
Accelerating Sparse Convolution with Column
Vector-Wise Sparsity

Yijun Tan1,2 Kai Han3 Kang Zhao3 Xianzhi Yu3 Zidong Du1 Yunji Chen1,2 Yunhe Wang3,∗Jun Yao3

1SKL of Processors, Institute of Computing Technology, CAS
2University of Chinese Academy of Sciences

3Huawei Noah’s Ark Lab
tanyj1998@gmail.com, {kai.han,yunhe.wang}@huawei.com

Abstract

Weight sparsity is a promising approach to reducing the model size and computation
cost of convolutional neural networks (CNNs). Nevertheless, non-zero weights
often distribute randomly in sparse CNN models, introducing enormous difficulty
in obtaining actual speedup on common hardware (e.g., GPU) over their dense
counterparts. Existing acceleration solutions either require hardware modifications
for irregular memory access support or rely on a partially structured sparsity pattern.
Neither of these methods is capable of achieving fruitful speedup on convolution
layers.
In this work, we propose an algorithm-software co-designed sparse convolution
based on a novel out-vector-wise (OVW) sparse pattern. Building on the insight
that vertical vector integrity can preserve continuous memory access in IM2COL,
the OVW pattern treats a V × 1 vector as unit. To reduce the error caused by
sparsity, we propose an equivalent transformation process, i.e., clustering-based
channel permutation, to gather similar rows together. Experimental evaluations
demonstrate that our method achieves a 1.7× and 3.2× speedup over the SOTA
solution and the dense convolution of ResNet50 on NVIDIA V100 at 75% sparsity,
respectively, with only negligible accuracy loss. Moreover, compared to the SOTA
solution that achieves speedups only on data with 60% sparsity or more, our method
begins to obtain speedups on data with only 10% sparsity.

1 Introduction

Recently, convolutional neural networks (CNNs) have yielded astonishing results in many important
domains such as vision [8], and language [18]. With CNN algorithm developing rapidly, CNN models’
storage and computing overhead grow exponentially. To significantly reduce both the computations
and memory access, weight sparsity has been adopted as a promising approach to improve hardware
efficiency.

Despite the success in reducing computations and data access, unconstrained, fine-grained sparsity
fails to bring practical speedups on common GPUs. This is because unstructured sparsity generally
induces tremendous access conflicts and load unbalances, which lowers GPU’s performance. For
example, on NVIDIA V100, the sparse matrix multiplication performs not faster than the dense
matrix multiplication until the sparsity ratio is over 95% [17, 3].

Unfortunately, existing solutions either require hardware modifications or only partially address the
problem by being constrained with structured, coarse-grained sparsity, resulting in high accuracy
loss. The former is to leverage the sparse matrix-matrix multiplication (e.g., SPMM) operation

∗Corresponding author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



on GPU. While directly applying SPMM on sparse CNNs can run even slower than dense CNNs
[17],productive SPMM acceleration solutions[21, 14] often require their unique need for dedicated
hardware support to overcome discontinuous memory access, which is impractical. The latter is to
leverage the general matrix-matrix multiplication (e.g., GEMM) operation on GPU.

Recent works focus on structured sparsity with different sparse patterns to gain speedup benefits from
weight sparsity. Block sparsity[4] manages to restore the spatial locality of matrices to a large extent,
at the cost of a strict restriction on the non-zero Balanced sparsity[2, 19, 15], newly introduced on
NVIDIA A100 GPU[14], however, lacks flexibility in choosing model sparsity rate that only exact
50% sparsity ratio could be deployed on this dedicated hardware. These efforts achieve some palpable
acceleration compared to dense GEMM operation, but they all struggle to attain similar results on
convolution layers which have proven to be a greater challenge.

To tackle these problems, here we present a novel sparse convolution acceleration algorithm featured
with column-wise sparsity and implicit matrix multiplication. Specifically, the proposed column-wise
sparsity is dubbed the out-vector-wise (OVW) sparse pattern since the pattern sparsifies a matrix by
treating a V×1 vector as an entirety, as shown in Figure 1. During convolution, the OVW pattern can
hold both strong memory consistency and high data reuse rates of input matrices using implicit matrix
multiplication. Moreover, we propose to employ channel permutation and row clustering to improve
the accuracy of OVW sparse pattern-based CNNs. Besides, a GPU kernel is carefully designed to
ensure that our OVW sparse pattern is supported by common GPUs. With these efforts, our algorithm
predominantly outperforms other sparse convolution acceleration algorithms on various CNN models.
More importantly, our algorithm can achieve the acceleration of convolutions even with a very low
weight sparsity ratio, e.g., 10%. Instead, prior arts can only work fine when the weight sparsity ratio
is over 60%.

The main contributions of this paper are listed as follows:

• We propose a vector-based sparsity pattern, i.e., the OVW pattern to balance inference
accuracy loss and computation efficiency in a hardware-friendly manner.

• We implement a new GPU convolution kernel to support the OVW pattern. The kernel
utilizes the technique of extracting filter location information which can further reduce
inference runtime.

• We propose a heuristic clustering method to obtain an appropriate channel permutation
for reducing accuracy drop during weight pruning. This channel permutation operation is
conducted offline, which does not affect inference time.

• Our GPU kernel can accelerate convolution at a wide range of model sparsity rates. With few
accuracy loss, the kernel can speed up ResNet50 by 1.7× and 3.2×, respectively over the
SOTA solution and the dense cuDNN convolution on NVIDIA V100 GPU at 75% sparsity
level.

2 Related work

2.1 Software-only Acceleration For Sparse CNN Model

Weight pruning has been a popular technique for efficient CNN inference. Early studies[7, 6] show
that removing a large proportion of unimportant connections in CNN models does not necessarily
lead to inference accuracy impairment. Reducing parameters helps exploit redundancy in CNN
models, which requires fewer computations and data accesses. However, for CNN inference, weight
pruned sparse CNNs usually perform worse than dense counterparts, unless the CNN sparsity ratios
are substantial, i.e., very sparse CNNs.

To address this issue, methods other than unstructured sparsity are exploited. Researchers exploit
various constraints on sparsity patterns in exchange for computation efficiency. A primary domain of
this region is filter pruning, where parameters of an entire filter are pruned or kept as a whole. However,
this direct modification of channel size suffers a sharp accuracy drop [10, 11, 16]. Moderate sparsity
patterns are also examined, such as block sparsity[17], which is proposed to elevate the spatial locality
of sparse matrices. But this feature can achieve speedup only when sparsity ratios are larger than 70%.
Tile-wise sparsity[5] endows weight patterns with more flexibility. Compared to previous methods,
balanced sparsity[15, 19] is more feasible with recent support from NVIDIA A100 GPU which

2



Figure 1: Comparison of four patterns with 50% sparsity.

directly optimizes 2:4 balanced sparsity. Recent work Shfl_BW [9] uses matrix transformation to
utilize block sparsity’s computation efficiency while removing some of its constraints. In this way,
the threshold of weight sparsity ratio that enables acceleration is reduced from 70% to 60%. Different
from prior works which only work for very sparse matrices, in this paper, our algorithm can achieve
speedup when the sparsity ratio is only 10%.

2.2 GEMM Based Convolution

GEMM has been adopted widely to perform convolution and it performs significantly better than
other convolution methods such as FFT, and Winograd on modern commercial hardware accelerators
such as TPUs and GPUs. The GEMM-based algorithms could be further divided into two types:
explicit matrix multiplication and implicit matrix multiplication. Explicit matrix multiplication
uses IM2COL to adapt inputs for GEMM. IM2COL is an IO-intensive operation, which brings in
significant workload other than computation cost[1]. Implicit matrix multiplication merges these
operations for more efficient memory accesses. It updates pointers of feature map in shared memory
and performs tile-based matrix multiplication simultaneously. On NVIDIA V100 GPUs, explicit
GEMM convolutions consume on average 120%, 126%, and 142% in time compared to implicit
GEMM-based convolution on convolution layers of Alexnet, Resnet and Googlenet [20].

Yet, few studies have investigated the sparse convolution with implicit GEMM. Performing sparse
convolution by GEMM is always through explicit matrix multiplication rather than implicit matrix
multiplication. This is because of the IM2COL operation which is extremely difficult if not impossible
for sparse matrix multiplication, as sparse matrices are compactly compressed and irregularly stored.
As a result, implicit GEMM who does not have to suffer from the costly IM2COL operation has the
potential to achieve higher efficiency for sprase convolution. In this paper, we investigate the implicit
GEMM-based sparse convolution to leverage the high-performance GEMMs on existing hardware.

3 Accelerating Sparse Convolution

In this section, we introduce our proposed sparse convolution algorithm, including the OVW pattern
of sparsity for the proposed sparse convolution, its advantage in convolution computation and our
detailed implementation on GPU.

3.1 The OVW Pattern

The OVW pattern belongs to the vector-wise(VW) pattern which is one of the three different pattern
categories of sparsity in matrix. As shown in Fig 1, the first sparsity pattern is the element-wise(EW)
pattern, corresponding to unstructured pruning, which evaluates each parameter individually. Having
imposed no constraint on pruning, this pattern succeeded at model flexibility but struggled at actual
acceleration due to its irregular memory accesses. The second sparsity pattern is the VW pattern,
which can be further divided into the inter-vector-wise(IVW) and the OVW pattern. They both treat
a V×1 vector as an entirety while the IVW pattern prunes a certain proportion of weights inside
each vector and the OVW pattern focuses on the entire vector of weights. The third pattern is the
block-wise(BW) pattern, and its minimum pruning granularity is a V×V block. This pattern has
the highest computation efficiency, but its inference accuracy loss is high as well. In this work, we

3



Figure 2: Illustration of GPU conv kernel. The solid lines are the actual computation flow and the
dotted lines are processing pointers and descriptors.

use the OVW pattern since it shares the advantages of the VW pattern, which balances computation
efficiency of BW and network accuracy of EW. The Shfl_BW pattern is actually a variant of this
pattern, who uses an extra channel reordering procedure to gather block-wise pattern utilities.

3.2 The OVW Pattern’s Advantage in Convolution Computation

The biggest advantage of the OVW pattern is that it fits the way an efficient dense warp-level GEMM
instruction fetches input data. This instruction is the key contributor to most of the sparse matrix
acceleration methods. The reasons are as followed.

As shown in Fig 2, the OVW pattern-based sparse convolution can be broken down into multiple dense
matrix multiplications of smaller sizes. During the loading process of a dense convolution procedure,
a column of filter data loaded into shared memory shares a specific position on the filter map. In
the meantime, a continuous block in the feature map is loaded accordingly to prepare convolution.
Several columns fetched from the filters together form the left input matrix of the block matrix
multiplication and their corresponding feature data blocks form the right input matrix. Noticing that
this forming process of input matrix does not require the loaded filter columns to be continuous,
meaning that efficient dense operations can also be performed by grouping some unrelated columns.
Based on this observation, we could take in multiple columns of irrelevant column indices from the
OVW pattern sparse matrix and handle them in the same way as the dense GEMM operation. This
similarity between our convolution algorithm and the implicit GEMM convolution guarantees us
similar overall computation efficiency.

What’s more, other sparsity such as the Shfl_BW pattern who is actually a variant of this pattern,
uses an extra channel reordering procedure to gather block-wise pattern utilities. The OVW pattern,
however, could be directly used in our convolution algorithm which denotes a higher acceleration
potential. Compared to N:M sparsity,one of the IVW pattern, our approach does not need specialized
hardware supports and it is much more elastic in selecting the sparsity ratio of each layer. Besides,
the IVW pattern still faces the memory-bound issue, because the amount of redundant data that needs
to be loaded into shared memory each time is equal to its sparsity ratio.

3.3 GPU Sparse Kernel Implementation

As shown in Algorithm 1, our convolution kernel implementation contains three steps. The first step
is to get the corresponding feature pointer offsets through original filter structure information recovery.
These parts of calculation are done by the function Cal_Thread_Offset. The second step is to

4



load data from both input matrices into shared memory. Some threads use the function load_column
to load a column vector of length TM from filters to shared memory with DY threads. Threads then
use the function load_row to load a row vector from the feature map in the same way. The third step
calls warp matrix multiplication operators. When calculating matrix AM×K × BK×N = CM×N

, a three dimension parallelism(DX,DY,DZ) thread is employed. (DX,DY,DZ) threads loop
along (M,N,K) individually. Several threads together use the function Warp_MMA to multiply
the loaded matrices and write back after results accumulation is finished. Each thread computes a tile
matrix multiplication of the size (TM, TN, TK).

The procedure of calculating the exact pointer offset of the feature map for corresponding filter
columns contains two steps. During a convolution computation, the corresponding location of
aij × bjk is not obvious. Hence after loading aij into shared memory, firstly, the GPU kernel has to
fetch the column indices of aij in the original filter. The column indices are then used to recover the
exact position of this column in the filter map. Subsequently, the location offset of the corresponding
data in the feature map is calculated, after which bjk can be finally located in the feature map.

Algorithm 1: Sparse convolution computation
Data: row_idx[], filter[], input[]
Result: output[]

1 Shared memory A[TM ][TK], B[TK][TN ], C[TM ][TN ];
2 for Thread idx=1 to DX, idy=1 to DY, idz=1 to DZ do
3 offset = Cal_Thread_Offset(row_idx[], idx, idy, idz);
4 if idx < TK then
5 Load_column(A, filter[idz][idx], TM , idy);
6 end
7 if idy < TK then
8 Load_row(B, input[offset], TN , idx);
9 end

10 Syncthreads();
11 Warp_MMA(A, B, idx, idy);
12 Accumulate_Results(C);
13 Store(output, C);
14 end
15 Return output;

If only the column indices of sparse matrices are stored, their location information has to be recovered
each time before the corresponding activation is loaded. Like the location offset in the feature map,
the corresponding data location in the filter map could be prepared in advance. Because it is a constant
for each thread during the whole process. Extra storage occupation of this technique is two extra
dimension indices data array of filter map, which takes merely 3% total storage of a compressed
model with vector length=64, and 6% with vector length=32, in exchange for 10% run time reduction
of Resnet50’s convolution layers on average. Considering that a sparse model is already highly
compressed, this additional model redundancy is totally acceptable.

4 Pruning Algorithm

In this section, we introduce our pruning algorithm for the OVW pattern, including the channel
permutation technique and our method to acquire a desired permutation order for it.

4.1 Channel Permutation

Our pruning method can be divided into two steps: shuffling the filter matrix rows in each layer and
applying vector-wise pruning.

Here we will explain why filter permutation will do no harm to the network inference. Matrix multi-
plication only swaps the order in the output dimension and does not change the actual computation.
Permuted operation results can be recovered through a reversed permutation of the operand output.
As we only permute the output channel of each layer, the permuted order of the current layer will be

5



Figure 3: Illustration of the permutation transfer process. The permuted matrix kept a larger amount
of absolute weight value after pruning at the same sparsity. Following activation is recovered by
permuting the output channel of layer k and the input channel of layer k+1 simultaneously.

absorbed by the input channel dimension of the next GEMM-based layer(convolution or linear). Fig 3
shows one iteration for channel permutation between layerk and layerk+1. As we have reordered the
output channel of layerk, the activationk is changed to the same order, but after we permute the input
channel of layerk+1, activationk+1 is restored. More weights value could be saved after permutation.
The same operation is then repeated on layerk+1 and so on until every GEMM layer in the network is
permuted. This permutation transfer procedure allows us to choose an appropriate permutation row
order for every filter without altering the output of the network.

The rest of the layers such as the pooling layers and the activation layers involve no modification
along channel dimension thus are not affected by this process. The BN layers and the bias added at
the end of convolution layers and linear layers do not produce any new permutation order, but they
have to permute according to the permutation passing through.

4.2 Row Clustering

Algorithm 2: Row clustering
Data: The original weight W , number of clusters k, number of selected column m.
Result: The reordered weight RW .

1 RW = empty;
2 while W is not empty do
3 Sort the columns of W by column variance;
4 Build SampleW by selecting columns with the top-m largest variances;
5 Get the k clustered groups G = Balanced_kmeans(SampleW , k);
6 Select the group g with maximum sum;
7 Append g to RW ;
8 Remove g from W ;
9 end

10 Return RW ;

We use a row clustering method to obtain an appropriate permutation order. A heuristic indicator
evaluating the quality of a permutation is the sum of absolute weight value being pruned, assuming
that the method that the preservation of more important weights corresponds to less inference accuracy
loss. An obvious route is that the weight rows with shorter distances are assigned to the same group as

6



Table 1: Network accuracy on Cifar100. V is the vector length of the OVW pattern. V for Vgg19 and
Resnet is set to 64 for all layers. For SqueezeNet and MobileNetv2, the V value in the table is our
average vector length of the whole network as we select an optimal V for each layer.

Network Vgg19 Resnet18 Resnet50 SqueezeNet MobileNetv2

Baseline dense 71.41 77.19 78.60 71.01 68.99

Unstructured
80%

71.62(±0.11) 76.42(±0.04) 77.99(±0.08) 70.27(±0.15) 68.89(±0.06)
OVW 71.36(±0.04) 73.67(±0.35) 75.80(±0.16) 69.05(±0.12) 68.31(±0.11)

OVW permuted 71.46(±0.06) 74.23(±0.22) 75.99(±0.18) 69.29(±0.15) 68.52(±0.05)
∆ +0.10 +0.56 +0.19 +0.24 +0.21
V 64 64 64 44.48 32.02

Unstructured
90%

71.35(±0.05) 74.87(±0.07) 78.02(±0.04) 70.29(±0.16) 68.40(±0.19)
OVW 71.29(±0.03) 71.14(±0.10) 72.72(±0.13) 65.69(±0.59) 66.07(±0.64)

OVW permuted 71.37(±0.19) 72.25(±0.15) 73.26(±0.22) 65.80(±0.73) 67.46(±1.03)
∆ +0.08 +1.11 +0.54 +0.11 +1.39
V 64 64 64 44.48 32.02

much as possible. Shfl_BW chooses the kmeans method for clustering, but after careful experiment,
we found that the kmeans method does not suit this issue well. For starters, the number of elements
in each group is set to be a fixed value (vector length), and kmeans requires additional operations to
meet this demand. Also, the data dimension(input channel multiplies filter height and width) is too
large, while the amount of data and groups is relatively small. Kmeans falls in local minima easily
and the output cluster is extremely unstable. We introduced the balanced kmeans[13] to solve it and
modified it to palliate both symptoms mentioned above.

Algorithm 2 shows the key steps of our algorithm. First, we construct a characteristic matrix by
assembling rows with the highest variance, then cluster rows of this matrix to alleviate excessive
dimension. We utilize balanced kmeans to get equal size clusters. In each iteration of balanced
kmeans, instead of assigning each data vector to its nearest cluster center as the origin kmeans
algorithm, a distance matrix between all the vectors and the current cluster centers is formed. We
minimize the sum of distance while each cluster contains the same amount of data vector. This
minimization problem can be converted to bipartite matching and we employ the Kuhn-Munkres
algorithm to solve it. Secondly, for each clustering result, we only adopt the most important group
under this feature to increase operation stability. This group is removed from the original matrix and
then the feature matrix is reconstructed and clustered. Repeat the above steps until all data grouping
completes, the permuted matrix and its permuting order is obtained.

5 Evaluation

5.1 Model Accuracy

We evaluate our method on several popular CNN models on NVIDIA V100 GPU. We only calculate
the speedup of the convolution layers in the following results. Table 1 shows the accuracy of our
method compared to unstructured sparsity where V stands for vector length. “OVW permuted” shows
a better accuracy over “OVW non-permuted” on all CNN models.

The upper bound of V in our kernel implementation is 64 and we tend to make it as large as possible
to maximize shared memory usage. However, group convolution has no filter data reusage for vector
length larger than its group size. Similarly, V is set to 1 in depthwise convolution layers. Besides that,
the first convolution layer of SqueezeNet has only 96 output channels. If the vector length is 64, the
second tile in the output channel dimension only processes 32 rows which is only half loaded. In
this case, vector length is set to 32 to maximize computation resource utilization. The V selection
strategy here is to maximize V while utilizing shared memory resources as much as possible.

All the results in this table use the same fine-tuning process. We fine-tune each network for 40 epochs
after pruning with the same learning rate of 0.0008. Also, each layer can hold different sparsity ratio
credit to our acceleration for convolution at low sparsity ratio.

7



Figure 4: Speed comparison between our sparsity convolution kernel and two GEMM-based convolu-
tion in cuDNN library on NVIDIA V100 GPU.

Table 2: Comparing sparsity patterns on Resnet50 for ImageNet classification. Speedup of unstruc-
tured spasity is the same as dense because the fastest way to run it is to invoke the dense convolution
kernel.

Network Sparsity ratio Accuracy Speedup

Baseline Dense 76.12 1×
Balanced sparsity (2:4)[15] 50% 76.29 1.3×
Shfl_BW [9] 90% 73.09 2.5×
OVW 30% 76.17 1.38×
OVW 50% 75.76 1.86×
OVW 70% 73.35 2.79×

Figure 5: Speed up against the dense baseline on Resnet50 Cifar100 comparing to other vector-level
sparse patterns on NVIDIA V100 GPU.

8



5.2 Convolution Kernel Speedup

As shown in Fig 4, we evaluate the speedup of our method on three popular CNN models. We use the
cuDNN convolution operator as the dense baseline. The first three graphs in Fig 4 represent three
typical convolution shapes in CNN models: small channel size with a large feature map, medium
channel size with a medium feature map, and large channel size with a small feature map. Our kernel
can accelerate all these types of convolution layers while exceeds at the twelfth convolution layer of
Resnet50 which is the most used kind of convolution layer 4.8× and 3.87× over cuDNN on V100 at
80% sparsity, vector lengths 64 and 32.

5.3 Comparing Different Sparsity Patterns

We replicate two vector-level sparsity pattern, balanced sparsity(NVIDIA 2:4)[15] and Shfl_BW
[9] for comparison. Other vector-level sparsity patterns such as Tile-wise[5] are slower than the
former two patterns. Also, these patterns lack implementation for convolution.

Table 2 shows results of Resnet50 on ImageNet directly copied from Shfl_BW paper, where an
expensive method Grow and Prune[12] is used to recover its accuracy. Grow and Prune is a sparsity
pattern independent method. We fine-tune our pretrained Resnet50 model for 20 epochs with the
learning rate of 0.001. We lower the sparsity of our network to 70% where our method demonstrates
73.35% top1 accuracy and 2.79× speedup. Our method exhibits an obviously better speed-accuracy
tradeoff compared to the Shfl_BW. The OVW pattern also achieves a better speedup compared to
balanced sparsity while recovering the full accuracy of the original model.

To ensure fair comparison, we reproduce these results under the same setting on Resnet50 and
Cifar100, as shown in Fig 5. We fine-tune each network for 40 epochs after pruning from pretrained
dense models with the same learning rate of 0.0008. The OVW pattern dominates the speed-accuracy
trade-off in vector-level sparsity.

6 Conclusion

Accelerating sparse convolution poses a greater challenge than accelerating sparse matrix multipli-
cation. In this work, we propose a novel sparsity pattern, the OVW pattern to facilitate the sparse
convolution acceleration under intact accuracy. Although, limitations exist that our method relies
heavily on the hardware supports for the implicit GEMM convolution algorithm. The performance of
our base dense kernel against the commodity unpublished ones is unstable. Our method does not
acquire the same amount of acceleration rate on matrix multiplication and the acceleration rate of
our method is subject to filter shape. Its performance also degrades in specialized convolution layers
where data reusage opportunity is limited. In consideration of this, our GPU implementation still
largely outperforms all sparse acceleration approaches exceedingly with a sparse pattern of similar
flexibility. We hope this work can fill the vacancy of specialized sparse convolution kernel design and
our methodology can inspire further research in this domain.

Acknowledgement

We gratefully acknowledge the support of MindSpore, CANN (Compute Architecture for Neural
Networks) and Ascend AI Processor used for this research.

This work is partially supported by the National Key R&D Program of China(under Grant
2017YFA0700902), the NSF of China(under Grants 61925208, 61732020, U19B2019), Strate-
gic Priority Research Program of Chinese Academy of Science (XDB32050200), Beijing Academy
of Artificial Intelligence (BAAI), CAS Project for Young Scientists in Basic Research(YSBR-029),
Youth Innovation Promotion Association CAS and Xplore Prize.

References
[1] MegEngine:A fast, scalable and easy-to-use deep learning framework. 2020.

[2] Cao Shijie, Zhang Chen, Yao Zhuliang, Xiao Wencong, Nie Lanshun, Zhan Dechen, Liu
Yunxin, Wu Ming, Zhang Lintao. Efficient and effective sparse LSTM on FPGA with bank-

9



balanced sparsity // Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. 2019. 63–72.

[3] Gale Trevor, Zaharia Matei, Young Cliff, Elsen Erich. Sparse gpu kernels for deep learning //
SC20: International Conference for High Performance Computing, Networking, Storage and
Analysis. 2020. 1–14.

[4] Gray Scott, Radford Alec, Kingma Diederik P. Gpu kernels for block-sparse weights // arXiv
preprint arXiv:1711.09224. 2017. 3. 2.

[5] Guo Cong, Hsueh Bo Yang, Leng Jingwen, Qiu Yuxian, Guan Yue, Wang Zehuan, Jia Xiaoying,
Li Xipeng, Guo Minyi, Zhu Yuhao. Accelerating sparse dnn models without hardware-support
via tile-wise sparsity // SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. 2020. 1–15.

[6] Han Song, Mao Huizi, Dally William J. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding // arXiv preprint arXiv:1510.00149.
2015.

[7] Han Song, Pool Jeff, Tran John, Dally William. Learning both weights and connections for
efficient neural network // Advances in neural information processing systems. 2015. 28.

[8] He Kaiming, Zhang Xiangyu, Ren Shaoqing, Sun Jian. Deep residual learning for image
recognition // Proceedings of the IEEE conference on computer vision and pattern recognition.
2016. 770–778.

[9] Huang Guyue, Li Haoran, Qin Minghai, Sun Fei, Din Yufei, Xie Yuan. Shfl-BW: Accelerating
Deep Neural Network Inference with Tensor-Core Aware Weight Pruning // arXiv preprint
arXiv:2203.05016. 2022.

[10] Li Hao, Kadav Asim, Durdanovic Igor, Samet Hanan, Graf Hans Peter. Pruning filters for
efficient convnets // arXiv preprint arXiv:1608.08710. 2016.

[11] Liu Zhuang, Sun Mingjie, Zhou Tinghui, Huang Gao, Darrell Trevor. Rethinking the value of
network pruning // arXiv preprint arXiv:1810.05270. 2018.

[12] Ma Xiaolong, Qin Minghai, Sun Fei, Hou Zejiang, Yuan Kun, Xu Yi, Wang Yanzhi, Chen Yen-
Kuang, Jin Rong, Xie Yuan. Effective Model Sparsification by Scheduled Grow-and-Prune
Methods // arXiv preprint arXiv:2106.09857. 2021.

[13] Malinen Mikko I, Fränti Pasi. Balanced k-means for clustering // Joint iapr international
workshops on statistical techniques in pattern recognition (spr) and structural and syntactic
pattern recognition (sspr). 2014. 32–41.

[14] Mishra Asit, Latorre Jorge Albericio, Pool Jeff, Stosic Darko, Stosic Dusan, Venkatesh Ganesh,
Yu Chong, Micikevicius Paulius. Accelerating sparse deep neural networks // arXiv preprint
arXiv:2104.08378. 2021.

[15] Pool Jeff, Yu Chong. Channel Permutations for N: M Sparsity // Advances in Neural Information
Processing Systems. 2021. 34.

[16] Sui Yang, Yin Miao, Xie Yi, Phan Huy, Aliari Zonouz Saman, Yuan Bo. CHIP: CHannel
Independence-based Pruning for Compact Neural Networks // Advances in Neural Information
Processing Systems. 2021. 34.

[17] Wen Wei, Wu Chunpeng, Wang Yandan, Chen Yiran, Li Hai. Learning structured sparsity in
deep neural networks // Advances in neural information processing systems. 2016. 29.

[18] Zhang Xiang, Zhao Junbo, LeCun Yann. Character-level convolutional networks for text
classification // Advances in neural information processing systems. 2015. 28.

[19] Zhou Aojun, Ma Yukun, Zhu Junnan, Liu Jianbo, Zhang Zhijie, Yuan Kun, Sun Wenxiu, Li Hong-
sheng. Learning n: m fine-grained structured sparse neural networks from scratch // arXiv
preprint arXiv:2102.04010. 2021.

10



[20] Zhou Yangjie, Yang Mengtian, Guo Cong, Leng Jingwen, Liang Yun, Chen Quan, Guo Minyi, Zhu
Yuhao. Characterizing and Demystifying the Implicit Convolution Algorithm on Commercial
Matrix-Multiplication Accelerators // 2021 IEEE International Symposium on Workload
Characterization (IISWC). 2021. 214–225.

[21] Zhu Maohua, Zhang Tao, Gu Zhenyu, Xie Yuan. Sparse tensor core: Algorithm and hardware
co-design for vector-wise sparse neural networks on modern gpus // Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture. 2019. 359–371.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

11


	Introduction
	Related work
	Software-only Acceleration For Sparse CNN Model
	GEMM Based Convolution

	Accelerating Sparse Convolution
	The OVW Pattern
	The OVW Pattern's Advantage in Convolution Computation
	GPU Sparse Kernel Implementation

	Pruning Algorithm
	Channel Permutation
	Row Clustering

	Evaluation
	Model Accuracy
	Convolution Kernel Speedup
	Comparing Different Sparsity Patterns

	Conclusion

