
A Appendix

A.1 Pseudocode for our search algorithm

Our framework follows a standard search pipeline:

1. Candidate proposal: the search algorithm samples an optimizer from the search space.

2. Candidate evaluation: The optimizer is evaluated from scratch, by using it to optimize a
model and obtaining the performance of the model.

3. Search: The optimizer score is used to guide the search algorithm to propose new optimizers.

4. Loop: Repeat step 1 - 3 until a predefined search budget is reached.

5. Finally, the Top optimizers visited by the search algorithm will be returned.

This procedure is commonly used in other AutoML domains, such as Neural Architecture Search [47,
67] and Hyperparameter Optimization [23]. Algorithm 1 and 2 summarize the complete search
process.

Algorithm 1: MCT algorithm
1 Input: Candidate set A, constraints C, operator set O, maximum super-tree depth D, maximum

traversal level L, MC sample size M for each level, score threshold ⇢, proposal size K.
2 Main search:
3 for level in 1 to L do
4 current node vc = root node ; // root node hosts an empty update rule
5 score dict S = ; ; // scores of optimizers generated from stem nodes
6 number of samples m = 1

7 while m <= M do
8 u = randomly pick a child of vc, by inserting an operator o 2 O to vc under constraint C;
9 � = unroll(u, C,O, D);

10 if not descent_test(�) then
11 continue;
12 s� = evaluate(�) ; // the score for early stopped � are set to ⇢

13 if s� > ⇢ then
14 register (u, s�) in S;
15 register (�, s�) in A;
16 m += 1;

17 for each node u in S do
18 if u is a non-leaf node then
19 compute the average score of u;
20 else
21 set the score of u to 0;

22 vc = node with the best score as computed above ; // move on to the next level
23 return: TopK(A);

B Set of operators used for constructing the search space

Inspired by NOS-RL, we adopt the following set of mathematical operators in our experiments:

• Unary operators: �(·), exp(·), log(| · |),
p
| · |, clip0.003(·), drop0.1(·), sign(·)

• Binary operators: +, �, ⇥, /, pow(·, ·)

16

Algorithm 2: Pseudocode for the unrolling step
1 Input: Stem node v, constraint C, operator set O, maximum super-tree depth D

2 Unroll:
3 set current node vc = v

4 while True do
5 vc = randomly pick a child of vc, by inserting an operator o 2 O to vc under constraint C;
6 if �vc is a complete update rule then
7 break;
8 else if length(�vc) == D then
9 vc = v ; // restart unrolling

10 continue;

11 return: �vc

• Input Operators: g, g2, g3, m1, m2, m3, sign(g), sign(m1), Adam, RMSprop, 1, 2, ld,
cd, rd

Here, m1, m2, m3 denote the first, second and third order momentum respectively, and ld, cd, rd
denote linear decay, cosine decay, and restart decay [15]:

linear decay : 1�
t

T

cosine decay : 0.5 ⇤ (1 + cos(2⇡n
t

T
))

restart decay : 0.5 ⇤ (1 + cos(⇡
(tn)%T

T
))

where t and T are the current and maximum step. Following NOS-RL, we use n = 0.5 for cosine
decay and n = 20 for restart decay. We set the bound for clip operator to 0.003, and the dropout
ratio to 0.1 for drop operator. Note that one can always include more options of these values by
adding new operator variants to the space (e.g. drop0.3() with dropout ratio set to 0.3). For all input
operators, we use their default PyTorch implementations and hyper-parameters. The only exception
is the learning rates for Adam and RMSprop. We found that under the default learning rate, the norm
of Adam and RMSprop is sometimes quite small compared with other operands such as sign(g),
making them potentially less effective as a submodule of some optimizers. Therefore, we raise their
default learning rate by 3⇥ in our experiment. Note that we make one minor adjustment to the set for
the ConvNet task: g3, m3, Adam, and RMSprop are removed as they rarely show up on the tops
optimizers.

Our set of operators is a subset of the full operator set presented in Section 4.1 of the NOS-RL paper.
However, note that NOS-RL also uses much smaller subsets rather than the full set to conduct the
search. We refer the readers to "Further discussions on NOS-RL baseline" in Appendix D.3 for more
details.

Suggestions on constructing operator sets for future tasks Our provided set of operators and
heuristics are quite generic. Empirically, we found that the operator set is good enough for construct-
ing high-performant optimizers for all tasks used in this paper, including MNIST, CNN training,
BERT finetuning, GNN training, and adversarial attacks. And we use the same on-the-fly constraints,
train-free test, and score threshold for all experiments.

For future tasks, we recommend starting with the provided set and incorporating new operators when
necessary. For inspiration on what to add, the user might look into 1). what extra mathematical
operations are used in existing optimizers for this task 2). the nature of the task (e.g. some might
require max or sinusoid functions).

With an augmented operator set, other components in our algorithm can largely remain the same. 1).
our train-free test, score thresholding, and math equivalent detection are generic and independent
of the operator set 2). It could be beneficial to augment the on-the-fly constraints slightly when the

17

new operators are added. It is because the on-the-fly constraints are mainly used for eliminating
mathematical redundancies, and new redundancies might surface when new operators are included.
But this should be an extra gain. We encourage the users to follow our general guidelines in Section
2.4 for spotting these redundancies.

C Choice of hyperparamters for the search algorithm

We will elaborate more on our choice of hyperparameters for the search phase. Note that our search
hyperparameters are held fixed throughout all our experiments, across all the tasks.

Score threshold The purpose of score thresholding is mainly to reject apparently poor optimizers -
those that lead to near-random-guess accuracy or exploding loss. So we simply set it (20%) to be
slightly higher than random guessing accuracy and used it for all our experiments.

Number of samples in Monte Carlo estimation We set and fix the number of total samples in
Monte Carlo estimation to 32 - a multiple of 8 for parallelization. If this number is too small, then
the MC scores for each branch would be of high variance; Setting this number too big does not hurt
performance, but also might not be necessary as it consumes extra budget.

Super Tree Depth We choose ten because we found that most top optimizers are within this range.
We also experiment with increased depth (15, 20) but only find marginal gains sometimes. The
discovered longer optimizers are also less interpretable.

The number of traversal levels We use a fixed number to fix the same budget for all experiments
(recall that num_mc_samples * num_levels = total budget) (line 267). But in practice, this hyperpa-
rameter needs not to be preset or tuned; One can just progressively increase it and stop when there is
no further gain in terms of the proposed optimizer’s performance.

Learning rates for optimizer evaluation We perform simple grid search to identify a suitable
learning rate for each optimizer. We use one main grid for our experiments, without tuning it just to
get more favorable results. However, we adjust the grid slightly for different tasks for the following
reasons:

1. We use {1e�5, 1e�4, 1e�3, 1e�2, 1e�1, 1} for ConvNet task proposed in NOS-RL. This
grid is too sparse, but it is adopted in NOS-RL (Sec 4.3). So we have to use the same grid
for a fair comparison with NOS-RL.

2. For all other tasks, we use this grid: {0.0001, 0.0003, 0.0006, 0.001, 0.003, 0.006, 0.01, 0.03
, 0.06, 0.1, 0.3, 1.0}. One can always use the full grid. However, this grid is sometimes
unnecessarily long for some tasks - the first or the last few rates are never selected. Due to
the sheer size of experiments in this paper and limited resources, we often shrink this grid
mildly to speed up the runs a little. The exact truncated grids for each task are reported in
the following section.

3. We always want to ensure that the grid covers the provided learning rate of our baseline
optimizers for a fair comparison. For the BERT task, since the baseline (AdamW)’s learning
rate is set to 2e�5 (outside this grid), we extend our grid to cover it, avoiding underestimating
AdamW.

D More details on experimental settings

D.1 General settings for our search algorithm

Search configurations For all experiment, we allow 4 levels of traversal and set the number of
Monte Carlo samples for each level to 32. This amounts to a total budget of 128 evaluations. The
maximum depth for the super-tree is set to 10. The evaluation of Monte Carlo samples for each level
of traversal are completely independent, and therefore can be easily parallelized onto multiple GPUs.
As mentioned in the main text, we also apply score thresholding during the Monte Carlo estimation.
We use a universal threshold of 10 for losses, 20% for accuracy and correlations. After the search
phase, top 5 optimizers are usually proposed for further evaluations.

18

Early stopping We also early stop poor optimizers to speedup the search process. We use the
following standard procedure for deciding whether to terminate the training of an optimizer: If the
search signal is training loss, we track if the moving average of the training loss keeps increasing for
certain amount of consecutive steps. If the search signal is accuracy or correlations, we check if the
accuracy fails to reach the score threshold after 10% of training.

Constraints We use the following constraints during tree traversal: 1). log(exp(·)) and �(�(·))
are prohibited. 2). sign(·) must not be followed by sign(·), sign(m1), sign(g), clip0.003(·), 1, 2,
ld, cd, and rd. 3).

p
| · | must not be followed by sign and 1. 4). clip0.003(·) must not be followed

by clip0.003(·), 1, 2, ld, cd, and rd.

D.2 Hand-digit classification with MNISTNET

Table 6: Performance of different optimizers on MNISTNET models.
Method MNISTNET MNISTNET-2Layer MNISTNET-Big MNISTNET-ReLU

Train Loss (Sum) Test Acc Train Loss (Sum) Test Acc Train Loss (Sum) Test Acc Train Loss (Sum) Test Acc
SGD 364.96 ± 3.32 93.09% ± 0.17 638.23 ± 12.91 92.27% ± 0.44 334.72 ± 1.90 93.88% ± 0.08 317.33 ± 7.47 93.56% ± 0.37
SGD + Mom 276.26 ± 10.78 93.07% ± 0.46 358.61 ± 8.96 93.05% ± 0.32 207.54 ± 5.12 95.29% ± 0.25 265.15 ± 9.58 94.03% ± 0.53
Nesterov 248.96 ± 6.51 93.53% ± 0.32 317.86 ± 6.38 93.32% ± 0.32 192.03 ± 13.13 95.35% ± 0.31 283.50 ± 41.82 92.95% ± 0.83
Adam 327.15 ± 11.55 91.54% ± 0.53 403.07 ± 31.20 90.69% ± 0.54 219.25 ± 4.43 94.29% ± 0.33 273.02 ± 15.47 92.56% ± 0.72
RMSprop 269.48 ± 5.74 93.72% ± 0.17 336.99 ± 13.33 93.44% ± 0.37 230.69 ± 4.30 95.01% ± 0.20 280.28 ± 11.59 93.61% ± 0.33
L2LGD2 300.94 ± 12.49 90.63% ± 0.14 338.18 ± 11.69 90.11% ± 0.30 286.63 ± 8.33 90.94% ± 0.32 791.35 ± 55.13 84.24% ± 1.49
Ours 237.76 ± 5.34 93.86% ± 0.23 291.90 ± 7.89 93.75% ± 0.38 186.17 ± 6.68 95.42% ± 0.16 238.19 ± 8.37 94.29% ± 0.30

Task setting In this task, the goal is to minimize the cumulative training loss of a simple MLP
(MNISTNET). All experimental setups (including model variants) and the LSTM-based optimizer
baseline are borrowed from the open-sourced PyTorch implementation of L2LGD22 The default
MNISTNET has one 20-dimensional hidden layers with Sigmoid activation. In addition, we also
consider three other variants of MNISTNET: 1). MNISTNET-2Layer, which doubles the number of
layers in MNISTNET; 2). MNISTNET-Big, which doubles the hidden layer dimension of MNIST-
NET; 3). MNISTNET-ReLU, which replaces the Sigmoid activation in MNISTNET with ReLU. All
models are trained for 1000 steps with a batch size of 128 on the MNIST dataset. We use a fixed
50/50 split of training and testing set for MNIST.

Optimizer evaluation For each optimizer, the best learning rate is obtained from
{0.0006, 0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1, 0.3, 1.0}. During the grid search, we train the
network for 100 steps. After that, the network is retrained for 1000 steps with the best learning rate.
We record the cumulative training loss and test accuracy of each optimizer for comparison. Note that
following the L2LGD2 implementation, the grid search for the LSTM-based optimizer is applied at
training time rather than test time.

Search setting Again, we follow the search settings implemented in the L2LGD2 codebase for our
experiment. The search is conducted on the default MNISTNET by training it for 100 steps on the
training split. Standard early stopping procedure is enabled for this task. Empirically, we found that
roughly 7.2% optimizers are terminated.

Discovered optimizers We represent some of the discovered optimizer down below. Note that the
forms of these optimizers are already simplified using the Sympy library.

mnist1: m1 +RMSprop ⇤ exp(Adam)

mnist2: m1 ⇤ (exp(Adam) + exp(exp(Adam))) +RMSprop

mnist3: m1 +RMSprop ⇤ rdg
3

Interestingly, the pattern m1 +RMSprop shows up quite frequently in the discovered optimizers for
this task.

2https://github.com/chenwydj/learning-to-learn-by-gradient-descent-by-gradient-
descent

19

https://github.com/chenwydj/learning-to-learn-by-gradient-descent-by-gradient-descent
https://github.com/chenwydj/learning-to-learn-by-gradient-descent-by-gradient-descent

More experimental results In addition to the convergence figures in the main text, we also present
the results in tabular form. Table 6 summarizes both the cumulative training loss and test accuracy of
the optimizers on four MNISTNET models. All models are trained for 1000 steps. Our discovered
optimizer achieves the best cumulative training loss and test accuracy for all cases.

D.3 Image classification with ConvNet

Task setting The goal of this task is to train a ConvNet on CIFAR-10 dataset. Following NOS-RL,
the ConvNet has two 32-filter 3x3 convolution layers, each followed by ReLU activation and batch
normalization [15]. We use a fixed held-out validation set of 5000 images for grid search. Note
that the held-out validation set is used throughout the search phase, and it will be added back to the
training set during final evaluation of the proposed optimizers.

Optimizer evaluation The grid search is performed over {1e�5, 1e�4, 1e�3, 1e�2, 1e�1, 1} for 1
epoch of training, and the best learning rate is selected based on the accuracy on held-out validation
set. After that, the optimizers are trained for a longer period of time (5 epochs). The batch size is set
to 100.

Search setting For this task, we disable early stopping (i.e. all optimizers will be counted into
the budget.), to establish fair comparisons with NOS-RL’s search budget; The reason is as follows:
Although NOS-RL also aggressively early stops poor optimizers, the authors added them back when
plotting Figure 4 in their paper; And since our estimation of NOS-RL’s search budget comes from
Figure 4, it would be rational to also disable it in our experiment. Each evaluation takes about 3
minutes to finish. And the duration for the entire search phase is around 7 hours on a single RTX
2080ti.

Discovered optimizers Some of the discovered optimizers are shown below. Note that the forms of
these optimizers are already simplified using Sympy library.

conv1: cd ⇤ drop0.1(g)/ld

conv2: cd ⇤ sign(m1) ⇤ |m2|

p
|ld|/2

conv3: drop1(cd ⇤m1)

conv4: m1 ⇤ (rd+ |g|) ⇤ exp(cd)

Further discussions on NOS-RL baseline NOS-RL applies Reinforcement Learning to train
a LSTM controller to generate optimizer update rules according to a predefined pattern. Due to
the training difficulty, NOS-RL adopts a multi-config-multi-run search strategy: It conducts the
search multiple times with different subset of operators (unknown) and different optimizer length
(5,10,15,20). Out of all search runs with different configurations, two families of best optimizers
are reported in the paper. This leads to several challenges that prevent us from obtaining exact
comparisons with NOS-RL: 1). It is difficult to know or measure the exact search cost of NOS-RL
due to its multi-config-multi-run strategy. The paper only mentions that a single search run can finish
in one-day with heavily parallelism on Google’s infrastructures. Therefore, the best we can do is
to make an estimation based on Figure 4 in their paper, where it shows that the controller begins to
converge at least after 10k evaluations. 2). The particular subsets of operators used during each search
run is also unknown; The paper only mentions that the search spaces generated by these subsets
typically contains 106 to 1011 update rules. As a result, we have to pick our own operator set to run
the search on.

We conjecture that the main purpose of NOS-RL paper is to offer the discovered optimizer for
practitioners to use, rather than providing a baseline to stimulate further developments of non-
parametric optimizer search methods. This can be evidenced by its prohibitive search cost, and also
by the fact that the source code is not released. The nature of NOS-RL, combined with aforementioned
challenges, necessitate an open-sourced resource-friendly non-parametric optimizer search framework
for the community, which we hope to provide in this work.

20

D.4 Adversarial Attack

Task setting Adversarial attack aims at finding a norm-bounded perturbation to the input space
that misleads the model predictions. In this case, the parameter to be optimized is the data itself. We
use the AutoAttack library3 to implement our experiments for this task. The library contains a set of
defense methods, as well as an implementation of the APGD optimizer that we used as the baseline.
The attack is conducted on the default test split of CIFAR-10 dataset, which contains 10000 images.
Our metric of choice is attack success rate. Concretely, if the perturbed image successfully mislead
the model’s prediction into a wrong class, then the attack is successful for that image. The success
rate is thus the percentage of images that the optimizer successfully attacked.

Optimizer evaluation The search is conducted on the Carmon2019 method. We use
{0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1, 0.3, 1} to search for the best learning rate. The grid search
is conducted on only 1000 test images. After that, the optimizers will be evaluated by training for
100 steps.

Search setting During the search phase, all optimizers are evaluated with only 20 steps, as it is
usually enough to identify top optimizers. To further reduce the search cost, we use only 400 images
for grid search and 4800 (400 * 12) images for evaluation. The search takes around one GPU day to
finish on a single RTX 2080ti.

Discovered optimizers We present some of the discovered optimizers for adversarial attack down
below.

attack1: log(|cd+ sign(g)|)

attack2: log(|cd+ exp(g3) ⇤ sign(g)|)

attack3: log(|ld+ sign(RMSprop)|)

As mentioned in the main text, we found that many top optimizers are log-based. More specifically,
these optimizers often have the form of log(|decay+ sign(·)|). The discovered log-based optimizers
are also highly effective when transferred to other defense models, as showing in Table 2.

Discussion on Adaptive Projected Gradient Descent (APGD) optimizer APGD is currently the
strongest manually design and tuned optimizer for adversarial attack. It consists of two parts: 1). a
momentum update rule and 2). a dynamic learning rate decay schema. The momentum update rule
takes the following form:

z(k+1) = ProjB1
✏ (xo)(x

(k) + �(k)sign(rxL(x
(k))))) (1)

x(k+1) = ProjB1
✏ (xo)(x

(k) + (1� µ)(z(k+1)
� x(k)) + µ(x(k)

� x(k�1))) (2)

where k is the current step and µ is the momentum ratio. The µ is tuned to be 0.25, much lower than
the default momentum ratio for standard optimizers such as SGD and PGD. The dynamic learning
rate decay schema halves the learning rate if a set of two conditions are satisfied at some predefined
steps {wj}

100
j=1:

wj�1X

i=wj�1

L(x(i+1))<L(x(i)) < ⇢ ⇤ (wj � wj�1) (3)

�(wj) ⌘ �(wj�1) and L
(wj)
min ⌘ L

(wj�1)
min (4)

where ⇢ is a threshold term and L denotes the loss function. The steps (wj) to check for these
conditions are set to {23, 42, 58, 71, 81, 88, 94, 100}. As we can see, APGD has a quite complicated
form, and its design also packs a lot of human expertise. On the other hand, our automatically
discovered optimizers are much simpler, while also rivaling the performance of APGD.

3https://github.com/fra31/auto-attack

21

https://github.com/fra31/auto-attack

D.5 Node classification on graphs

Task Setting We consider node classification task on graphs. The model of choice is Graph
Attention Network (GAT). There exists many PyTorch implementations of GAT and its variants, each
covers only some datasets. As a result, we have to use more than one codebase for this experiment.
For training cluster-GAT on OGBN-Products dataset, we use the official implementation from OGBN
library4. For training vanilla GAT on Cora dataset, we use pyGAT 5. For training vanilla GAT on
Citeseer, PubMed, and PPI dataset, we use the implementations from DGL library6. We follow the
instructions provided in their README.md files to run all of our experiments. The only except is for
Cora dataset, where we disable early stopping in the original implementation. The reason is that the
default criteria often terminate training prematurely for our optimizers.

Optimizer evaluation The grid search is conducted over {0.0003, 0.0006, 0.001, 0.003, 0.006,
0.01, 0.03, 0.06}, as we found that most of the optimizers’ best learning rates (including Adam)
fall into this range. After the grid search, all optimizers are evaluated under 4 random seeds. As
mentioned above, all other hyperparameters, including the total number of epochs, batch size, weight
decay, e.t.c., are set to their default values as in the original codebases.

Search setting We deploy standard early stopping schema for this task. The percentage of early
terminated optimizers is around 10% to 17% for vanilla GATs. We found that Cluster-GAT is much
harder to optimize: roughly 25% of the optimizers are early terminated. The search is conducted on
each dataset separately, and we will discuss the transferability of the discovered optimizers in the
next paragraph. For Products dataset, we parallelize the search over 8 RTX 2080ti GPUs. All other
datasets are ran on a single device. The search takes about 2 GPU days to finish for Products dataset,
1 GPU day for PPI and Cora, and 3 hours for PubMed and Citeseer.

Discovered optimizers We present some of the discovered optimizers on each dataset down below.
Interestingly, we found that sign-based optimizers dominate the graph learning task.

products1: ld ⇤ sign(m1)�Adam

products2: ld ⇤ (sign(m1)�RMSprop)

cora: sign(m1) +m3

citeseer: drop0.1((sign(g)�m1)/cd)

pubmed: sign(m1) + sign(m1 � drop0.1(g
3))

ppi: drop0.1(rd
2) ⇤ sign(m1)

Table 7: Performance of our discovered optimizers
against Adam on GATs on five commonly used
Graph datasets of diverse size. Results that use the
same GAT implementations are grouped together.

Dataset Adam products2
Products 77.49% ± 0.56† 79.98% ± 0.17
Cora 84.72% ± 0.32 84.87% ± 0.29
Citeseer 71.70% ± 1.03 71.78% ± 0.51
PubMed 78.20% ± 0.22 77.12% ± 0.53
PPI 97.53% ± 0.45‡ 98.38% ± 0.07‡
† Our reproduced accuracy using ogbn-

leaderboard’s implementation is lower than
the displayed number (79.23% ± 0.78).

‡ F1 Score

More experimental results on the transfer
setting Among the optimizers listed above,
we found that "product2" optimizer exhibits the
highest level of transferability. As shown in
Table 7, it outperforms Adam on all but the
citeseer dataset. Note that for graph learning
task, there exists a non-negligible performance
gap between transfer and direct search settings.
We conjecture that it is because different graph
dataset might indeed require different optimiz-
ers. The reason is as follows: Most graph neu-
ral networks, including GATs, adopt the mes-
sage passing framework, where the features of
neighboring nodes are passed to the target node
through their edges in the forward pass. Since
the connectivity of nodes are defined by the ad-
jacency matrix in the dataset, the computation graph (and thus the learning process) is inherently

4https://github.com/dmlc/dgl/tree/master/examples/pytorch/ogb/cluster-gat
5https://github.com/Diego999/pyGAT
6https://github.com/dmlc/dgl/tree/master/examples/pytorch/gat

22

%20https://github.com/dmlc/dgl/tree/master/examples/pytorch/ogb/cluster-gat
https://github.com/Diego999/pyGAT
https://github.com/dmlc/dgl/tree/master/examples/pytorch/gat

encoded in the dataset itself. Moreover, some of the datasets and models we considered are inherently
heterogeneous. For example, PPI is designed for inductive learning, whereas all other dataset are
for transductive setting; and also the Cluster-GAT model we used for OGBN-Products dataset is
inherently different from vanilla GATs.

D.6 BERT fine-tunning on NLP datasets

Task setting We use Hugging Face’s official implementation of BERT finetuning task for our
experiment7. The goal of this task is to finetune a pretrained BERT (base cased) model on a set of
NLP datasets. Following the instructions on the official repo, we set the number of epochs to 5 for
MRPC and WNLI, and 3 for CoLA, STS-B, and RTE dataset. We also observe that finetuning for
more epochs generally harms the performance of all optimizers. The model is trained with a batch
size of 32 on a single GPU. We refer the reader to Hugging Face’s offical repo (link in the footnote)
for more details on this task.

Optimizer evaluation We use {2e�5, 0.0001, 0.0003, 0.0006, 0.001, 0.003, 0.006, 0.01} for learn-
ing rate grid search. Note that this grid is intentionally shifted to cover Hugging Face’s default
learning rate for AdamW (2e�5). After the grid search, the optimizers are trained for 4 random seeds
with the best learning rate.

Search setting Similar to GAT task, our search is conducted on each dataset separately, and we
will discuss the transferability of discovered optimizers later. We early stop optimizers if their
performance (accuracy, Matthew’s correlation, or Spearman’s correlation) fall below the default
threshold (0.2) during the grid search. Empirically, we found that roughly 13.5% optimizers are
terminated. This rate is slightly higher than that of MNISTNET task (7.2%), because we are using the
same threshold as MNISTNET task even though the accuracies (or correlations) on BERT fine-tuning
tasks are much lower. For this task, we parallelize the search over 8 RTX A6000 GPUs. The search
can be finished in less than 10 hours on all dataset.

Discovered optimizers We present some of the discovered optimizers on each dataset down below.
Similar to those found on the GAT tasks, many optimizers are sign-based. Note that the power
operator in cola2 optimizer might return NaN, which will be mapped to 0 by the sign function.

cola1: drop0.1(Adam+ g3)

cola2: sign(mclip0.003(rd)+clip0.003(sign(g))�sign(m1)
1)

mrpc: drop0.1(clip0.003(sign(g) + sign(RMSprop) ⇤ rd))

stsb: sign(RMSprop+ 2/(g +m3))

rte: drop0.1(clip0.003(m1 �
p

|drop0.1(g3)| ⇤ sign(m1)))

wnli: sign(m1)�m3

Table 8: Performance of our discovered
"cola2" optimizer for BERT finetuning task.
Results above baseline are bolded.

Dataset AdamW cola2 optimizer rte optimizer
Cola 59.56 ± 2.04? 60.05 ± 2.38? 59.91 ± 1.54?
MRPC 82.84 ± 0.57‡ 85.48 ± 0.74‡ 85.60 ± 0.68‡
STS-B 87.80 ± 1.14† 87.90 ± 0.28† 87.91 ± 0.98†
RTE 65.97 ± 1.56‡ 66.52 ± 1.83‡ 68.50 ± 1.93‡
WNLI 53.17 ± 5.49‡ 56.34 ± 0.00‡ 55.28 ± 1.83‡
? Mathews Correlation.
† Spearman Correlation.
‡ Accuracy (%).

More experimental results on the transfer setting
We found that both "cola2" and "rte" optimizer ex-
hibits high level of transferability. Although they
perform slightly worse than the optimizers directly
searched on the target dataset, it still consistently out-
performs AdamW by a sizable margin. The results
are summarized in Table 8. Note that some of our
reproduced results for AdamW is a bit different than
the reported numbers on the Hugging Face repository.
The reason is that we run each optimizer for 4 seeds
and report the average results, whereas the official
repository only records the number after a single run.

7https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-clas
sification

23

https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification
https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification

D.7 License

The Hugging Face libary we used is licensed under Apache License 2.0. All other public repositories
are licensed under MIT License.

24

	Introductions
	Efficient, scalable and generalizable framework for optimizer search
	Optimizer design space
	Monte Carlo Sampling for tree traversal
	Rejection sampling
	Detecting and handling redundancies in mathematically equivalent forms

	Discussions and relationship to prior work
	Empirical evaluations on a diverse set of tasks
	General setting
	Hand-written digit classification
	Image classification with ConvNet
	Adversarial attack
	Node classification on graphs
	BERT fine-tuning on NLP datasets

	Ablation study
	Conclusion
	Limitations
	Appendix
	Pseudocode for our search algorithm

	Set of operators used for constructing the search space
	Choice of hyperparamters for the search algorithm
	More details on experimental settings
	General settings for our search algorithm
	Hand-digit classification with MNISTNET
	Image classification with ConvNet
	Adversarial Attack
	Node classification on graphs
	BERT fine-tunning on NLP datasets
	License

