
A Problem Formulation using L1 and L2 norms

Our approach essentially amounts to computing convex sets Pj ⊆ Rn×n containing the feasible
values for the matrices Aj . If the L∞ or L1 norm is used for the constraint (1) on Aj , then the sets
Pj are polyhedra. In fact, if the L∞ norm is used, the set Pj can even be described as the Cartesian
product of n polyhedra in Rn (one for each row of Aj). If the L2 norm is used in (1), then the convex
sets can be described using second-order cones and linear constraints.

In any case, that is, for any vector norm ∥·∥, the convex set Pj defined by the constraints (1) with
the appropriate norm satisfies that Bind(A∗

j , ϵgap) ⊆ Pj , where ϵgap = ϵ − ϵ1 and A∗
j explains the

data with error bound τ and tolerance ϵ1. Here, Bind(A∗
j , ϵgap) is the ball in Rn×n centered at A∗

j

with radius ϵgap w.r.t. the matrix norm ∥·∥ind induced by ∥·∥ (the proof is identical to the one of
Lemma 3). Lemma 4 then applies mutatis mutandis using the volume of Bind(0, ϵgap).

Finally, regarding the computation of the MVE centers of the sets Pj (which is a key step of Al-
gorithm 2, as it is used to compute the candidate matrices Aj in line 1): finding the MVE center
of convex sets described by linear and second-order cone constraints can be cast as a semidefinite
optimization problem [9, § 8.2.4], so that it can be solved efficiently.

B Missing Proofs From Section 3

Proof of Lemma 2. Let U be the data set associated to ν. Since we did not terminate, there is
(xi,x

′
i) ∈ U such that ∥x′

i − Qjxi∥∞ > ϵ2∥xi∥∞ + τ . However, P̂j is obtained by adding the
constraint ∥x′

i − Ajxi∥∞ ≤ ϵ2∥xi∥∞ + τ to the existing constraints in Pj . Therefore, Qj ̸∈ P̂j

since it violates the new constraint.

Proof of Lemma 3. First, we prove that the property holds for the root node. Therefore, let Aj ∈
Bind

∞ (A∗
j , ϵgap). By the formula for the induced norm, it holds that for any matrix M , if ∥M∥ind∞ ≤ ϵ,

then for all k1, k2 ∈ [n], |Mk1,k2| ≤ ∥Mk1:∥1 ≤ ϵ, so that −ϵEn ≤ M ≤ ϵEn. Hence, letting
M

.
= Aj−A∗

j and ϵ
.
= ϵgap, we get that−ϵgapEn ≤ Aj−A∗

j ≤ ϵgapEn. Thus,−γEn ≤ Aj ≤ γEn,
so that Aj ∈ Pj at the root node.

Suppose that at the beginning of the kth iteration, the unexplored leaf ν, with associated polyhedra
P1, . . . , Pm, has the property that Bind

∞ (A∗
j , ϵgap) ⊆ Pj for all j ∈ [m]. We wish to prove the

property for some unexplored leaf after the iteration. This is trivial if the leaf ν is not expanded in
that iteration. Suppose the leaf ν is expanded. Let (xi,x

′
i) be the data point that cannot be explained

by the candidates that were chosen, and let j ∈ [m] be such that A∗
j explains the data point (xi,x

′
i)

with tolerance ϵ1. We show that Bind
∞ (A∗

j , ϵgap) ⊆ P̂j where P̂j is defined as in line 8. Indeed, let
Aj ∈ Bind

∞ (A∗
j , ϵgap). It holds that ∥x′

i − Ajxi∥∞ ≤ ∥x′
i − A∗

jxi∥∞ + ∥(Aj − A∗
j)xi∥∞ ≤ ∥x′

i −
A∗

jxi∥∞ + ϵgap∥xi∥∞ ≤ ϵ1∥xi∥∞ + τ + ϵgap∥xi∥∞ ≤ ϵ2∥xi∥∞ + τ , where the second inequality
comes from the definition of the induced norm and the assumption on Aj , and the third inequality
comes from the assumption on A∗

j explaining (xi,x
′
i) with tolerance ϵ1. Thus, Bind

∞ (A∗
j , ϵgap) ⊆ P̂j .

Since, Bind
∞ (A∗

j , ϵgap) ⊆ Pj , this implies that Bind
∞ (A∗

j , ϵgap) ⊆ P̂j , concluding the proof.

Proof of Lemma 5. From Lemma 2, we note that Qj /∈ P̂j . In other words, P̂j ⊊ Pj excludes the
MVE center of Pj . Following [30] (or [10, § 4.3] for a more recent reference), we have vol(P̂j) ≤
(1− 1

d)vol(Pj), where d is the dimension of Pj . Here, d = n2, concluding the proof.

Proof of Lemma 6. Consider any path from the root to a leaf whose length is mK for some integer
K > 0. We note that for each node ν and any of its children νj , the polyhedron P̂j satisfies
the inequality vol(P̂j) ≤ αvol(Pj), where α = 1 − 1

n2 (Lemma 5). Let us say that the index
j ∈ [m] is refined by such an edge. By the pigeon-hole principle, for a path of length mK, there
exists at least one index j that is refined K or more times along the path. Therefore, we have
that: vol(P

(K)
j) ≤ αKvol(P

(0)
j), where P

(0)
j is the jth polyhedron at the root and P

(K)
j is the jth

polyhedron at the leaf.

14

We know that vol(P
(0)
j) = (2γ)n

2

. Thus, there exists Kmin such that for any K ≥ Kmin,

vol(P
(K)
j) < Vmin and thus the branch will end up being “pruned” by our algorithm (line 9). It

holds that

Kmin ≤
log((2γ)n

2

)− log(Vmin)

− log(α)
≤ log((2γ)n

2

)− log((2ϵgap)
n2

) + log(nn2

)

− log(α)
≤ n4 log

(nγ

ϵgap

)
,

where the last inequality follows from log(1− 1
n2) ≤ − 1

n2 . Therefore, the depth is upper bounded
by mKmin = mn4 log(nγ/ϵgap).

C Fine-Grained Complexity Analysis of Tree Search

As we noticed in Appendix A, for the L∞ norm, each set Pj can be described as the Cartesian
product of n polyhedra in R1×n (one for each row of the matrix). The MVE center of a Cartesian
product of convex sets is the vector containing the MVE center of each convex set. Therefore,
the volume reduction guarantee in Lemma 5 can be refined as: vol(P̂j) ≤ (1 − 1

n)vol(Pj) (see
Lemma 8 below). By applying the same argument as in the proof of Lemma 6, we then get the
bound O(mn3 log(nγ/ϵgap)) on the depth of the tree.

We will now present this in more details. Let ν be any node of the tree and P1, . . . , Pm be the
associated polyhedra.

Lemma 7. Each Pj can be written as a Cartesian product Pj = Pj,1 × · · · × Pj,n wherein each
polyhedron Pj,i ⊆ R1×n involves just those decision variables of the matrix Aj associated with its
ith row.

Proof. Proof is by induction. To begin with, we note that this is true for the root node of the tree. For
the induction step, assume that the property is satisfied at some node ν of the tree and consider any
of its child nodes νj . We note that, for any (xi,x

′
i), the constraint ∥x′

i − Ajxi∥∞ ≤ ϵ2∥xi∥∞ + τ
is of the form ||z||∞ ≤ a for a vector z and scalar a. This can be decomposed into constraints
−a ≤ zi ≤ a for each row of z. Hence, the constraint ∥x′

i − Ajxi∥∞ ≤ ϵ2∥xi∥∞ + τ can be
decomposed into a conjunction of n constraints, each involving a different row of Aj . From the
induction hypothesis and the definition of P̂j (line 8), it follows that P̂j can be written as a Cartesian
product of n polyhedra, each involving a different row of Aj , concluding the proof.

We now state a refined version of Lemma 5.

Lemma 8. vol(P̂j) ≤ (1− 1
n)vol(Pj).

Proof. Let P̂j,i be the polyhedron associated with the ith row of matrix Aj in the jth child node of
some node ν such that the Qj,i /∈ P̂j,i, wherein Qj,i denotes the ith row of candidate matrix Qj

explored during the expansion of node ν by Algorithm 2. Since Qj,i is the MVE center of Pj,i, it
holds, by the cutting-plane argument (cf. proof of Lemma 5), that vol(P̂j,i) ≤ (1 − 1

n)vol(Pj,i).
Now, since vol(P̂j) =

∏n
i=1 vol(P̂j,i) and vol(Pj) =

∏n
i=1 vol(Pj,i), we get the desired result.

Lemma 9. The depth of the tree is O(mn3 log(nγ/ϵgap)).

Proof. The proof is very similar to that of Lemma 6. The only thing that to be changed is the value
of α = 1− 1

n (instead of 1− 1
n2). We can then use the bound: log(1− 1

n) ≤ − 1
n , to get the desired

result.

D Details on the Microbenchmarks

For Figure 1, we generate 90 microbenchmarks with varying values of n and m. We fixed the
dynamics at each mode of the microbenchmark by sampling a random n × n Hurwitz matrix. The
Hurwitz matrices were generated by first generating random diagonal and invertible matrices of
appropriate dimensions and then applying a similarity transformation on them. We then generated

15

trajectories from the microbenchmark by starting at some initial state in [−1, 1]n and simulating the
forward in time for T=10 time steps by randomly picking the mode at each time step. We added
a uniform noise with amplitude ∈ [−0.05, 0.05] to all the trajectories. Figure 5 shows one such
microbenchmark with n = 4 and m = 3 and some sample trajectories from the microbenchmark.

Figure 5: Microbenchmark (Left) with n = 4,m = 3 and sample trajectories (Right).

E Details on the Acrobot and Cartpole Benchmarks

Figure 6: 3 trajectories of the Acrobat benchmark: The dashed lines with square markers show the
reference trajectories. The solid lines with triangle markers show the trajectories predicted using the
dynamics identified by the proposed approach.

Figure 7: 3 trajectories of the Cartpole benchmark: The dashed lines with square markers show the
reference trajectories. The solid lines with triangle markers show the trajectories predicted using the
dynamics identified by the proposed approach.

F Details on the Handwriting Recognition

We generated a human handwriting dataset where each letter is drawn on a canvas of size 300× 300
pixels. Therefore, we asked the users to write letters a, b, c, d and collected the locations (x, y) of the
handwritten letters. We made sure that each handwritten letter had enough raw points (Traw > 100).
Subsequently, we interpolated the raw data points so that we could extract T = 30 data points
that are roughly equidistant from each other. The complete interpolation and extraction process in
explained below; see also Fig. 8 for an illustration.

Given the raw data points P : {p1, ..., pTraw
}, with pi : (xi, yi) ∈ R2,

16

Figure 8: The schematic of computing the equidistant points.

1. Measure the total distance D =
∑

i di where di =
√

(xi+1 − xi)2 + (yi+1 − yi)2

2. For each j ∈ {0, . . . , T − 1}, let d′j =
D

T−1j, .

3. Compute the jth data point (x̂j , ŷj), as the point on the line that is at a distance d′j from p1.
Therefore:
(a) Find i ∈ {1, . . . , Traw−1} such that (x̂j , ŷj) is located between pi and pi+1, i.e., such

that the following condition holds true,

i∑

i=0

di ≤ d′j <
i+1∑

i=0

di.

(b) Define (x̂j , ŷj) : (1 − t)pi + tpi+1, where t = (d′j −
∑i

i=0 di)/di. Since (x̂j , ŷj) =
pi + t(pi+1 − pi), this satisfies that requirement that (x̂j , ŷj) is at a distance d′j from
p1.

We collected 10 samples for each letter and each letter’s final data size was set to T = 30. As a
result, the total number of data points is N = kT = 10 · 30 = 300.

17

