknowledges
support of the ONR Mathematical Data Science program.

References

[1] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and
Venkatesh Saligrama. Federated learning based on dynamic regularization. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=B7v4QMR6Z9w.

10

https://openreview.net/forum?id=B7v4QMR6Z9w
https://openreview.net/forum?id=B7v4QMR6Z9w

[2] Alessandro Achille, Aditya Golatkar, Avinash Ravichandran, Marzia Polito, and Stefano Soatto.
Lqf: Linear quadratic fine-tuning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15729–15739, 2021.

[3] Andrei Afonin and Sai Praneeth Karimireddy. Towards model agnostic federated learning using
knowledge distillation. arXiv preprint arXiv:2110.15210, 2021.

[4] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
Communication-efficient SGD via gradient quantization and encoding. Advances in Neural
Information Processing Systems, 30, 2017.

[5] Haim Avron, Kenneth L. Clarkson, and David P. Woodruff. Sharper bounds for regularized data
fitting. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, .

[6] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How
to backdoor federated learning. In International Conference on Artificial Intelligence and
Statistics, pages 2938–2948. PMLR, 2020.

[7] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learn-
ing with adversaries: Byzantine tolerant gradient descent. Advances in Neural Information
Processing Systems, 30, 2017.

[8] Kallista Bonawitz, Peter Kairouz, Brendan McMahan, and Daniel Ramage. Federated learning
and privacy: Building privacy-preserving systems for machine learning and data science on
decentralized data. Queue, 19(5):87–114, 2021.

[9] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for
privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1175–1191, 2017.

[10] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, Brendan McMahan, et al. Towards
federated learning at scale: System design. Proceedings of Machine Learning and Systems, 1:
374–388, 2019.

[11] Zachary Charles, Zachary Garrett, Zhouyuan Huo, Sergei Shmulyian, and Virginia Smith.
On large-cohort training for federated learning. Advances in Neural Information Processing
Systems, 34, 2021.

[12] El Mahdi Chayti and Sai Praneeth Karimireddy. Optimization with access to auxiliary informa-
tion. arXiv preprint arXiv:2206.00395, 2022.

[13] Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared
representations for personalized federated learning. In International Conference on Machine
Learning, pages 2089–2099. PMLR, 2021.

[14] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed deep networks.
Advances in Neural Information Processing Systems, 25, 2012.

[15] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives. Advances in Neural
Information Processing Systems, 27, 2014.

[16] Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized
federated learning. arXiv preprint arXiv:2003.13461, 2020.

[17] Jean Ogier du Terrail, Samy-Safwan Ayed, Edwige Cyffers, Felix Grimberg, Chaoyang He,
Regis Loeb, Paul Mangold, Tanguy Marchand, Othmane Marfoq, Erum Mushtaq, et al. Flamby:
Datasets and benchmarks for cross-silo federated learning in realistic settings. 2022.

11

[18] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A
meta-learning approach. arXiv preprint arXiv:2002.07948, 2020.

[19] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. Local model poisoning attacks
to {Byzantine-Robust} federated learning. In 29th USENIX Security Symposium (USENIX
Security 20), pages 1605–1622, 2020.

[20] Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M
Roy, and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss
landscape geometry and the time evolution of the neural tangent kernel. In Advances in Neural
Information Processing Systems, volume 33, pages 5850–5861, 2020.

[21] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. Mitigating sybils in federated learning
poisoning. arXiv preprint arXiv:1808.04866, 2018.

[22] Micah Goldblum, Jonas Geiping, Avi Schwarzschild, Michael Moeller, and Tom Goldstein.
Truth or backpropaganda? an empirical investigation of deep learning theory. arXiv preprint
arXiv:1910.00359, 2019.

[23] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training
Imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[24] Farzin Haddadpour, Mohammad Mahdi Kamani, Aryan Mokhtari, and Mehrdad Mahdavi.
Federated learning with compression: Unified analysis and sharp guarantees. In International
Conference on Artificial Intelligence and Statistics, pages 2350–2358. PMLR, 2021.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[26] Lie He, Sai Praneeth Karimireddy, and Martin Jaggi. Byzantine-robust decentralized learning
via self-centered clipping. arXiv preprint arXiv:2202.01545, 2022.

[27] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The non-iid data quagmire
of decentralized machine learning. In International Conference on Machine Learning, pages
4387–4398. PMLR, 2020.

[28] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical
data distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

[29] Baihe Huang, Xiaoxiao Li, Zhao Song, and Xin Yang. Fl-ntk: A neural tangent kernel-based
framework for federated learning analysis. In International Conference on Machine Learning,
pages 4423–4434. PMLR, 2021.

[30] Like Hui and Mikhail Belkin. Evaluation of neural architectures trained with square loss vs
cross-entropy in classification tasks. arXiv preprint arXiv:2006.07322, 2020.

[31] Forrest N Iandola, Matthew W Moskewicz, Khalid Ashraf, and Kurt Keutzer. Firecaffe: near-
linear acceleration of deep neural network training on compute clusters. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2592–2600, 2016.

[32] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. PMLR, 2015.

[33] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

[34] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in Neural Information Processing Systems, 31,
2018.

12

[35] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in Neural Information Processing Systems, 26, 2013.

[36] Charles I Jones and Christopher Tonetti. Nonrivalry and the economics of data. American
Economic Review, 110(9):2819–58, 2020.

[37] Peter Kairouz, H. Brendan McMahan, et al. Advances and open problems in federated learning.
Foundations and Trends® in Machine Learning, 14(1–2):1–210, 2021.

[38] Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi,
Sebastian U Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic
algorithms in federated learning. arXiv preprint arXiv:2008.03606, 2020.

[39] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pages 5132–5143. PMLR, 2020.

[40] Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Byzantine-robust learning on hetero-
geneous datasets via bucketing. In International Conference on Learning Representations,
2021.

[41] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[42] Viraj Kulkarni, Milind Kulkarni, and Aniruddha Pant. Survey of personalization techniques for
federated learning. In 2020 Fourth World Conference on Smart Trends in Systems, Security and
Sustainability (WorldS4), pages 794–797. IEEE, 2020.

[43] Bogdan Kulynych, David Madras, Smitha Milli, Inioluwa Deborah Raji, Angela Zhou, and
Richard Zemel. Participatory approaches to machine learning. International Conference on
Machine Learning Workshop, 2020.

[44] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in Neural Information Processing Systems, 32, 2019.

[45] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data
silos: An experimental study. arXiv preprint arXiv:2102.02079, 2021.

[46] Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10713–10722,
2021.

[47] Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. Fair resource allocation in
federated learning. arXiv preprint arXiv:1905.10497, 2019.

[48] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. Proceedings of Machine Learning
and Systems, 2:429–450, 2020.

[49] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust
model fusion in federated learning. Advances in Neural Information Processing Systems, 33:
2351–2363, 2020.

[50] Tao Lin, Sai Praneeth Karimireddy, Sebastian U Stich, and Martin Jaggi. Quasi-global mo-
mentum: Accelerating decentralized deep learning on heterogeneous data. arXiv preprint
arXiv:2102.04761, 2021.

[51] Philip M Long. Properties of the after kernel. arXiv preprint arXiv:2105.10585, 2021.

[52] Lingjuan Lyu, Han Yu, and Qiang Yang. Threats to federated learning: A survey. arXiv preprint
arXiv:2003.02133, 2020.

13

[53] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
Intelligence and Statistics, pages 1273–1282. PMLR, 2017.

[54] Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtárik. Proxskip:
Yes! local gradient steps provably lead to communication acceleration! finally! arXiv preprint
arXiv:2202.09357, 2022.

[55] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. In
International Conference on Machine Learning, pages 4615–4625. PMLR, 2019.

[56] Viraaji Mothukuri, Reza M Parizi, Seyedamin Pouriyeh, Yan Huang, Ali Dehghantanha, and
Gautam Srivastava. A survey on security and privacy of federated learning. Future Generation
Computer Systems, 115:619–640, 2021.

[57] Fangzhou Mu, Yingyu Liang, and Yin Li. Gradients as features for deep representation learning.
arXiv preprint arXiv:2004.05529, 2020.

[58] Kaan Ozkara, Navjot Singh, Deepesh Data, and Suhas Diggavi. Quped: Quantized personaliza-
tion via distillation with applications to federated learning. Advances in Neural Information
Processing Systems, 34, 2021.

[59] Alex Pentland, Alexander Lipton, and Thomas Hardjono. Building the New Economy: Data as
Capital. MIT Press, 2021.

[60] Swaroop Ramaswamy, Om Thakkar, Rajiv Mathews, Galen Andrew, H Brendan McMahan,
and Françoise Beaufays. Training production language models without memorizing user data.
arXiv preprint arXiv:2009.10031, 2020.

[61] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=LkFG3lB13U5.

[62] Yuxin Shi, Han Yu, and Cyril Leung. A survey of fairness-aware federated learning. arXiv
preprint arXiv:2111.01872, 2021.

[63] Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. Advances in Neural
Information Processing Systems, 33:22045–22055, 2020.

[64] Jinhyun So, Başak Güler, and A Salman Avestimehr. Byzantine-resilient secure federated
learning. IEEE Journal on Selected Areas in Communications, 39(7):2168–2181, 2020.

[65] Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates
for sgd with delayed gradients and compressed updates. Journal of Machine Learning Research,
21:1–36, 2020.

[66] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan. Can you really
backdoor federated learning? arXiv preprint arXiv:1911.07963, 2019.

[67] Ananda Theertha Suresh, X Yu Felix, Sanjiv Kumar, and H Brendan McMahan. Distributed
mean estimation with limited communication. In International Conference on Machine Learn-
ing, pages 3329–3337. PMLR, 2017.

[68] Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi
Zhang. Fedproto: Federated prototype learning over heterogeneous devices. arXiv preprint
arXiv:2105.00243, 2021.

[69] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh Agarwal,
Jy-yong Sohn, Kangwook Lee, and Dimitris Papailiopoulos. Attack of the tails: Yes, you really
can backdoor federated learning. Advances in Neural Information Processing Systems, 33:
16070–16084, 2020.

14

https://openreview.net/forum?id=LkFG3lB13U5
https://openreview.net/forum?id=LkFG3lB13U5

[70] Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. Slowmo: Im-
proving communication-efficient distributed sgd with slow momentum. arXiv preprint
arXiv:1910.00643, 2019.

[71] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in Neural Information
Processing Systems, 33:7611–7623, 2020.

[72] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-
Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field
guide to federated optimization. arXiv preprint arXiv:2107.06917, 2021.

[73] Jianyu Wang, Rudrajit Das, Gauri Joshi, Satyen Kale, Zheng Xu, and Tong Zhang. On the
unreasonable effectiveness of federated averaging with heterogeneous data. arXiv preprint
arXiv:2206.04723, 2022.

[74] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian Makaya, Ting He,
and Kevin Chan. Adaptive federated learning in resource constrained edge computing systems.
IEEE Journal on Selected Areas in Communications, 37(6):1205–1221, 2019.

[75] Alexander Wei, Wei Hu, and Jacob Steinhardt. More than a toy: Random matrix models predict
how real-world neural representations generalize. arXiv preprint arXiv:2203.06176, 2022.

[76] Blake E Woodworth, Kumar Kshitij Patel, and Nati Srebro. Minibatch vs local sgd for heteroge-
neous distributed learning. Advances in Neural Information Processing Systems, 33:6281–6292,
2020.

[77] Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-
Lopes, Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al.
Model soups: averaging weights of multiple fine-tuned models improves accuracy without
increasing inference time. arXiv preprint arXiv:2203.05482, 2022.

[78] Qiong Wu, Kaiwen He, and Xu Chen. Personalized federated learning for intelligent IoT
applications: A cloud-edge based framework. IEEE Open Journal of the Computer Society, 1:
35–44, 2020.

[79] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 3–19, 2018.

[80] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[81] Fuxun Yu, Weishan Zhang, Zhuwei Qin, Zirui Xu, Di Wang, Chenchen Liu, Zhi Tian, and Xiang
Chen. Fed2: Feature-aligned federated learning. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pages 2066–2074, 2021.

[82] Kai Yue, Richeng Jin, Ryan Pilgrim, Chau-Wai Wong, Dror Baron, and Huaiyu Dai. Neural
tangent kernel empowered federated learning. In International Conference on Machine Learning,
pages 25783–25803. PMLR, 2022.

[83] Luca Zancato, Alessandro Achille, Avinash Ravichandran, Rahul Bhotika, and Stefano Soatto.
Predicting training time without training. Advances in Neural Information Processing Systems,
33:6136–6146, 2020.

15

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Our work

furthers the goal of federated learning which aims to make ML more participatory.
We see this overall as a positive outcome. However, it can potentially also be used
to circumvent existing data portability and privacy regulations. E.g. hospitals with
previously confidential patient health records could circumvent privacy regulations by
using FL. They can sell their information to an insurance company, without directly
revealing any raw patient data. We believe preventing such bad outcomes requires
direct regulatory measures (e.g. prohibiting insurance companies from discriminating
among their consumers) are necessary rather than on relying on vague notions of
privacy. More generally, laws and mechanisms need to be designed to ensure that
companies don’t capture all the benefits arising from the access to data through FL,
and instead these benefits are passed on to all sections of society.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] See
supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5.1 and Appendix A.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

16

Appendix

A Additional Details About Our Algorithm

A.1 An Efficient Implementation of SCAFFOLD

Algorithm 1 Efficient implementation of SCAFFOLD
Input: losses {Lk}, k ∈ [K]. Number of local steps M , server model θ0, learning rate η.
Initialization: client corrections {h−1

k = 0}, local models{θ̂0i } = θ0, k ∈ [K]
for round t = 0, 1, . . . , T do

for clients k = 1, . . . ,K in parallel do
Receive θt from server. Update correction

htk = ht−1
k + 1

Mη (θ
t − θ̂tk). (2)

Initialize client local model θ̂t,0i = θt.
for m = 1, . . . ,M do

Update with a stochastic gradient sampled from local client data

θ̂t,m+1
k = θ̂t,mk − η

(
∇Lk(θ

t,m
i ; ξt,mk)− htk

)
. (3)

end for
Set θ̂t+1

k = θ̂t,M+1
k . Communicate θ̂t+1

k to server.
end for
Aggregate θt+1 = 1

K

∑K
k=1 θ̂

t+1
k .5

end for

We describe a more communication efficient implementation of SCAFFOLD which is equivalent
to Option II of SCAFFOLD from [39]. Our implementation only requires a single model to be
communicated between the client and server each round, making its communication complexity
exactly equivalent to that of FedAvg. To see the equivalence, we prove that our implementation
satisfies the following condition for any time step t ≥ 0:

ct+1
k :=

1

M

∑
m∈[M]

∇Lk(θ
t,m
k ; ξt,mk) , and

ct+1 :=
1

K

∑
k∈[K]

ctk , we maintain the invariant that

ht+1
k = ct+1

k − ct+1 .

To see this, note that the local client model after updating in round t is

θ̂t+1
k = θ̂t,M+1

k

= θt − η
∑

k∈[K]

∇Lk(θ
t,m
k ; ξt,mk)− htk

= θt −Mη(ct+1
k − htk) .

By averaging this over the clients, we can see that the server model is

θt+1 = θt −Mη
(
ct+1 − 1

K

∑
l∈[K]

htl

)
.

5Note that when different clients have different number of data points, the actual aggregation step is
θt+1 =

∑K
k=1(

nk/∑j nj)θ̂
t+1
k . However, we present the simplified version with equal weights for all clients to

ease the comparison with the pseudocode in Karimireddy et al. [39].

17

By induction, suppose that htk = ctk − ct. This implies that summing over the clients, it becomes
zero; i.e.,

∑
l∈[K] h

t
l = 0. Plugging this and the previous computations, we have

ht+1
k = htk + 1

Mη (θ
t+1 − θ̂t+1

k)

= htk + 1
Mη (−Mηct+1 +Mη(ct+1

k − htk))

= ct+1
k − ct+1 .

For the base step at t = 0, note that h0i = 0. This completes the proof by induction.

A.2 Additional Implementation Details

Algorithm 2 TCT: complete pseudo-code
Input: input dim D, output dim C, loss ℓ(·, ·) : RC×C → R, aggr. weights {w1, . . . , wK},
model f with parameters θ ∈ RP : f(x; θ) = ϕ ◦ ω (x) : RD → RC (e.g., ResNet18), composed
of a feature extractor ϕ : RD → RE and final linear layer ω : RE → RC .
Hyper-parameters: Local steps M (default 500), Stage-1 lr η1 (default 0.01), Stage-1 rounds T1
(default 100), Stage-2 lr η2 (default 5 · 10−5), Stage-2 rounds T2 (default 100).

Stage 1 (Bootstrapping):
Initialize server model θ0.
for round t = 0, 1, . . . , T1 do

for clients k = 1, . . . ,K in parallel do
Receive θt from server and initialize client local model θ̂t,0k = θt.
for m = 1, . . . ,M do

Update with a mini-batch gradient sampled from local client data (xt,mk , yt,mk)

θ̂t,m+1
k = θ̂t,mk − ηi

(
∇θℓ(f(x

t,m
k ; θt,mk), yt,mk)− htk

)
.

end for
Communicate θ̂t+1

k to server.
end for
Aggregate θt+1 = 1∑

k wk

∑K
k=1 wkθ̂

t+1
k .

end for

Stage 2 (Convexification):
Input: Bootstrapped parameters θB decomposed as θB = ϕB ◦ ωB .
Randomly re-initialize using fixed seed linear layer ωr and define θ0 := ϕB ◦ ωr.
[Comment:] Define basis vector e1 := (1, 0, . . . , 0). For input x, (e⊤1 f(x; θ

0)) is the first logit.
Optionally, compute a random sub-sampling mask S(ϕ) over feature params using fixed seed .
[Comment:] For a given input x, we will learn parameters (φ, b) for prediction as

ŷ = φ⊤ϕeNTK(x) + b, where ϕeNTK(x) := S
(
∇ϕ(e

⊤
1 f(x;ϕ

B ◦ ωr))
)
.

Compute normalized eNTK features ϕ̃eNTK(x) (mean 0 and variance 1) across clients.
Also normalize targets to mean 0 using ỹ := y − 1

C1.
Run SCAFFOLD (Algorithm 1) over params ψ := (φ, b) with learning rate η2, local steps M ,
initial server params: ψ0 = 0, and client losses {Lk} defined over the local data as

Lk(ψ) :=
∑

(xk,yk)

(
φ⊤ϕ̃eNTK(xk) + b− ỹk

)2

.

Additional details about linear regression in TCT. In our experiments, we normalize the one-hot
encoded label of each sample so that the normalized one-hot encoded label has mean 0. More
specifically, we subtract [1/C, . . . , 1/C]⊤ ∈ RC×1 from the one-hot encoding label vector, where
C is the number of classes. Further, Hui and Belkin [30] show that performance for large number

18

Algorithm 3 Compute eNTK Pseudocode, PyTorch-like

def compute_eNTK(model, X, num_params, subsample_size=100000, seed=123):
"""compute eNTK of input X with model"""
model: model for linearization
X: (n x d), n -- number of samples, d -- input dimension
subsample_size: parameter of subsampling operation
seed: random seed for subsampling operation
num_params: total number of parameters for model
model.eval()
params = list(model.parameters())
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
random_index = torch.randperm(num_params)[:subsample_size]
eNTKs = torch.zeros((X.size()[0], subsample_size))
for i in range(X.size()[0]):

compute eNTK for the i-th input
model.zero_grad()
model.forward(X[i:i+1])[0].backward()
eNTK = []
for param in params:

if param.requires_grad:
eNTK.append(param.grad.flatten())

eNTK = torch.cat(eNTK)
subsampling
eNTKs[i, :] = eNTK[random_index]

return eNTKs

of classes can be improved by increasing the penalty for mis-classification and scaling the target
from 1 to a larger value (e.g., 30). Achille et al. [2] show that using Leaky-ReLU, and using K-FAC
preconditioning further improves the performance. However, we do not explore such optimizations in
this work–these (and other optimization tricks for least-squares regression) can be easily incorporated
into our framework.

Local learning rate for TCT. From our experiments, we find that small local learning rates
(η ≤ 10−4) achieve good train/test accuracy performance for TCT with the normalization step.
When the normalization step in TCT is applied, larger local learning rates diverge. Meanwhile, local
learning rates from [10−6, 10−4] achieve similar performance for TCT (as shown in Table 8). On
the other hand, without the normalization step, TCT with large learning rate (η ∈ [0.01, 0.5]) does
not diverge. When running more communication rounds, TCT (without the normalization step) with
large learning rate achieves similar performance as the default TCT (with the normalization step).

Additional details about Stage 2 of TCT. To solve the linear regression problem in TCT-Stage 2,
we use the full batch gradient in Eq. (3) of Algorithm 1 in our implementation.

Additional details about Figure 5. We consider CIFAR10-[#C=2] in Figure 5(a) and 5(b).

Details about the total amount of compute. We use NVIDIA 2080 Ti, A4000, and A100 GPUs,
and our experiments required around 500 hours of GPU time.

19

B Additional Experimental Results

B.1 Additional Baselines

In comparison with FedAdam and FedDyn. We compare TCT to FedAdam [61], FedDyn [1],
and FedNova [71] in Table 3. We consider four settings in Table 3, including CIFAR10 (#C = 2),
CIFAR10 (α = 0.1), CIFAR100 (α = 0.001), and CIFAR100 (α = 0.01). For FedDyn, we perform
similar hyperparameter selection as FedAvg; i.e., select local learning rate from {0.1, 0.01, 0.001}.
For FedAdam, following recommendation by [61], we set the global learning rate as ηglobal = 0.1
and select local learning rate from {10−1, 10−1.5, 10−2, 10−2.5, 10−3}. Similar to results in Table 2,
we find that TCT significantly outperforms the existing methods in high data heterogeneity settings.

Table 3: The top-1 test accuracy (%) of our algorithm (TCT) vs. other federated learning algorithms
(FedAdam [61], FedDyn [1], and FedNova [71]) evaluated on CIFAR10 and CIFAR100. We vary the
degree of data heterogeneity by controlling the α parameter of the symmetric Dirichlet distribution
DirK(α) and the #C parameter for assigning how many labels each client owns. Higher accuracy is
better. The highest top-1 accuracy in each setting is highlighted in bold.

Methods Datasets

CIFAR10 (#C = 2) CIFAR10 (α = 0.1) CIFAR100 (α = 0.001) CIFAR100 (α = 0.01)

FedAdam [61] 33.52% 62.57% 30.85% 37.16%
FedDyn [1] 51.67% 81.03% 50.86% 53.79%

FedNova [71] 53.27% 84.26% 56.06% 58.47%
TCT 83.02% 89.21% 69.07% 69.66%

B.2 Results of Other Architectures

In Section 5, we use batch normalization [32] as the default normalization layer on CIFAR10 and
CIFAR100 datasets, and we denote the ResNet-18 with batch normalization layers by ResNet-18-BN.
In Table 4, we consider group normalization [79] on CIFAR10 and CIFAR100 and let ResNet-18-GN
denote the ResNet-18 with group normalization. We set num_groups=2 in group normalization
layers. As shown in Table 4, TCT achieves better performance than FedAvg with ResNet-18-GN on
both CIFAR10 and CIFAR100 datasets. Our experiments indicate that in extremely heterogeneous
settings, group norm is insufficient to fix FedAvg.

Table 4: The top-1 test accuracy (%) of our algorithm (TCT) vs. FedAvg(-GN) evaluated on CIFAR10
and CIFAR100. We vary the degree of data heterogeneity by controlling the α parameter of the
symmetric Dirichlet distribution DirK(α) and the #C parameter for assigning how many labels each
client owns. Higher accuracy is better. The highest top-1 accuracy in each setting is highlighted in
bold.

Datasets Architectures Methods Non-i.i.d. degree

CIFAR-10

#C = 1 #C = 2 α = 0.1 α = 0.5

ResNet-18-GN FedAvg 21.23% 56.80% 84.72% 89.03%
ResNet-18-BN FedAvg 11.27% 56.86% 82.60% 90.43%
ResNet-18-BN TCT 49.92% 83.02% 89.21% 91.10%

CIFAR-100

α = 0.001 α = 0.01 α = 0.1 α = 0.5

ResNet-18-GN FedAvg 47.60% 48.60% 53.29% 55.39%
ResNet-18-BN FedAvg 53.89% 54.22% 63.49% 67.65%
ResNet-18-BN TCT 68.42% 69.07% 69.66% 69.68%

20

B.3 Additional Experimental Results of the Effect of Stage 1 Communication Round for TCT

In Figure 6, we provide additional results of the effect of T1 for TCT on CIFAR10 and CIFAR100
datasets. We find that TCT outperforms existing algorithm across all T1 communication rounds,
where T1 ≥ 20. Extending the number of rounds for the baseline algorithms to 200 rounds does not
improve their performance. In contrast, running 60 rounds of bootstrapping using FedAvg followed
by 40 rounds of TCT gives near-optimal performance across all settings.

25 50 75 100 125 150 175 200
Communication Round

0.2

0.4

0.6

0.8

1.0

To
p-

1
Tr

ai
ni

ng
 A

cc
ur

ac
y

FedAvg
FedProx
SCAFFOLD

TCT (T1 = 20)
TCT (T1 = 40)
TCT (T1 = 60)
TCT (T1 = 80)
TCT (T1 = 100)

(a) CIFAR10-(#C=2), Train Accuracy.

25 50 75 100 125 150 175 200
Communication Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

To
p-

1
Te

st
 A

cc
ur

ac
y

FedAvg
FedProx
SCAFFOLD

TCT (T1 = 20)
TCT (T1 = 40)
TCT (T1 = 60)
TCT (T1 = 80)
TCT (T1 = 100)

(b) CIFAR10-(#C=2), Test Accuracy.

25 50 75 100 125 150 175 200
Communication Round

0.2

0.4

0.6

0.8

1.0

To
p-

1
Tr

ai
ni

ng
 A

cc
ur

ac
y

FedAvg
FedProx
SCAFFOLD

TCT (T1 = 20)
TCT (T1 = 40)
TCT (T1 = 60)
TCT (T1 = 80)
TCT (T1 = 100)

(c) CIFAR100-(α = 0.01), Train Accuracy.

25 50 75 100 125 150 175 200
Communication Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
p-

1
Te

st
 A

cc
ur

ac
y

FedAvg
FedProx
SCAFFOLD

TCT (T1 = 20)
TCT (T1 = 40)
TCT (T1 = 60)
TCT (T1 = 80)
TCT (T1 = 100)

(d) CIFAR100-(α = 0.01), Test Accuracy.

Figure 6: We evaluate TCT on using checkpoints saved at different communication rounds T1 in
Stage 1. We compare TCT to existing algorithm, including FedAvg, FedProx, and SCAFFOLD. For
all three existing algorithms, we visualize the results of local learning rate η = 0.1. The train/test
accuracy results in the first T1 communication rounds of TCT are the same as FedAvg. For example,
“TCT (T1 = 20)” corresponds to training the model with FedAvg for T1 = 20 rounds in Stage 1 and
then running 100 rounds of SCAFFOLD for solving the linear regression problem in Stage 2. Plots
(a) and (c) display training accuracy and (b) and (d) display test accuracy.

21

B.4 Additional Experimental Results of Pre-trained Models

In Table 5 and Figure 7, we provide additional results of the effect of pre-training for FedAvg and
TCT on CIFAR10 and CIFAR100 datasets. For both methods, we use the ResNet-18 pre-trained
on ImageNet-1k [25] as the initialization. We use FedAvg (last layer) to denote applying FedAvg
on learning the last linear layer of the model, i.e., layers except for the last linear layer are freezed
during training. Compared to results in Table 2, we find that using pre-trained model as initialization
largely improves the performance of both FedAvg and TCT. However, FedAvg still suffers from
data heterogeneity. In contrast, TCT achieves similar performance as the centralized setting on both
datasets across different degrees of data heterogeneity.

Table 5: The top-1 test accuracy (%) of our algorithm (TCT) vs. FedAvg evaluated on CIFAR10
and CIFAR100 with pre-trained model initialization. We vary the degree of data heterogeneity by
controlling the α parameter of the symmetric Dirichlet distribution DirK(α) and the #C parameter for
assigning how many labels each client owns. Higher accuracy is better. The highest top-1 accuracy in
each setting is highlighted in bold.

Methods Datasets

CIFAR10 (#C = 2) CIFAR10 (α = 0.1) CIFAR100 (α = 0.001) CIFAR100 (α = 0.01)

Centralized 95.13% 95.13% 80.65% 80.65%
FedAvg (last layer) 63.60% 75.16% 50.40% 51.97%

FedAvg 64.73% 84.25% 62.23% 63.81%
TCT 92.97% 93.70% 79.25% 79.55%

25 50 75 100 125 150 175 200
Communication Round

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
Ac

cu
ra

cy

FedAvg-Train Acc
FedAvg-Test Acc
TCT-Train Acc
TCT-Test Acc

FedAvg-Train Acc
FedAvg-Test Acc
TCT-Train Acc
TCT-Test Acc

(a) CIFAR10-(#C=2).

25 50 75 100 125 150 175 200
Communication Round

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
Ac

cu
ra

cy

FedAvg-Train Acc
FedAvg-Test Acc
TCT-Train Acc
TCT-Test Acc

FedAvg-Train Acc
FedAvg-Test Acc
TCT-Train Acc
TCT-Test Acc

(b) CIFAR10-(α = 0.1).

25 50 75 100 125 150 175 200
Communication Round

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

1
Ac

cu
ra

cy

FedAvg-Train Acc
FedAvg-Test Acc
TCT-Train Acc
TCT-Test Acc

FedAvg-Train Acc
FedAvg-Test Acc
TCT-Train Acc
TCT-Test Acc

(c) CIFAR100-(α = 0.01).

25 50 75 100 125 150 175 200
Communication Round

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

1
Ac

cu
ra

cy

FedAvg-Train Acc
FedAvg-Test Acc
TCT-Train Acc
TCT-Test Acc

FedAvg-Train Acc
FedAvg-Test Acc
TCT-Train Acc
TCT-Test Acc

(d) CIFAR100-(α = 0.001).

Figure 7: We evaluate FedAvg and TCT on CIFAR10 and CIFAR100 datasets with pre-trained
ResNet-18. Plots (a) and (b) display training/test accuracy on the CIFAR10 dataset and (c) and (d)
display training/test accuracy on the CIFAR100 dataset.

22

B.5 Additional Experimental Results of One-round Communication

In Table 6, we provide additional results of TCT on CIFAR10 and CIFAR100 datasets with one
communication round in TCT-Stage 2. Specifically, we set the number of local steps M = 500, local
learning rate η = 0.00005, and the total number of communication round T = 1 in TCT-Stage 2.
The results are summarized in Table 6. With only one communication round in TCT-Stage 2, TCT
still achieves better performance than FedAvg in three out of four settings in Table 6. On the other
hand, we recommend setting the communication round in TCT-Stage 2 larger than 10 for our method
TCT in order to achieve satisfying performance.

Table 6: The top-1 test accuracy (%) of our algorithm (TCT) on CIFAR10 and CIFAR100 with one
communication round in TCT-Stage 2.

Methods Datasets

CIFAR10 (#C = 2) CIFAR10 (α = 0.01) CIFAR100 (α = 0.001) CIFAR100 (α = 0.01)

FedAvg 56.86% 82.60% 53.89% 54.22%
TCT 83.02% 89.21% 68.42% 69.07%

TCT-OneRound 64.94% 82.62% 55.50% 57.51%

B.6 Additional Experimental Results of Large Number of Clients

We study the performance of our proposed algorithm as well as existing algorithms in the large
number of clients setting, where we consider the number of clients K = 50 on CIFAR100 with
α = 0.001. The results are summarized in Table 7. We find our proposed method (TCT: 45.32%)
significantly outperforms existing methods (best test accuracy: 16.70%).

Table 7: The top-1 accuracy (%) of our algorithm (TCT) vs. state-of-the-art federated learning
algorithms evaluated on CIFAR100 with a large number of clients. We set the degree of data
heterogeneity parameter α = 0.001 and set the total number of clients K = 50. Higher accuracy is
better. The highest top-1 accuracy is highlighted in bold.

Dataset Architecture # Clients FedAvg FedProx SCAFFOLD TCT

CIFAR100 (α = 0.001) ResNet-18 50 16.70% 16.24% 13.41% 45.32%

B.7 Additional Ablations

Effect of local learning rate for TCT and FedAdam. As mentioned in Reddi et al. [61], FedAdam
is more robust to the choice of local learning rate compared to FedAvg. We conduct additional
ablations on the effect of local learning rate for TCT as well as FedAdam [61] on the CIFAR10
dataset. For each algorithm, we first select a base local learning rate ηbase and then vary the local
learning rate η ∈ {ηbase ·100, ηbase ·10−0.5, ηbase ·10−1.0, ηbase ·10−1.5}. The results are summarized
in Table 8. Compared to FedAdam, we find that TCT is much less sensitive to the choice of local
learning rate.

Table 8: The top-1 test accuracy (%) of our algorithm (TCT) and FedAdam [61] evaluated on the
CIFAR10 dataset. We vary the local learning rate for both algorithms. Higher accuracy is better.

Datasets Methods Local learning rate

(ηbase = 10−4) η = ηbase · 100 η = ηbase · 10−0.5 η = ηbase · 10−1.0 η = ηbase · 10−1.5

CIFAR10-(#C=2) TCT 82.12% 83.60% 83.51% 82.37%
CIFAR10-(α = 0.1) TCT 88.68% 89.27% 89.23% 89.15%

(ηbase = 10−1.5) η = ηbase · 100 η = ηbase · 10−0.5 η = ηbase · 10−1.0 η = ηbase · 10−1.5

CIFAR10-(#C=2) FedAdam [61] 31.29% 33.52% 26.20% 14.96%
CIFAR10-(α = 0.1) FedAdam [61] 10.31% 37.26% 62.57% 49.18%

23

Effect of local learning rate and number of local steps for TCT. We conduct additional ablations
on the effect of both the local learning rate η and the number of local steps M for TCT on CIFAR10
and CIFAR100 datasets. The results in Table 9 and Table 10 indicate that TCT is robust to the choice
of the local learning rate η and the number of local steps M . We find that as the number of steps
increases, the learning rate should predictably decrease. The performance is relatively stable along
the diagonal, indicating that it is the product M · η which affects accuracy.

Table 9: The top-1 test accuracy (%) of our algorithm (TCT) evaluated on the CIFAR10 dataset. We
consider CIFAR10-(#C=2) and we set ηbase = 10−4. We vary both the local learning rate and the
number of local steps for TCT. Higher accuracy is better.

Number of local steps Local learning rate

η = ηbase · 100 η = ηbase · 10−0.5 η = ηbase · 10−1.0 η = ηbase · 10−1.5

M = 50 83.51% 82.37% 80.67% 78.14%
M = 100 83.59% 83.35% 81.73% 79.71%
M = 500 82.12% 83.60% 83.51% 82.37%
M = 1000 80.78% 82.92% 83.59% 83.35%

Table 10: The top-1 test accuracy (%) of our algorithm (TCT) evaluated on the CIFAR100 dataset.
We consider CIFAR100-(α = 0.01) and we set ηbase = 10−4. We vary both the local learning rate
and the number of local steps for TCT. Higher accuracy is better.

Number of local steps Local learning rate

η = ηbase · 100 η = ηbase · 10−0.5 η = ηbase · 10−1.0 η = ηbase · 10−1.5

M = 50 69.12% 67.31% 64.61% 61.34%
M = 100 69.54% 68.48% 66.43% 63.42%
M = 500 69.03% 69.60% 69.12% 67.31%
M = 1000 68.38% 69.42% 69.54% 68.48%

Effect of training loss for TCT-Stage 2. We compare the performance of quadratic loss (defined
in Eq. (1)) and cross-entropy loss (i.e., applying the cross-entropy loss for learning the linear model
in TCT-Stage 2, denoted by TCT-CE) for TCT in Table 11. As shown in Table 11, we find quadratic
loss indeed achieves better performance than cross-entropy loss for TCT.

Effect of subsampling for TCT-Stage 2. We study the performance of full eNTK representation in
TCT-Stage 2 (i.e., without random subsampling) to investigate the role of the subsampling approxima-
tion. We provide the results in Table 11. As shown in Table 11, applying full eNTK representations
slightly improves (improvements are smaller than 2% across all settings) the performance of TCT on
CIFAR10/100. On the other hand, using subsampled eNTK reduces the communication cost more
than 100x compared to the full eNTK and existing federated learning algorithms (#parameter of the
whole model: 11,169,345, #parameters of the subsample eNTK: 100,000).

Applying last layer representations in TCT-Stage 2. We study the performance of only applying
last layer representations in TCT-Stage 2, and the results are summarized in Table 12. From Table 12,
we find that applying eNTK representations with high dimension (i.e., p = 100, 000) outperforms
using the representations before the last layer only, especially in the settings with high degrees of
data heterogeneity. These results provide further evidence on applying eNTK features instead of the
representations before the last layer features.

24

Table 11: The top-1 accuracy (%) of our algorithm (TCT) vs. TCT-CE, TCT-full-eNTK on FMNIST,
CIFAR10, and CIFAR100. We vary the degree of data heterogeneity by controlling the α parameter
of the symmetric Dirichlet distribution DirK(α) and the #C parameter for assigning how many labels
each client owns. Higher accuracy is better. TCT-CE represents the variant of TCT where we apply
cross-entropy loss in Stage 2 of TCT. TCT-full-eNTK represents the variant of TCT where we use
the full eNTK representation (without subsampling) in Stage 1 of TCT.

Datasets Architectures Methods Non-i.i.d. degree

FMNIST SimpleCNN

#C = 1 #C = 2 α = 0.1 α = 0.5

TCT 86.32% 90.33% 90.78% 91.13%

TCT-CE 86.50% 89.23% 89.66% 90.15%
TCT-full-eNTK 86.32% 90.36% 90.90% 91.18%

CIFAR-10 ResNet-18

#C = 1 #C = 2 α = 0.1 α = 0.5

TCT 49.92% 83.02% 89.21% 91.10%

TCT-CE 45.13% 81.06% 88.03% 91.12%
TCT-full-eNTK 50.38% 84.92% 89.72% 91.69%

CIFAR-100 ResNet-18

α = 0.001 α = 0.01 α = 0.1 α = 0.5

TCT 68.42% 69.07% 69.66% 69.68%

TCT-CE 63.46% 64.08% 65.22% 66.07%
TCT-full-eNTK 69.81% 70.05% 70.12% 70.91%

Table 12: The top-1 accuracy (%) of our algorithm (TCT) vs. TCT-last-layer on FMNIST, CIFAR10,
and CIFAR100. We vary the degree of data heterogeneity by controlling the α parameter of the
symmetric Dirichlet distribution DirK(α) and the #C parameter for assigning how many labels each
client owns. Higher accuracy is better. The highest top-1 accuracy in each setting is highlighted in
bold. TCT-last-layer represents the variant of TCT where we apply the representations of last layer
and cross-entropy loss in Stage 2 of TCT.

Datasets Architectures Methods Non-i.i.d. degree

FMNIST SimpleCNN

#C = 1 #C = 2 α = 0.1 α = 0.5

TCT 86.32% 90.33% 90.78% 91.13%

TCT-last-layer 60.43% 83.96% 86.01% 89.33%

CIFAR-10 ResNet-18

#C = 1 #C = 2 α = 0.1 α = 0.5

TCT 49.92% 83.02% 89.21% 91.10%

TCT-last-layer 35.51% 74.55% 86.57% 90.76%

CIFAR-100 ResNet-18

α = 0.001 α = 0.01 α = 0.1 α = 0.5

TCT 68.42% 69.07% 69.66% 69.68%

TCT-last-layer 59.80% 60.04% 64.98% 66.22%

25

	1 Introduction
	2 Related Work
	3 The Effect of Nonconvexity
	4 Method
	4.1 Computing the Empirical Neural Tangent Kernel
	4.2 Convexifying Federated Learning via eNTK Representations
	4.3 Train-Convexify-Train (TCT)

	5 Experiments
	5.1 Experimental Setup
	5.2 Main Results
	5.3 Communication Efficiency
	5.4 Ablations

	6 Conclusion
	A Additional Details About Our Algorithm
	A.1 An Efficient Implementation of SCAFFOLD
	A.2 Additional Implementation Details

	B Additional Experimental Results
	B.1 Additional Baselines
	B.2 Results of Other Architectures
	B.3 Additional Experimental Results of the Effect of Stage 1 Communication Round for TCT
	B.4 Additional Experimental Results of Pre-trained Models
	B.5 Additional Experimental Results of One-round Communication
	B.6 Additional Experimental Results of Large Number of Clients
	B.7 Additional Ablations

