
Posterior Refinement Improves Sample Efficiency
in Bayesian Neural Networks

Appendix A Derivation of the Multi-Class Probit Approximation

Remark. This derivation first appeared in the first author’s blog post [53].

Let p(z) := N (z | µ,Σ) be the distribution a random variable z ∈ Rc. The multi-class probit
approximation (MPA) is defined by∫

Rc
softmax(z) p(z) dz ≈ softmax

(
µ√

1 + π/8 diag(Σ)

)
,

where the vector division is defined component-wise. Its derivation, based on Lu et al. [54] is as
follows.

Notice that we can write the i-th component of softmax(z) as 1/(1 +
∑
j 6=i exp(−(zi − zj))). So,

for each i = 1, . . . , c, using zij := zi − zj , we can write

1

1 +
∑
j 6=i exp(−zij)

=
1

1− (K − 1) +
∑
j 6=i

1
1

1+exp(−zij)

=
1

2−K +
∑
j 6=i

1
σ(zij)

.

Then, we use the following approximations:

1. E(f(x)) ≈ f(E(x)) for a non-zero function f ,
2. the mean-field approximation N (z | µ,Σ) ≈ N (z | µ,diag(Σ)), and thus we have
zij := zi − zj ∼ N (zij | µi − µj , Σii +Σjj), and

3. using the (binary) probit approximation (see Section 2.1.2), with a further approximation:∫
R
σ(zij)N (zij | µi − µj , Σii +Σjj) dzij ≈ σ

(
µi − µj√

1 + π/8Σii +Σjj

)

≈ σ

(
µi√

1 + π/8Σii
− µj√

1 + π/8Σjj

)
,

we obtain∫
Rc

softmaxi(z)N (z | µ,Σ) ≈ 1

2−K +
∑
j 6=i

1
Eσ(zij)

≈ 1

2−K +
∑
j 6=i

1

σ

(
µi√

1+π/8Σii
− µj√

1+π/8Σjj

)

=
1

1 +
∑
j 6=i exp

(
−
(

µi√
1+π/8Σii

− µj√
1+π/8Σjj

))

=
exp

(
µi/
√

1 + π/8Σii

)
∑k
j=1 exp

(
µj/
√

1 + π/8Σjj

)
We identify the last equation above as the i-th component of softmax

(
µ√

1+π/8 diag(Σ)

)
.

15

Appendix B Implementation Details

B.1 Training

We use the Pyro library [39] to implement the normalizing flow (NF) used for the refinement. The
NF is trained by maximizing the evidence lower bound using the Adam optimizer [55] and the cosine
learning rate decay [56] for 20 epochs, with an initial learning rate of 0.001. Following [35], we do
not use data augmentation.

For the HMC baseline, we use the default implementation of NUTS in Pyro. We confirm that
the HMC used in our experiments are well-converged: The average Gelman-Rubin R̂’s are 0.998,
0.999, 0.997, and 1.096—below the standard threshold of 1.1—for the last-layer F-MNIST, last-layer
CIFAR-10, last-layer CIFAR-100, and all-layer F-MNIST experiments, respectively.

For the MAP, VB, and CSGHMC baselines, we use the same settings as Daxberger et al. [6]: We
train them for 100 epochs with an initial learning rate of 0.1, annealed via the cosine decay method
[56]. The minibatch size is 128, and data augmentation is employed. For MAP, we use weight decay
of 5× 10−4. For VB and CSGHMC, we use the prior precision corresponding to the previous weight
decay value.

For the LA baseline, we use the laplace-torch library [6]. The diagonal Hessian is used for CIFAR-
100 and all-layer F-MNIST, while the full Hessian is used for other cases. Following the current
best-practice in LA, we tune the prior precision with post hoc marginal likelihood maximization [6].

Finally, for methods which require validation data, e.g. HMC (for finding the optimal prior precision),
we obtain a validation test set of size 2000 by randomly splitting a test set. Note that, these validation
data are not used for testing.

B.2 Datasets

For the dataset-shift experiment, we use the following test sets: Rotated F-MNIST and Corrupted
CIFAR-10 [57, 58]. Meanwhile, we use the following OOD test sets for each the in-distribution
training set:

• F-MNIST: MNIST, K-MNIST, E-MNIST.
• CIFAR-10: LSUN, SVHN, CIFAR-100.
• CIFAR-100: LSUN, SVHN, CIFAR-10.

Appendix C Additional Results

C.1 Image classification

To complement Table 3 in the main text, we present results for additional metrics (accuracy, Brier
score, and ECE) in Table 5. We see that the trend Table 3 is also observable here. We also show that
the refinem In Table 6, we observe that refining an all-layer posterior improves its predictive quality
further.10

In Table 7, we present the detailed, non-averaged results to complement Table 4. Moreover, we
also present dataset-shift results on standard benchmark problems (Rotated F-MNIST and Corrupted
CIFAR-10). In both cases, we observe that the performance of the refined posterior approaches
HMC’s.

C.2 Text classification

We further validate the proposed method on text classification problems. We the benchmark in
Hendrycks et al. [59], Kristiadi et al. [60]: A GRU recurrent network architecture [61] is used and
trained for 10 epochs under the 20NG, SST, and TREC datasets. The prior precision for HMC and the
refinement method is 40. We use the same normalizing flow as in the image classification experiment
and follow a similar training procedure.

10The network is a two-layer fully-connected ReLU network with 50 hidden units.

16

Table 5: In-distribution calibration performance.

F-MNIST CIFAR-10 CIFAR-100

Methods Acc. ↑ Brier ↓ ECE ↓ Acc. ↑ Brier ↓ ECE ↓ Acc. ↑ Brier ↓ ECE ↓
MAP 90.4±0.1 0.1445±0.0008 11.7±0.3 94.8±0.1 0.0790±0.0004 10.5±0.2 76.5±0.1 0.3396±0.0012 13.7±0.2
MAP-Temp 90.4±0.1 0.1377±0.0009 3.2±0.0 94.9±0.1 0.0767±0.0008 6.0±1.3 75.9±0.1 0.3394±0.0007 8.9±0.2

VB∗ 90.5±0.1 0.1377±0.0013 3.9±0.2 91.1±0.1 0.1333±0.0008 5.3±0.2 69.6±0.2 0.4144±0.0016 5.5±0.2
CSGHMC∗ 89.6±0.1 0.1492±0.0011 3.7±0.1 93.6±0.2 0.0975±0.0017 7.2±0.3 73.8±0.1 0.3647±0.0019 7.1±0.1

LA 90.4±0.0 0.1439±0.0008 11.1±0.2 94.8±0.0 0.0785±0.0004 9.8±0.3 75.6±0.1 0.3529±0.0009 9.7±0.1
LA-Refine-1 90.4±0.1 0.1386±0.0007 5.2±0.2 94.7±0.0 0.0776±0.0003 4.3±0.2 75.9±0.1 0.3445±0.0010 8.0±0.2
LA-Refine-5 90.4±0.1 0.1375±0.0009 3.2±0.1 94.8±0.1 0.0768±0.0004 4.3±0.2 76.2±0.1 0.3311±0.0007 4.5±0.2
LA-Refine-10 90.5±0.1 0.1376±0.0008 3.6±0.1 94.9±0.1 0.0765±0.0004 4.4±0.2 76.1±0.1 0.3312±0.0008 4.4±0.1
LA-Refine-30 90.4±0.1 0.1376±0.0009 3.5±0.1 94.9±0.1 0.0765±0.0004 4.4±0.1 76.1±0.1 0.3315±0.0007 4.2±0.2

HMC 90.4±0.1 0.1375±0.0009 3.4±0.0 94.9±0.1 0.0765±0.0004 4.3±0.1 76.4±0.1 0.3283±0.0007 4.6±0.1

Table 6: Calibration of all-layer BNNs on F-MNIST. The architecture is two-layer ReLU fully-
connected network with 50 hidden units.

Methods MMD ↓ Acc. ↑ NLL ↓ Brier ↓ ECE ↓
LA 0.278±0.003 88.0±0.1 0.3597±0.0009 0.18±0.0006 7.7±0.1
LA-Refine-1 0.194±0.006 87.6±0.1 0.3564±0.0015 0.1807±0.0006 6.1±0.1
LA-Refine-5 0.19±0.006 87.6±0.1 0.3483±0.0012 0.1781±0.0005 4.9±0.3
LA-Refine-10 0.186±0.006 87.7±0.1 0.3459±0.0008 0.1771±0.0004 4.7±0.3
LA-Refine-30 0.183±0.006 87.8±0.1 0.3432±0.0014 0.176±0.0007 4.6±0.3

HMC - 89.7±0.0 0.2908±0.0002 0.1502±0.0001 4.5±0.1

The results are in Table 8. We observe similar results as in the previous experiment: Refining a LA
posterior, even with a very simple and cheap NF, makes the weight-space posterior closer to that of
HMC. Moreover, the calibration performance (in terms of NLL) also becomes better.

C.3 Costs

We compare the theoretical costs of the refinement method in Table 9. For comparisons, we include
the costs of popular Bayesian baselines: deep ensemble [20], SWAG [13], and MultiSWAG [43]. Our
refinement method introduces overheads over the very cheap Kronecker-factored last-layer LA [6,
Fig. 5, Tab. 5] due to the need of training the normalizing flow and feeding posterior samples forward
through it during prediction. Combined with our findings in Section 6.4, our method only introduces
a small overall overhead on top of the standard MAP network. Finally, using synthetic datasets, we
show the empirical costs of performing refinement on different number of classes in Fig. 9. We note
that even with 4096 features (e.g. in WideResNet-50-2) and 1000 classes (e.g. in ImageNet), the
refinement method is cost-efficient.

C.4 Weight-space distributions obtained by refinement

To validate that the refinement technique yields accurate posterior approximations, we plot the
empirical marginal densities q(wi | D) in Figs. 10 to 12. We validate that the refinement method
makes the crude, base LA posteriors closer to HMC in the weight space.

17

0 50 100 150
0

5

10

Rotation Angle (Degree)

N
L

L
↓

Rotated F-MNIST

0 1 2 3 4 5
0

0.5

1

1.5

Corruption Intensity

Corrupted CIFAR-10

MAP
LA
LA-Refine-1
LA-Refine-5
LA-Refine-10
LA-Refine-30
HMC

Figure 8: Calibration under dataset shifts in terms of NLL—lower is better.

10 100 1000
0

5

10

15

20

Num. of Classes

Ti
m

e
(s

)

Figure 9: Empirical training costs of the refinement method, with 4096 features—this simulates the
upper end of commonly-used networks’ last-layer features, e.g. WideResNet-50-2. The dataset is
synthetically generated by drawing 10000 points from a mixture of Gaussians, where number of
modes equals number of classes. The training protocol for the NF is identical to the one used in the
main text. A single RTX 2080Ti GPU is used to perform this experiment.

0

10

LA

0

10

LA
-R

-5

0

10

LA
-R

-1
0

0

10

LA
-R

-1
5

0

10

LA
-R

-3
0

1 0 1
w44

0

10

H
M

C

1 0 1
w782

1 0 1
w390

1 0 1
w355

Figure 10: Empirical marginal posterior densities of some F-MNIST BNNs’ random weights. “LA-R”
is an abbreviation to “LA-Refine”.

18

0

2

LA

0

2

LA
-R

-5

0

2

LA
-R

-1
0

0

2

LA
-R

-1
5

0

2

LA
-R

-3
0

2 0 2
w2361

0

2

H
M

C

2 0 2
w1129

2 0 2
w525

2 0 2
w816

Figure 11: Empirical marginal posterior densities of some CIFAR-10 BNNs’ random weights. “LA-R”
is an abbreviation to “LA-Refine”.

0.0

2.5

LA

0.0

2.5

LA
-R

-5

0.0

2.5

LA
-R

-1
0

0.0

2.5

LA
-R

-1
5

0.0

2.5

LA
-R

-3
0

1 0 1
w15544

0.0

2.5

H
M

C

1 0 1
w6085

1 0 1
w19965

1 0 1
w19706

Figure 12: Empirical marginal posterior densities of some CIFAR-100 BNNs’ random weights.
“LA-R” is an abbreviation to “LA-Refine”.

19

Table 7: Detailed OOD detection results. Values are FPR95. “LA-R” stands for “LA-Refine”.

Datasets VB∗ CSGHMC∗ LA LA-R-1 LA-R-5 LA-R-10 LA-R-30 HMC

FMNIST
EMNIST 83.4±0.6 86.5±0.5 84.7±0.7 85.4±0.8 87.6±0.6 87.6±0.6 87.6±0.6 87.2±0.6
MNIST 76.0±1.6 75.8±1.8 77.9±0.8 77.5±0.9 79.6±1.0 79.6±1.0 79.6±1.1 79.0±0.9
KMNIST 71.3±0.9 74.4±0.5 78.5±0.6 78.3±0.8 79.9±0.9 79.9±0.9 79.9±0.9 79.4±0.9

CIFAR-10
SVHN 66.1±1.2 59.8±1.4 38.3±2.9 40.1±3.4 38.2±3.2 36.5±3.0 35.8±2.9 36.0±3.0
LSUN 53.3±2.5 51.7±1.5 51.1±1.1 46.9±0.5 46.7±0.6 46.9±0.7 47.1±0.5 46.7±0.8
CIFAR-100 69.3±0.2 64.6±0.3 58.2±0.8 56.1±0.6 55.7±0.8 55.3±0.6 55.2±0.5 55.3±0.4

CIFAR-100
SVHN 81.7±0.7 75.9±1.5 82.2±0.8 77.7±1.2 78.1±1.3 77.9±1.5 78.3±1.6 78.2±1.6
LSUN 76.6±1.8 79.3±1.8 75.5±1.6 75.1±1.2 75.7±1.4 75.9±1.2 75.8±1.3 75.5±1.7
CIFAR-10 84.2±0.4 82.8±0.3 81.0±0.3 79.1±0.4 79.5±0.4 79.5±0.4 79.6±0.4 79.7±0.2

Table 8: Text classification performance.

20NG SST TREC

Methods MMD ↓ NLL ↓ MMD ↓ NLL ↓ MMD ↓ NLL ↓
MAP 0.834 1.3038 0.515 1.3125 0.620 1.4289

LA 0.808 1.2772 0.474 1.2570 0.708 1.4206
LA-Refine-5 0.643 0.9904 0.126 1.0464 0.554 1.3375

HMC - 0.9838 - 1.0787 - 1.1545

Table 9: Theoretical cost of our method. M is the number of parameters of the base neural network,
N is the number of training data, C is the number of classes, P is the number of last-layer features, F
is the length of the normalizing flow, S is the number of MC samples for approximating the predictive
distribution, R is the number of model snapshots, K is the number ensemble components.

Prediction

Methods Overhead over MAP Computation Memory

MAP - M M
Last-Layer LA NM + C3 + P 3 SCP M + C2 + P 2

Last-Layer LA+Refine NM + C3 + P 3 +NFCP SFCP M + C2 + P 2 + FCP
SWAG RNM SRM RM
DE - KM KM
MultiSWAG KRNM KSRM KRM

20

	Derivation of the Multi-Class Probit Approximation
	Implementation Details
	Training
	Datasets

	Additional Results
	Image classification
	Text classification
	Costs
	Weight-space distributions obtained by refinement

