
Our appendix is organized as follows. Appendix A lays out all the preliminaries for the proof details of
the paper; Appendix B shows the analysis of the algorithm; Appendix C shows the initialization, and
Appendix D contains details about submodular function minimization as it pertains to our problem.

A Preliminaries

A.1 Facts from convex analysis

In this section, we present some definitions and properties from convex analysis that are useful in our
paper. These results are standard and may be found in, for example, [45, 8].

Definition A.1. Let f : Rn → R. Then the function f∗ : Rn → R defined as

f∗(y) = sup
x∈dom(f)

[⟨x,y⟩ − f(x)]

is called the Fenchel conjugate of the function f. An immediate consequence of the definition (and
by applying the appropriate convexity-preserving property) is that f∗ is convex, regardless of the
convexity of f. We use the superscript ∗ on functions to denote their conjugates.

Lemma A.2 (Biconjugacy). For a closed, convex function f, we have f = f∗∗.

Lemma A.3 ([45]). For a closed, convex differentiable function f, we have y = ∇f(x) ⇐⇒ x =
∇f∗(y).
Lemma A.4 ([45]). For a strictly convex, twice-differentiable function f , we have ∇2f∗(∇f(x)) =
(∇2f(x))−1.

Definition 2.1 (Polar of a Set). Given a set S ⊆ Rn, its polar is defined as

S◦ := {y ∈ Rn : ⟨y,x⟩ ≤ 1, ∀x ∈ S} .

Lemma 2.2 ([45]). Let S ⊆ Rn be a closed, compact, convex set, and let y be a point. Then
(conv {S,y})◦ ⊆ S◦ ∩H, whereH is the halfspace defined byH = {z ∈ Rn : ⟨z,y⟩ ≤ 1}.

A.2 Background on interior-point methods

Our work draws heavily upon geometric properties of self-concordant functions, which underpin
the rich theory of interior-point methods. We list below the formal results needed for our analysis,
and refer the reader to [38, 43] for a detailed exposition of this function class. We begin with the
definitions of self-concordant functions and self-concordant barriers:

Definition 2.4 (Self-concordance). We call F : Q 7→ R a self-concordant function on a convex set Q
if for any x ∈ Q and any h,

|D3F (x)[h,h,h]| ≤ 2(D2F (x)[h,h])3/2,

where DkF (x)[h1, . . . ,hk] is the k-th derivative of F at x along the directions h1, . . . ,hk. Addi-
tionally, if for any x ∈ Q, we have ∇F (x)⊤(∇2F (x))−1∇F (x) ≤ ν, then F is a ν-self-concordant
barrier.

Theorem A.5 (Theorem 2.3.3 from [43]). If f is a self-concordant barrier, then for all x and
y ∈ dom(f), we have ⟨∇f(x),y − x⟩ ≤ ν, where ν is the self-concordance of f .

Theorem A.6 (Theorem 2.3.4 from [43]). If f is a ν-self-concordant barrier such that x,y ∈ dom(f)
satisfy ⟨∇f(x),y − x⟩ ≥ 0, then y ∈ Bx(x, 4ν + 1).

We now state the following result from self-concordance calculus.

Theorem A.7 (Theorem 3.3.1 of [43]). If f is a (strongly nondegenerate) self-concordant function,
then so is its Fenchel conjugate f∗.

The following result gives a bound on the quadratic approximation of a function, with the distance
between two points measured in the local norm. The convergence of Newton’s method can be
essentially explained by this result.
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Theorem A.8 (Theorem 2.2.2 of [43]). If f is a self-concordant function, x ∈ dom(f), and y ∈
Bx(x, 1), then

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ 1

2
∥y − x∥2x +

∥y − x∥3x
3(1− ∥y − x∥x)

,

where ∥y − x∥2x := ⟨y − x,∇2f(x) · (y − x)⟩.

Finally, we need the following definitions of entropic barrier and universal barrier.

Definition 2.5 ([10, 14]). Given a convex body K ⊆ Rn and some fixed θ ∈ Rn, define the function
f(θ) = log

[∫
x∈K exp⟨x, θ⟩dx

]
. Then the Fenchel conjugate f∗ : int(K)→ R is a self-concordant

barrier termed the entropic barrier. The entropic barrier is n-self-concordant.

Definition 2.6 ([41, 32]). Given a convex body K ⊆ Rn, the universal barrier of K is defined as
ψ : int(K)→ R by

ψ(x) = log vol((K − x)◦).

The universal barrier is n-self-concordant.

A.3 Facts from convex geometry

Since our analysis is contingent on the change in the volume of convex bodies when points are added
to them or when they are intersected with halfspaces, we invoke the classical result by Grünbaum
several times. We therefore state its relevant variants next: Theorem 2.3 applies to log-concave
distributions, and Corollary A.10 is its specific case, since the indicator function of a convex set is a
log-concave function [8].

Theorem 2.3 ([20, 11]). Let f be a log-concave distribution on Rd with centroid cf . Let H ={
u ∈ Rd : ⟨u,v⟩ ≥ q

}
be a halfspace defined by a normal vector v ∈ Rd. Then,

∫
H f(z)dz ≥

1
e − t

+, where t = q−⟨cf ,v⟩√
Ey∼f ⟨v,y−cf ⟩2

is the distance of the centroid to the halfspace scaled by the

standard deviation along the normal vector v and t+ := max{0, t}.
Remark 9. A crucial special case of Theorem 2.3 is that cutting a convex set through its centroid
yields two parts, the smaller of which has volume at least 1/e times the original volume and the larger
of which is at most 1− 1/e times the original total volume.

Corollary A.10 ([20]). Let K be a convex set with centroid µ and covariance matrix Σ. Then, for
any point x satisfying ∥x− µ∥Σ−1 ≤ η and a halfspaceH such that x ∈ H, we have vol(K ∩H) ≥
vol(K) · (1/e− η).

Finally, we need the following facts.

Fact A.11 (Volumes of standard objects). The volume of a q-dimensional Euclidean ball is given
by vol(Bq(0, R̄)) = πq/2

Γ(1+q/2) R̄
q, and the volume of a q-dimensional cone = 1

q+1 · volume of base ·
height.

B Our analysis

To analyze Algorithm 1, we define the following potential function that captures the changes in Kin,i,
Kout,i, t, and x in each iteration:

Φ := t⟨c,x⟩+ log

[∫
K̂out

exp(−t⟨c,u⟩)du
]

︸ ︷︷ ︸
entropic terms

+
∑
i∈[n]

ψin,i(xi)︸ ︷︷ ︸
universal terms

, (B.1)

where log
[∫

K̂out
exp(−t⟨c,u⟩)du

]
is related to the entropic barrier on K̂out (see Appendix B.1) and

ψin,i is the universal barrier on Ki. In the subsequent sections, we study the changes in each of these
potential functions along with obtaining bounds on the initial and final potentials and combine them
to bound the algorithm’s separation oracle complexity.
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B.1 Potential change for the entropic terms

In this section, we study the changes in the entropic terms of Equation (B.1) upon updating the outer
convex set K̂out as well as t. These two changes are lumped together in this section because both
updates affect the term log

[∫
K̂out

exp(−t · ⟨c,x⟩) dx
]
, albeit in different ways: the update in K̂out

affects it via Grünbaum’s Theorem; the update in t affects it via the fact that, by duality with respect
to the entropic barrier (Definition 2.5), log

[∫
x∈K̂out

exp(⟨x, θ⟩)dx
]

is also self-concordant. We detail
these two potential changes below.

Lemma B.1 (Potential analysis for outer set). Let K̂out := {x : xi ∈ Kout,i ∩ {y : Ay = b}} , and

let Φ = log
[∫

K̂out
exp(−t⟨c,u⟩)du

]
+ t⟨c,x⟩+

∑
i∈[n] ψin,i(xi). LetHi be the halfspace generated

by the separation oracle Oi queried at x⋆out,i as shown in Line 17 of Algorithm 1. Then the new

potential Φ(new) = log
[∫

K̂out∩Hi
exp(−t⟨c,u⟩)du

]
+ t⟨c,x⟩ +

∑
i∈[n] ψin,i(xi) is bounded from

above as follows.
Φ(new) ≤ Φ+ log(1− 1/e).

Proof. The change in potential is given by

Φ(new) − Φ = log

[∫
K̂out∩Hi

exp(−t · ⟨c,x⟩) dx∫
K̂out

exp(−t · ⟨c,x⟩) dx

]
.

We now apply Theorem 2.3 to the right hand side, with the function f(x) = exp(−t · ⟨c,x⟩−A(tc)),
where A(θ) = log

[∫
K̂out

exp(−⟨θ,x⟩)dx
]
. Noting that each halfspace Hi passes directly through

x⋆out,i, where x⋆out is the centroid of K̂out with respect to f (by the definition of x⋆out in Equation (3.5)),
Remark 9 applies and gives the claimed volume change.

To capture the change in potential due to the update in t, we recall the alternative perspective to the
function log

[∫
K̂out

exp(−t⟨c,x⟩)dx
]

given by Definition 2.5 and derive properties of self-concordant
barriers.
Lemma B.2. Consider a ν-self-concordant barrier ψ : int(K)→ R over the interior of a convex set
K ⊆ Rd. Define

ξψt := min
x

[t · ⟨c,x⟩+ ψ(x)] and xt := argmin
x

[t · ⟨c,x⟩+ ψ(x)] . (B.2)

Then for 0 ≤ h ≤ 1√
ν

, we have

ξψt + th · ⟨xt, c⟩ ≥ ξψt(1+h) ≥ ξ
ψ
t + ht · ⟨c,xt⟩ − h2ν.

Proof. Note that here the first inequality is fairly generic and holds for any function ψ. By definition
of ξψt(1+h) and ξψt in Equation (B.2) and using the fact that the value on the right hand side of
Equation (B.3) is smaller than the expression evaluated at a fixed x = xt,we have

ξψt(1+h) = min
x

[t(1 + h) · ⟨x, c⟩+ ψ(x)] (B.3)

≤ t(1 + h) · ⟨xt, c⟩+ ψ(xt)

= ξψt + th · ⟨xt, c⟩.
We now prove the second inequality of the lemma. This one specifically uses the self-concordance of
ψ. Observe first, by definition,

ξψt = −ψ∗(−tc). (B.4)
Since ψ is a self-concordant barrier (and hence, a self-concordant function), Theorem A.7 implies that
ψ∗ is a self-concordant function as well. Then, by applying Theorem A.8 to ψ∗ under the assumption
∥ − thc∥−tc ≤ 1 yields

ψ∗(−tc− thc) ≤ ψ∗(−tc) + ⟨∇ψ∗(−tc),−thc⟩+
[
1

2
∥ − thc∥2−tc +

∥ − thc∥3−tc
3(1− ∥ − thc∥−tc)

]
.

(B.5)
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By applying the first-order optimality condition to the definition of xt in Equation (B.2), we see that
∇ψ(xt) = −tc. (B.6)

Next, evaluating a := ∥ − thc∥−tc to check the assumption ∥ − thc∥−tc ≤ 1, we get

a2 = h2⟨−tc,∇2ψ∗(−tc) · (−tc)⟩ = h2⟨∇ψ(xt),∇2ψ∗(∇ψ(xt)) · ∇ψ(xt)⟩
= h2⟨∇ψ(xt), (∇2ψ(xt))

−1 · ∇ψ(xt)⟩
≤ h2ν

where we used Equation (B.6) and Lemma A.4, in the first two equations and Definition 2.4 and the
complexity value of ψ in the last step. Our range of h proves that a ≤ 1, which is what we need for
Inequality (B.5) to hold. We continue our computation to get[

1

2
∥ − thc∥2−tc +

∥ − thc∥3−tc
3(1− ∥ − thc∥−tc)

]
≤ 1

2
h2ν +

1

3
h3ν3/2 ≤ 1

2
h2ν +

1

3
h2ν ≤ h2ν. (B.7)

Applying Lemma A.3 to Equation (B.6) gives
∇ψ∗(−tc) = xt. (B.8)

Plugging Equation (B.8) and Inequality (B.7) into the first and second-order terms, respectively, of
Inequality (B.5) gives

ψ∗(−tc− thc) ≤ ψ∗(−tc) + ⟨xt,−thc⟩+ h2ν.

Plugging in Equation (B.4) gives the desired inequality and completes the proof.

To finally compute the potential change due to t, we need the following result about the self-
concordance parameter of the entropic barrier. While [10] prove that this barrier on a set in Rd is
(1+ ϵd)d-self-concordant, the recent work of [14] remarkably improves this complexity to exactly d.
Theorem B.3 ([14]). The entropic barrier on any convex body K ⊆ Rd is a d-self-concordant
barrier.

We may now compute the potential change due to change in t in Line 9.
Lemma B.4. When t is updated to t·

[
1 + η

4m

]
in Line 9 of Algorithm 1, the potential Φ Equation (B.1)

increases to Φ(new) as follows:
Φ(new) ≤ Φ+ η + η2.

Proof. Recall that the barrier function we use for the set K̂out is the entropic barrier ψout. By Equa-
tion (B.2) and the definition of conjugate, we have

−ξψout
t = max

v
[⟨−tc,v⟩ − ψout(v)] = ψ∗

out(−tc).

Applying Definition 2.5, taking the conjugate on both sides of the preceding equation, and using
Lemma A.2 then gives

−ξψout
t = log

[∫
K̂out

exp(−t · ⟨c,u⟩) du
]
. (B.9)

From Equation (B.1), the change in potential by changing t to t · (1 + h) for some h > 0 may be
expressed as

Φ(new) − Φ = log

[∫
K̂out

exp⟨−t(1 + h)c,v⟩dv
]
− log

[∫
K̂out

exp⟨−tc,v⟩dv
]
+ ⟨th · c,x⟩.

By applying h = η
4m and ν = m (via a direct application of Theorem B.3), we have h = η

4m ≤
1√
m

= 1√
ν

, and so we may now apply Equation (B.9) and Lemma B.2 in the preceding equation to
obtain the following bound.

Φ(new) − Φ ≤ th⟨c,x⟩ − th⟨c,xt⟩+ h2ν.

From Equation (3.2) and Equation (B.2), we see that xt for the entropic barrier satisfies the equation
xt = x⋆out, and applying the guarantee ⟨c,x⟩ ≤ ⟨c,x⋆out⟩+ 4m

t to this inequality, we obtain

Φ(new) − Φ ≤ th · 4m
t

+ h2ν = η +
( η

4m

)2

ν ≤ η + η2.
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B.2 Potential change for the universal terms

In this section, we study the change in volume on growing the inner convex set Kin,i in Line 15. As
mentioned in Section 3, our barrier of choice on this set is the universal barrier introduced in [38]
(see also [21]). This barrier was constructed to demonstrate that any convex body in Rn admits an
O(n)-self-concordant barrier, and its complexity parameter was improved to exactly n in [32].

Conceptually, we choose the universal barrier for the inner set because the operation we perform
on the inner set (i.e., generating its convex hull with an external point x⋆out) is dual to the operation
of intersecting the outer set with the separating halfspace containing x⋆out (see Lemma 2.2), which
suggests the use of a barrier dual to the entropic barrier used on the outer set. As explained in [10],
for the special case of convex cones, the universal barrier is precisely one such barrier.

We now state a technical property of the universal barrier, which we use in the potential argument for
this section.
Lemma B.5 ([32, Lemma 1], [38, 21]). Given a convex set K ∈ Rd and x ∈ K, let ψK(x) :=
log vol(K − x)◦ be the universal barrier defined on K with respect to x. Let µ ∈ Rd be the center of
gravity and Σ ∈ Rd×d be the covariance matrix of the body (K− x)◦, where (K− x)◦ = {y ∈ Rn :
y⊤(z− x) ≤ 1,∀z ∈ K} is the polar set of K with respect to x. Then, we have that

∇ψK(x) = (d+ 1)µ, ∇2ψK(x) = (d+ 1)(d+ 2)Σ + (d+ 1)µµ⊤.

Lemma B.6. Given a convex set K ⊆ Rd and a point x ∈ K. Let ψK := log vol(K − x)◦ be the
universal barrier defined on K with respect to x. Let η ≤ 1/4 and y ∈ K be a point satisfying the
following condition

⟨∇ψK(x),y − x⟩+ η∥y − x∥x ≥ 4d, (B.10)
and construct the new set conv {K,y} . Then, the value of the universal barrier defined on this new
set with respect to x satisfies the following inequality.

ψK,new(x) := ψconv{K,y}(x) = log vol(conv(K,y)− x)◦ ≤ ψK(x) + log(1− 1/e+ η).

Proof. By Lemma 2.2, we have that

(conv(K,y)− x)
◦ ⊆ (K − x)◦ ∩H,

where H = {z ∈ Rn : ⟨z,y − x⟩ ≤ 1}. Our strategy to computing the deviation of ψK,new(x) :=
ψconv(K,y)(x) = log vol(conv(K,y) − x)◦ from ψK(x) is to compute the change in
vol(conv(K,y) − x)◦ ≤ vol [(K − x)◦ ∩H] from vol(K − x)◦, for which it is immediate that
one may apply an appropriate form of Grünbaum’s Theorem.

Let µ be the center of gravity of the body (K − x)◦. If µ /∈ H, then Corollary A.10 (with η = 0)
gives

vol [(K − x)◦ ∩H] ≤ vol(K − x)◦ · (1− 1/e),

and taking the logarithm on both sides gives the claimed bound. We now consider the case in which
µ ∈ H, and the variance matrix of the body (K−x)◦ is Σ. Define v = y−x, and consider the point

z = µ+
1− ⟨v, µ⟩
∥v∥2Σ

· Σv.

This point satisfies ⟨v, z⟩ = 1, which implies z ∈ H. Specifically, z lies on the separating hyperplane.
We show that z is sufficiently close to µ, so that even though µ ∈ H, the subset of (K − x)◦ cut
out by the halfspace H is not too large. By applying Lemma B.5 to compute ∥v∥2x = (d+ 1)(d+
2)∥v∥2Σ + (d+ 1)⟨v, µ⟩2, we may compute the following quantity.

∥z− µ∥Σ−1 =
1− ⟨v, µ⟩√

1
(d+1)(d+2)∥v∥2x −

1
d+2 · ⟨v, µ⟩2

=
√
(d+ 1)(d+ 2) · 1− ⟨v, µ⟩√

1
2∥v∥2x + 1

2∥v∥2x − (d+ 1)⟨v, µ⟩2
. (B.11)

Applying the expression for gradient from Lemma B.5 in Equation (B.10), we have

η∥v∥x ≥ 4d− (d+ 1)⟨v, µ⟩ ≥ 2d⟨v, µ⟩,
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where we used the fact that µ ∈ H implies ⟨v, µ⟩ ≤ 1. Since η ≤ 1/4, we have 1
2∥v∥

2
x ≥

(d+ 1)⟨v, µ⟩2. Plugging this in Equation (B.11) gives

∥z− µ∥A−1 ≤
√

(d+ 1)(d+ 2) · 1− ⟨v, µ⟩√
1
2∥v∥2x

≤ 4d
1− ⟨v, µ⟩
∥v∥x

≤ 4d · 1− ⟨v, µ⟩
4d(1− ⟨v, µ⟩)/η

≤ η,

which implies Corollary A.10 applies, giving us the desired volume reduction.

B.3 Potential change for the update of x

In this section, we quantify the amount of progress made in Line 22 of Algorithm 1 by computing the
change in the potential Φ as defined in Equation (B.1).

Lemma B.7. Consider the potential Φ Equation (B.1) and the update step δx = η
2 ·

x⋆out−x
∥x⋆out−x∥x,1

as in
Line 22. Assume the guarantees in Inequality (3.3) and Inequality (3.4). Then the potential Φ incurs
the following minimum decrease.

Φ(new) ≤ Φ− η2

4
.

Proof. Taking the gradient of Φ with respect to x and rearranging the terms gives

tc = ∇xΦ−
n∑
i=1

∇ψin,i(xi). (B.12)

By applying the expression for tc from the preceding equation, we get

Φ(new) − Φ = t⟨c,x+ δx⟩+
n∑
i=1

ψin,i(xi + δx,i)− t⟨c,x⟩ −
n∑
i=1

ψin,i(xi)

= ⟨∇xΦ, δx⟩+
n∑
i=1

[ψin,i(xi + δx,i)− ψin,i(xi)− ⟨∇ψin,i(xi), δx,i⟩]︸ ︷︷ ︸
qψin,i (xi)

. (B.13)

The term qψin,i(xi) measures the error due to first-order approximation of ψin,i around xi. Since
ψin,i(xi) is self-concordant functions and ∥δx,i∥xi ≤ ∥δx∥x,1 ≤ η ≤ 1/4, Theorem A.8 shows that

ψin,i(xi + δx,i)− ψin,i(xi)− ⟨∇ψin,i(xi), δx,i⟩ ≤ ∥δx,i∥2x,i. (B.14)
Plugging in Inequality (B.14) into Equation (B.13), we get

Φ(new) − Φ ≤ ⟨∇xΦ, δx⟩+ ∥δx∥2x,1. (B.15)

We now bound the two terms on the right hand side one at a time. Using the definition of δx (as given
in the statement of the lemma) and of∇xΦ from Equation (B.12) gives

⟨∇xΦ, δx⟩ =
η

2

1

∥x⋆out − x∥x,1
⟨∇xΦ,x

⋆
out − x⟩

=
η

2

1

∥x⋆out − x∥x,1

[
⟨tc,x⋆out − x⟩+

n∑
i=1

⟨∇ψin,i(xi),x
⋆
out,i − xi⟩

]

≤ η

2

1

∥x⋆out − x∥x,1

[
⟨tc,x⋆out − x⟩+

n∑
i=1

(
4ri − η∥x⋆out,i − xi∥xi

)]

=
η

2

1

∥x⋆out − x∥x,1
[⟨tc,x⋆out − x⟩+ 4m− η∥x⋆out − x∥x,1]

≤ η

2

1

∥x⋆out − x∥x,1
· (−η∥x⋆out − x∥x,1)

= −η2/2. (B.16)
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where the third step follows from Inequality (3.3), the fourth step follows from
∑n
i=1 di = m, and

the fifth step follows from Inequality (3.4). To bound the second term, we note from Line 22 that

∥δx∥2x,1 =

(
η

2
· ∥x

⋆
out − x∥x,1

∥x⋆out − x∥x,1

)2

= η2/4. (B.17)

Hence, we may plug in Inequality (B.16) and Equation (B.17) into Inequality (B.15) to get the desired
result.

B.4 Total oracle complexity

Before we bound the total oracle complexity of the algorithm, we first bound the total potential
change throughout the algorithm.

Lemma B.8. Consider the potential function Φ = t⟨c,x⟩ + log
[∫

K̂out
exp(−t⟨c,u⟩)du

]
+∑

i∈[n] ψin,i(xi) as defined in Equation (B.1) associated with Algorithm 1. Let Φinit be the potential at
t = tinit of this algorithm, and let Φend be the potential at t = tend. Suppose at t = tinit in Algorithm 1,
we have Bm(x, r̄) ⊆ Kin with r̄ = r/poly(m) and Kout ⊆ Bm(0, R̄) with R̄ = O(

√
nR). Then we

have, under the assumptions of Theorem B.10, that

Φinit − Φend ≤ O
(
m log

(
mR

ϵr

))
.

Proof. For this proof, we introduce the following notation: let volA(·) denote the volume restricted
to the subspace {x : Ax = b}. We also invoke Fact A.11. We now bound the change in the potential
term by term, starting with the entropic terms

t⟨c,x⟩+ log

[∫
K̂out

exp(−t⟨c,u⟩)du
]

(B.18)

at t = tinit and a lower bound on it at t = tend. We start with bounding Equation (B.18) evaluated at
t = tend = 8m

ϵ∥c∥2R
.

Let x̄ = argminx∈K̂out
⟨c,x⟩ and α = ⟨c, x̄⟩. By optimality of x̄, we know that x̄ ∈ ∂K̂out. Denote

BA(z, r̄) to be B(z, r̄) restricted to the subspace {x : Ax = b}. Note that K̂out ⊇ BA(z, r̄).
Consider the cone C and halfspaceH defined by

C = x̄+ {λy : λ > 0,y ∈ BA(z− x̄, r̄)} andH :=

{
x : ⟨c,x⟩ ≤ α+

1

tend

}
.

Then, by a similarity argument, we note that C ∩ H contains a cone with height 1
tend∥c∥2

and base
radius r̄

R̄tend∥c∥2
, which means

volA(C ∩ H) ≥ 1

m− rank(A)
· 1

tend∥c∥2
·
(

r̄

R̄tend∥c∥2

)m−rank(A)−1

· vol(Bm−rank(A)−1(0, 1)).
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Then, we have

log

[∫
K̂out

exp(−tend⟨c,u⟩)du
]
+ tend⟨c,x⟩ ≥ log

[∫
K̂out

exp(−tend⟨c,u⟩)du
]
+ tend min

x∈K̂out

⟨c,x⟩

≥ log

[∫
C∩H

exp(−tend⟨c,u⟩)du
]
+ tendα

≥ log

[∫
C∩H

exp(−tendα− 1)du

]
+ tendα

= log

[
1

e
· volA(C ∩ H) exp(−tendα)

]
+ tendα

= log

[
volA(C ∩ H) · 1

e

]
≥ −(m− rank(A)− 1) · log(R̄tend∥c∥2/r̄))
+ log(vol(Bm−rank(A)−1(0, 1)))

− log(m− rank(A))− log(tend∥c∥2)− 1.
(B.19)

Next, to bound Equation (B.18) at t = tinit, we may express these terms as follows.

log

[∫
K̂out

exp(−tinit · ⟨c,u⟩)du
]
+ tinit · ⟨c,x⟩ ≤ log

[
volA(K̂out)

]
+ tinit · max

u∈K̂out

⟨c,x− u⟩

≤ log(vol(Bm−rank(A)(0, R̄))) + tinit · 2R̄∥c∥2
≤ log(vol(Bm−rank(A)(0, 1)))

+ (m− rank(A)) log R̄+O(m logm),
(B.20)

where the second step is by K̂out ⊆ Kout ⊆ B∑
i∈[n] di

(0, R̄) (here, the second inclusion is by

assumption), and the third step is by vol(Bq(0, R̄)) = πq/2

Γ(1+q/2) R̄
q and our choice of tinit :=

m logm√
n∥c∥2R

.

We now compute the change in the entropic barrier
∑
i∈[n] ψin,i(xi), where

ψin,i(xi) = log vol(K◦
in,i(xi)).

Define Bd(0, r) to be the d-dimensional Euclidean ball centred at the origin and with radius r.
We note by the radius assumption of Theorem B.10 that Kin,i ⊆ Ki ⊆ Bdi(0, R̄) throughout the
algorithm. By the assumption made in this lemma’s statement, we have that at the start of Algorithm 1,
Kin,i ⊇ Bdi(x, r̄). These give us the following bounds.

ψend
in,i(xi) ≥ log(vol(B◦di(0, R̄)) and ψinit

in,i(xi) ≤ log(vol(B◦di(xi, r̄))).
Applying the fact that vol(Bd(0, r)) ∝ rd and summing over all i ∈ [n] gives∑

i∈[n]

[
ψinit

in,i(xi)− ψend
in,i(xi)

]
≤

∑
i∈[n]

log

(
vol(Bdi(xi, 1/r̄))
vol(Bdi(0, 1/R̄))

)
=

∑
i∈[n]

di log(R̄/r̄) = m log(R̄/r̄). (B.21)

Combining Inequality (B.20), Inequality (B.19), and Inequality (B.21), we have
Φinit − Φend ≤ m log(mR/r)

+
[
log(vol(Bm−rank(A)(0, 1))) + (m− rank(A)) log R̄+O(m logm)

]
+ (m− rank(A)− 1) · log(R̄tend∥c∥2/r̄)− log(vol(Bm−rank(A)−1(0, 1)))

+ log(m− rank(A)) + log(tend∥c∥2) + 1

≤ m log(mR/ϵr)

+O(m logm)

+O((m− rank(A)) log(mR/ϵr)) ≤ O(m log(mR/ϵr)).
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Lemma B.9. [Total oracle complexity] Suppose the inputs Kin and Kout to Algorithm 1 satisfy
Kout ⊆ Bm(0, R̄) with R̄ = O(

√
nR) and Kin ⊇ B(z, r̄) with r̄ = r/poly(m). Then, when

Algorithm 1 terminates at t ≥ tend, it outputs a solution x that satisfies

c⊤x ≤ min
x∈K,Ax=b

c⊤x+ ϵ · ∥c∥2R

using at most Nsep = O
(
m log

(
mR
ϵr

))
separation oracle calls.

Proof. Let Nt be the number of times t is updated; Nin the number of times Kin is updated; Nout the
number of times Kout is updated; Nx the number of times x is updated, and Ntotal the total number
of iterations of the while loop before termination of Algorithm 1. Then, combining Lemma B.1,
Lemma B.4, Lemma B.6, and Lemma B.7 gives

Φend ≤ Φinit +Nout · log(1− 1/e)+Nt · (η+ η2)+Nin · log(1− 1/e+ η)+Nx ·
(
−η

2

4

)
. (B.22)

The initialization step of Algorithm 1 chooses η = 1/100, tend = 8m
ϵ∥c∥2R

, and tinit =
m log(m)√
n∥c∥2R

, and
we always update t by a multiplicative factor of 1 + η

4m (see Line 9); therefore, we have

Nt = O(m log(mR/(ϵr)).

From Algorithm 1, the only times the separation oracle is invoked is when updating Kin or Kout
in Line 15 and Line 17, respectively. Therefore, the total separation oracle complexity is Nsep =
Nin +Nout. Therefore, we have

Nsep = Nin +Nout ≤ O(1) · [Φinit − Φend +Nt] = O(m log(mR/(ϵr))

This gives the claimed separation oracle complexity.

We now prove the guarantee on approximation. Let xoutput be the output of Algorithm 1 and x be
the point which entered Line 5 right before termination. Note that the termination of Algorithm 1
implies, by Line 5, that

c⊤xoutput ≤ c⊤x+
ν

tend
≤ c⊤x⋆out +

4(n+m)

tend
≤ min

x∈K,Ax=b
c⊤x+ ϵ · ∥c∥2 ·R

where the first step is by the second inequality in Lemma C.8 (using the universal barrier) and the last
step follows by our choice of tend and the definition of x⋆out and Kout ⊇ K.

Theorem B.10 (Main theorem of Problem 3.1). Given the convex program

minimize ⟨c,x⟩,
subject to xi ∈ Ki ⊆ Rdi+1∀i ∈ [n],

Ax = b.

Denote K = K1 ×K2 × . . .×Kn. Assuming we have

• outer radius R: For any xi ∈ Ki, we have ∥xi∥2 ≤ R, and

• inner radius r: There exists a z ∈ Rd such that Az = b and B(z, r) ⊂ K,

then, for any 0 < ϵ < 1
2 , we can find a point x ∈ K satisfying Ax = b and

⟨c,x⟩ ≤ min
xi∈Ki⊆Rdi+1∀i∈[n],

Ax=b

⟨c,x⟩+ ϵ · ∥c∥2 ·R,

in O(poly(m log(mR/ϵr))) time and using

O(m log(mR/(ϵr))

gradient oracle calls, where m =
∑n
i=1 di.
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Proof. We apply Theorem C.1 for each Ki separately to find a solution zi. Then z = (z1, . . . , zn) ∈
Rm+n satisfies Bm+n(z, r̄) ⊂ K with r̄ = r

6m3.5 . Then, we modified convex problem as in
Definition C.5 with s = 216m

2.5R
rϵ and obtaining the following:

minimize ⟨c̄, x̄⟩
subject to Āx̄ = b̄,

x̄ ∈ K̄ := K × Rm+n
≥0 × Rm+n

≥0

(B.23)

with

Ā = [A | A | −A], b̄ = b, c̄ = (c,
∥c∥2s√
m+ n

· 1, ∥c∥2s√
m+ n

· 1)⊤

We solve the linear system Ay = b−Az for y. Then, we construct the initial x by set x(1) = z,

x
(2)
i =

{
yi if yi ≥ 0,

0 otherwise.
and x

(3)
i =

{
−yi if yi < 0,

0 otherwise.

Then, we run Algorithm 1 on the Problem B.23, with initial x set above, m̄ = 3(m + n), n̄ =

n+ 2, ϵ̄ = ϵ
6
√
ns
,Kin = {x(1) ∈ B(z, r̄), (x(2),x(3)) ∈ R2n

≥0} and K̂out = Bm̄(0,
√
nR).

By our choice of tend, we have

t̄end =
8m̄

ϵ̄∥c̄∥2R̄
≤ 48m

ϵ∥c∥2R
.

First, we check the condition that s ≥ 48ν̄t̄end
√
m+ nR

2

r ∥c∥2, we note that

48ν̄t̄end
√
m+ n

R2

r
∥c∥2 ≤ 27648

m2.5R

ϵr
≤ 216

m2.5R

rϵ
= s.

Let x̄output = (x
(1)
output,x

(2)
output,x

(3)
output) be the output of Algorithm 1. Then, let xoutput =

x
(1)
output + x

(2)
output − x

(3)
output as defined in Theorem C.6. By Lemma B.9, we have

min
x∈Pin

c̄⊤x ≤ min
x∈P

c⊤x+ γ

where γ = ϵ̄ · ∥c̄∥2 · R̄.

Applying (3) of Theorem C.6, we have

c⊤xoutput ≤
ν̄ + 1

t̄end
+ γ + min

x∈K,Ax=b
c⊤x ≤ min

x∈K,Ax=b
c⊤x+ ϵ · ∥c∥2 ·R.

The last inequality follows by our choice of ϵ̄ and t̄end, we have γ ≤ ϵ
2∥c∥2R and ν̄+1

t̄end
≤ ϵ

2∥c∥2R.
Plug this ϵ̄ in Lemma B.9, it gives the claimed oracle complexity.

Theorem 1.2 (Main Result). Given Problem 1 and θ(0) such that ∥θ⋆−θ(0)∥2 ≤ R. Assuming all the
fi’s are L-Lipschitz, then there is an algorithm that in time poly(m log(1/ϵ)), using O(m log(m/ϵ))
gradient oracle calls, outputs a vector θ ∈ Rd such that

n∑
i=1

fi(θ) ≤
n∑
i=1

fi(θ
⋆) + ϵ · LR.

Proof. First, we reformulate (1.1) using a change of variables and the epigraph trick. Suppose
each fi depends on di coordinates of θ given by {i1, . . . , idi} ⊆ [d]. Then, symbolically define
xi = [x

(i)
i1
;x

(i)
i2
; . . . ;x

(i)
idi

] ∈ Rdi for each i ∈ [n]. Since each fi is convex and supported on di
variables, its epigraph is convex and di + 1 dimensional. So we may define the convex set

Kunbounded
i =

{
(xi, zi) ∈ Rdi+1 : fi(xi) ≤ Lzi

}
.
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Finally, we add linear constraints of the form x
(i)
k = x

(j)
k for all i, j, k where fi and fj both depend

on θk. We denote these by the matrix constraint Ax = b. Then, Problem 1 is equivalent to

minimize
∑n
i=1 Lzi

subject to Ax = b
(xi, zi) ∈ Kunbounded

i for each i ∈ [n].
(B.24)

Since we are given θ(0) satisfying ∥θ(0) − θ∗∥2 ≤ R, we define x
(0)
i = [θ

(0)
i1

; . . . , θ
(0)
idi

] and z(0)i =

fi(θ
(0))/L. Then, we can restrict the search space Kunbounded

i to

Ki = Kunbounded
i ∩ {(xi, zi) ∈ Rdi+1 : ∥xi − x

(0)
i ∥2 ≤ R and z(0)i − 2R ≤ zi ≤ z(0)i + 2R}.

It’s easy to check that Ki is contained in a ball of radius 5R centered at (x(0)
i , z

(0)
i ), and contains

a ball of radius R centered at (x(0)
i , z

(0)
i ). The subgradient oracle for fi translates to a separation

oracle for Ki. Then, we apply Theorem B.10 to (B.24) with Kunbounded
i replaced by Ki to get the error

guarantee and oracle complexity directly.

Finally, we have the matching lower bound.

Theorem 1.3. There exist functions f1, . . . , fn : Rd 7→ R for which a total of Ω(m log(1/ϵ))
gradient queries are required to solve Problem 1.

Proof. [40] shows that for any di, there exists fi : Rdi 7→ R for which Ω(di log(1/ϵ)) total gradient
queries are required. We define f1, . . . , fn to be such functions on disjoint coordinates of θ. It follows
that Ω(

∑n
i=1 di log(1/ϵ)) = Ω(m log(1/ϵ)) gradient queries are required in total.

C Initialization

C.1 Constructing an initial Kin,i

In this section, we discuss how to construct an initial set Kin,i to serve as an input to Algorithm 1. In
particular, we will prove the following theorem.

Theorem C.1. Suppose we are given separation oracle access to a convex set K that satisfies
B(z, r) ⊆ K ⊆ B(0, R) for some z ∈ Rd. Then, Algorithm 2, in O(d log(R/r)) separation oracle
calls to K, outputs a point x such that B

(
x, r

6d3.5

)
⊆ K.

Algorithm 2 Inner Ball Finding
1: Kout ← B(0, R)
2: while true do
3: Let v be the center of gravity of Kout
4: Sample u from B(v, r/(6d)) uniformly
5: if u ∈ K then
6: Let S = {v ± r

6d3 ei : i ∈ [d]}
7: if S ⊂ K then
8: return the inscribed ball of conv(S)
9: end if

10: end if
11: Let Kout ← Kout ∩H whereH = O(u)
12: end while

Before we prove the preceding theorem, we need the following facts about the self-concordant barrier
and convex sets.

Theorem C.2 ([40, Theorem 4.2.6]). Let ψ : int(K)→ R be a ν-self-concordant barrier with the
minimizer x⋆ψ . Then, for any x ∈ int(K) we have:
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∥x⋆ψ − x∥x⋆ψ ≤ ν + 2
√
ν.

On the other hand, for any x ∈ Rd such that ∥x− x⋆ψ∥x⋆ψ ≤ 1, we have x ∈ int(K).

Theorem C.3 ([26, Theorem 4.1]). Let K ⊆ Rd be a convex set with center of gravity µ and
covariance matrix Σ. Then,

{x : ∥x− µ∥Σ−1 ≤
√

(d+ 2)/d} ⊆ K ⊆ {x : ∥x− µ∥Σ−1 ≤
√
d(d+ 2)}.

Theorem C.4 ([9, Section 1.4.2]). Let K be a convex set with K ⊂ B(u, R) for some R. Let
K−δ = {x : B(x, δ) ⊂ K}. Then, we have

volK−δ ≥ volK − (1− (1− δ

R
)d) · volB(u, R)

Proof of Theorem C.1. We note that by the description of the Algorithm 2, the returned ball is the
inscribed ball of conv(S) and we have v ∈ K for each v ∈ S. Then, we must have conv(S) ⊆ K.
We note that conv(S) is a ℓ1 ball with ℓ1 radius r

6d3 , then the inscribed ball has ℓ2 radius r
6d3.5 .

First, we prove the sample complexity of the algorithm above. We use Kt to denote the Kout at
the t-th iteration. We first observe that throughout the algorithm, Kt is obtained by intersection of
halfspaces and B(0, R). This implies

B(z, r) ⊆ K ⊆ Kt ∀t.

Since Kt contains a ball of radius r, let At be the covariance matrix of Kt. By Theorem C.3, we have

At ⪰
r2

d(d+ 2)
I.

LetHt be the halfspace returned by the oracle at iteration t. We note that u is sampled uniform from
B(v, r/(6d)), so we have

∥v − u∥A−1 ≤
√
d(d+ 2)

r
· r
6d
≤ 1

3
.

Apply the inequality above to Corollary A.10, we have

vol(Kt) ≤ (1− 1/e+ 1/3)tvol(K0) ≤ (1− 1/30)tvol(B(0, R)).

Then, since B(z, r) ⊆ Kt for all the t, this implies the algorithm at most takes O(d log(R/r)) many
iterations.

Now, we consider the number of oracle calls within each iterations. There are three possible cases to
consider:

1. u ∈ K−δ with δ = r
6d3 (see the definition of K−δ in Theorem C.4). In this case, we have

S ⊂ K and this is the last iteration. We can pay this O(d) oracle calls for the last iteration.

2. u ∈ K\K−δ .

Since u is uniformly sampled from B(v, r/(6d)), Theorem C.4 shows that u ∈ K\K−δ
with probability at most

1− (1− δ

r/(6d)
)d ≤ 1

d
.

Hence, this case only happens with probability only at most 1/d. Since the cost of checking
S ⊂ K takes O(d) oracle calls. The expected calls for this case is only O(1).

3. u /∈ K. The cost is just 1 call.

Combining all the cases, the expected calls is O(1) per iteration.
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C.2 Initial point reduction

In this section, we will show how to obtain an initial feasible point for the algorithm.

Definition C.5. Given a convex program minAx=b,x∈K⊆Rd c
⊤x and some s > 0, we define c1 =

c, c2 = c3 = s∥c∥2√
d
· 1 and P = {x(1) ∈ K, (x(2),x(3)) ∈ R2d

≥0 : A(x(1) + x(2) − x(3)) = b}. We
then define the modified convex program by

min
(x(1),x(2),x(3))∈P

c⊤1 x
(1) + c⊤2 x

(2) + c⊤3 x
(3).

We denote (c1, c2, c3) by c.

Theorem C.6. Given a convex program minAx=b,x∈K⊆Rd c
⊤x with outer radiusR and some convex

set Kin with Kin ⊆ K and inner radius r. For any modified convex program as in Definition C.5 with
s ≥ 48νt

√
d · Rr · ∥c∥2R. For an arbitrary t ∈ R≥0, we define the function

ft(x
(1),x(2),x(3)) = t(c⊤1 x

(1) + c⊤2 x
(2) + c⊤3 x

(3)) + ψPin(x
(1),x(2),x(3))

where ψPin is some ν self-concordant barrier for the set

Pin = {x(1) ∈ Kin, (x
(2),x(3)) ∈ R2d

≥0 : A(x(1) + x(2) − x(3)) = b}.

Given xt := (x
(1)
t ,x

(2)
t ,x

(3)
t ) = argmin(x(1),x(2),x(3))∈Pin

ft(x
(1),x(2),x(3)), we denote xin =

x
(1)
t + x

(2)
t − x

(3)
t . Suppose minx∈Pin c̄

⊤x ≤ minx∈P c̄⊤x+ γ, we have the following

1. Axin = b,

2. xin ∈ Kin,

3. c⊤xin ≤ minx∈K,Ax=b c⊤x+ ν+1
t + γ.

First, we show that x(1)
t is not too close to the boundary. Before we proceed, we need the following

lemmas.

Lemma C.7 (Theorem 4.2.5 [40]). Let ψ be a ν-self-concordant barrier. Then, for any x ∈ dom(ψ)
and y ∈ dom(ψ) such that

⟨ψ′(x),y − x⟩ ≥ 0,

we have
∥y − x∥x ≤ ν + 2

√
ν.

Lemma C.8 (Theorem 2 of [57]). Given a convex set 5 Ω with a ν-self-concordant barrier ψΩ and
inner radius r. Let xt = argminx t · c⊤x+ ψΩ(x). Then, for any t > 0,

min

{
1

2t
,

r∥c∥2
4ν + 4

√
ν

}
≤ c⊤xt − c⊤x∞ ≤

ν

t
.

Consider the optimization problem restricted in the subspace {(x(1),x(2),x(3)) : A(x(1) + x(2) −
x(3)) = b}, as a direct corollary of theorem above we have the following:

Corollary C.9. Let x̄t be as the same as defined in Theorem C.6. For t ≥ 4ν
r∥c∥2

, we have

dist(x(1)
t ,x

(1)
∞ ) ≥ 1

2t∥c∥2
.

Now, we are ready to show dist(x(1)
t , ∂Kin) is not too small.

Theorem C.10. Let x̄t be the same as defined in Theorem C.6. For t ≥ 4ν
r∥c∥2

, we have

dist(x(1)
t , ∂Kin) ≥ r

12νt∥c∥2R
.

5The original theorem is stated only for polytopes, but their proof works for general convex sets.
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Proof. We consider the domain restricted in the subspace {(x(1),x(2),x(3)) : A(x(1)+x(2)−x(3)) =
b}. By the optimality of x̄t and Lemma C.7, we have

KH ⊆ {x : ∥x− x
(1)
t ∥x(1)

t
≤ ν + 2

√
ν},

whereH = {x : c⊤(x
(1)
t − x) ≥ 0} and KH := H ∩Kin.

Recall that Kin contains a ball of radius r, we denote it by B. We note that conv(x(1)
∞ , B) is a union

of a ball and a convex cone C with diameter at most 2R. We observe that the set conv(x(1)
∞ , B) ∩H

contains a ball of radius at least r
4t∥c∥2R

since dist(x(1)
∞ , ∂H) ≥ 1

2t∥c∥2
.

We note that
conv(x(1)

∞ , B) ∩H ⊆ Kin ⊆ {x : ∥x− x
(1)
t ∥x(1)

t
≤ ν + 2

√
ν},

this implies {x : ∥x− x
(1)
t ∥x(1)

t
≤ ν + 2

√
ν} contains a ball of radius at least r

4t∥c∥2R
, and then by

Theorem C.2, we have B(x
(1)
t , r

4(ν+2
√
ν)t∥c∥2R

) ⊆ Kin.

Lemma C.11. Let (x(1)
t ,x

(2)
t ,x

(3)
t ) ∈ R3d be the same as defined in Theorem C.6. If t > ν

∥c∥2R
,

then we have ∥x(2)
t − x

(3)
t ∥2 ≤ 4

√
d
s R.

Proof. Let x⋆in = argminx∈Kin,Ax=b c⊤x and x⋆in = argminx∈Pin c
⊤x. Since x⋆ ∈ B(0, R), we

have
c⊤x⋆in ≤ ∥c∥2R.

Note that (x⋆in,0,0) ∈ Pin, this means we have

c⊤x⋆in ≤ c⊤x⋆in ≤ ∥c∥2R.

Combining this with the second inequality in Lemma C.8, we get

c⊤xt ≤ c⊤x⋆in +
ν

t
≤ ∥c∥2R+

ν

t
≤ 2∥c∥2R.

We further note that
c⊤2 x

(2)
t ≤ c⊤xt ≤ 2∥c∥R.

This shows

max{∥x(2)
t ∥2, ∥x

(3)
t ∥2} ≤

2
√
d∥c∥2R
∥c∥2s

≤ 2
√
dR

s
.

Hence, we have

∥x(2)
t − x

(3)
t ∥2 ≤

4
√
d

s
R.

Now, we are ready to prove Theorem C.6.

Proof of Theorem C.6. We note that xin satisfies (1), directly follows by definition of P . By assump-
tion, we have s ≥ 48νt

√
d · Rr · ∥c∥2R; using this in Lemma C.11, we have

∥x(2)
t − x

(3)
t ∥2 ≤

r

12νt∥c∥2R
.

This means xin = x
(1)
t + x

(2)
t − x

(3)
t ∈ Kin since dist(x(1)

t , ∂Kin) ≥ r
12νt∥c∥2R

.

Now, we show c⊤xin is close to c⊤x⋆.

Let x⋆ = argminx∈K,Ax=b c⊤x and x⋆ = argminx∈P c⊤x. By Lemma C.8, we have

c⊤xt −
ν

t
≤ c⊤x⋆in ≤ c⊤x⋆ + γ ≤ c⊤x⋆ + γ.
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This implies
c⊤x

(1)
t ≤ c⊤xt ≤ c⊤x⋆ +

ν

t
+ γ.

We have

c⊤xin = c⊤(x
(1)
t + x

(2)
t − x

(3)
t ) ≤ c⊤x⋆ +

ν

t
+

4

s
∥c∥2R ≤ c⊤x⋆ +

ν + 1

t
+ γ.

D Decomposable submodular function minimization

D.1 Preliminaries

Throughout, V denotes the ground set of elements. A set function f : 2V → R is submodular if it
satisfies the following diminishing marginal differences property:
Definition D.1 (Submodularity). A function f : 2V → R is submodular if f(T ∪ {i}) − f(T ) ≤
f(S ∪ {i})− f(S), for any subsets S ⊆ T ⊆ V and i ∈ V \ T .

We may assume without loss of generality that f(∅) = 0 by replacing f(S) by f(S) − f(∅). We
assume that f is accessed by an evaluation oracle and use EO to denote the time to compute f(S) for
a subset S. Our algorithm for decomposable SFM is based on the Lovász extension [19], a standard
convex extension of a submodular function.
Definition D.2 (Lovász extension [19]). The Lovász extension f̂ : [0, 1]V → R of a submodular
function f is defined as

f̂(x) = Et∼[0,1][f({i ∈ V : xi ≥ t})],

where t ∼ [0, 1] is drawn uniformly at random from [0, 1].

The Lovász extension f̂ of a submodular function f has many desirable properties. In particular, f̂ is
a convex relaxation of f and it can be evaluated efficiently.
Theorem D.3 (Properties of Lovász extension [19]). Let f : 2V → R be a submodular function and
f̂ be its Lovász extension. Then,

(a) f̂ is convex and minx∈[0,1]V f̂(x) = minS⊆V f(S);

(b) f(S) = f̂(IS) for any subset S ⊆ V , where IS is the indicator vector for S;

(c) Suppose x ∈ [0, 1]V satisfies x1 ≥ · · · ≥ x|V |, then f̂(x) =
∑|V |
i=1(f([i])− f([i− 1]))xi.

Property (c) in Theorem D.3 allows us to implement a sub-gradient oracle for f̂ by evaluating f .
Theorem D.4 (Sub-gradient oracle implementation for Lovász extension, Theorem 61 of [33]). Let
f : 2V → R be a submodular function and f̂ be its Lovász extension. Then a sub-gradient for f̂ can
be implemented in time O(|V | · EO+ |V |2).

D.2 Decomposable submodular function minimization proofs

In this subsection, we prove the following more general version of Theorem 1.4.
Theorem D.5 (Decomposable SFM). Let F : V → [−1, 1] be given by F (S) =

∑n
i=1 Fi(S ∩ Vi),

where each Fi : 2Vi → R is a submodular function on Vi ⊆ V with |Vi| = di. Let m =∑n
i=1 di and dmax := maxi∈[n] di. Then we can find an ϵ-approximate minimizer of f using at most

O(dmaxm log(m/ϵ)) evaluation oracle calls.

Proof. Let f̂i be the Lovász extension of each fi, then f̂ =
∑n
i=1 f̂i is the Lovász extension of

f . Note that f̂ is 2-Lipschitz since the range of f is [−1, 1]. Also, the diameter of the range
[0, 1]Vi for each Lovász extension f̂i is at most

√
|Vi| ≤

√
dmax. Thus using Theorem 1.2, we

can find a vector x ∈ [0, 1]V such that f̂(x) ≤ minx∗∈[0,1]V f̂(x
∗) + ϵ in poly(m log(1/ϵ)) time

29



and O(m log(m
√
dmax/ϵ)) = O(m log(m/ϵ)) subgradients of the f̂i’s. By Theorem D.4, each

sub-gradient of f̂i can be computed by making at most di ≤ dmax queries to the evaluation oracle for
fi. Thus the total number of evaluation oracle calls we make in finding an ϵ-additive approximate
minimizer x ∈ [0, 1]V of f̂ is at most O(dmaxm log(m/ϵ)).

Next we turn the ϵ-additive approximate minimizer x of f̂ into an ϵ-additive approximate minimizer
S ⊆ V for f . Without loss of generality, assume that x1 ≥ · · · ≥ x|V |. Then by property (c) in
Theorem D.3, we have

f̂(x) =

|V |∑
i=1

(f([i])− f([i− 1]))xi = f(V ) · x|V | +

|V |−1∑
i=1

f([i]) · (xi − xi+1).

Since xi − xi+1 ≥ 0, the above implies that mini∈{1,...,|V |} f([i]) ≤ f̂(x). Thus we can find a
subset S ⊆ V among f([i]) for all i ∈ {1, · · · , |V |} such that f(S) ≤ f̂(x). Then by property (a) in
Theorem D.3, the set S is an ϵ-additive approximate minimizer of f . This proves the theorem.
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