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Figure 2: Left, Asymptotic confidence: We plot the mean confidence in the predicted in-distribution
class for different models as one moves away from CIFAR100 samples along the trajectories x+ αn,
where n ∈ [−0.5, 0.5]d and α ≥ 0. Only GOOD and ProoD converge to uniform confidence. Right,
Adversarial asymptotic confidence: We try to find adversarial directions in which ProoD remains at
a constant high confidence, as opposed to converging to low confidence. We plot the maximum of
p̂(i|x) across 100 adversarially chosen directions as one moves further in these directions by factors
of α. Note that p̂(i|x)→ 0 implies p̂(y|x)→ 1

K .

A Adversarial Asymptotic Overconfidence

According to the authors of [20], under mild conditions, we should expect to find asymptotic
overconfidence in all ReLU networks and almost all directions. In order to empirically evaluate this,
we take different models that were trained on CIFAR10 and evaluate their confidence on different
CIFAR100 samples. For each sample x we track the confidence, maxk p̂(k|x), along a trajectory in a
uniform noise direction x+αn, where n ∈ [−0.5, 0.5]d and α ≥ 0. The mean confidence across 100
such trajectories is shown on the left side of Figure 2. Even the models that produce low confidences
on the original OOD sample asympotically converge to maximal confidence far away. The only
exceptions here are GOOD and ProoD and only ProoD can guarantee that the confidence cannot
converge to 1.

However, even though the architecture provably prevents arbitrarily overconfident predictions and
Theorem 1 ensures that most directions will indeed converge to uniform, it is, in principle, possible to
find directions where the confidence p̂(i|x) remains constant if the condition Ux ̸= 0 in Theorem 1
is not satisfied. We attempted to find such directions by running the following type of attack. We
start from a random point x ∈ [−0.5, 0.5]d that we project onto a sphere of radius 100. We now run
gradient descent (for 20000 steps), maximizing g(x) while projecting onto the sphere at each step
(unnormalized gradients with step size 0.1 for the first 10000 steps and 0.01 for the last 10000 steps).
We then increase the radius to 1000 and run an additional 20000 steps with step size 0.1. We rescale
the resulting direction vector down to an l∞-ball of norm 1 and compute the confidence p̂(i|x) as a
function of the scaling in the adversarial directions. We show the resulting scale-wise maximum over
100 adversarial directions in Figure 2. Note that even the worst-case over 100 adversarially found
directions decays to 0 asymptotically, thus empirically confirming the practical utility of Theorem 1.
Note that the value of p̂(i|x) converging to 0 implies that the confidence of the ProoD model p̂(y|x)
converges to 10%.

In Figure 2 GOOD also stands out as having low confidence in all directions that we studied. This
is because in all the asymptotic regions that we looked at, the pre-activations of the penultimate
layer are all negative. If one moves outward and these pre-activations only get more negative in all
directions far away from the data, the confidence does, in fact, remain low. Unfortunately, it also leads
to gradients that are precisely zero, which is why the same attack can not be applied here. However,
there is no guarantee that GOOD does not also get in some direction asymptotically overconfident.
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Table 3: Architecture: The architectures that are used for the binary discriminators. Each convolu-
tional layer is directly followed by a ReLU.

CIFAR R.ImgNet

Conv2d(3, 128) Conv2d(3, 128)
Conv2d(128, 256)s=2 AvgPool(2)
Conv2d(256, 256) Conv2d(128, 256)s=2
AvgPool(2) AvgPool(2)
FC(16384, 128) Conv2d(256, 256)
FC(128, 1) AvgPool(2)

FC(50176, 128)
FC(128, 1)

B Separate Training for ProoD

In Section 2.1 we describe semi-joint training of p̂(y|x). However, as pointed out in that section, it
is possible to separately train a certifiable binary discriminator p̂(i|x) and an OOD aware classifier
p̂(y|x, i) and to then simply combine them via Eq. (2). We call this method separate training ProoD-S
and evaluate it by using an OE trained model for p̂(y|x, i). The two versions of the methods ProoD
and ProoD-S are also described in Algorithm 1 and Algorithm 2. We show the results in Table 4,
where we repeat the results for OE and ProoD for the reader’s convenience. Note that OE and
ProoD-S must always have the same accuracy on the in-distribution since they use the same model
for classification (note that (2) preserves the ranking of p̂(y|x, i)).
We see that the AUCs of ProoD-S are almost identical to those of OE. Without almost any loss in
performance ProoD-S manages to provide non-trivial GAUCs. However, as one would expect, the
semi-jointly trained ProoD provides stronger guarantees at similar clean performance. Nonetheless,
this post-hoc method of adding some amount of certifiability to an existing system may be interesting
in applications where retraining a deployed model from scratch is infeasible.

Table 4: Separate training: Addendum to Table 2 showing the AUCs, GAUCs and AAUCs of
ProoD-S on all datasets. The accuracy must always be identical to that of OE and the clean AUCs
are also very similar to those of OE. The guarantees are almost always strictly weaker than those
provided by the semi-jointly trained ProoD.
In: CIFAR10 CIFAR100 SVHN LSUN_CR Smooth

Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

OE 94.91 91.1 0.0 0.9 97.3 0.0 0.0 100.0 0.0 2.7 99.9 0.0 1.5
ProoD-S ∆=3 94.91 89.3 44.7 45.3 97.3 51.8 52.6 100.0 56.7 57.7 99.9 36.7 37.6
ProoD ∆=3 94.99 89.8 46.1 46.8 98.3 53.3 54.1 100.0 58.3 59.7 99.9 38.2 38.8
In: CIFAR100 CIFAR10 SVHN LSUN_CR Smooth

Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

OE 77.25 77.4 0.0 0.2 92.3 0.0 0.0 100.0 0.0 0.7 99.5 0.0 0.5
ProoD-S ∆=5 77.25 77.4 17.2 17.3 92.3 19.5 19.6 100.0 22.4 22.6 99.5 9.0 9.1
ProoD ∆=5 77.16 76.6 17.3 17.4 91.5 19.7 19.8 100.0 22.5 23.1 98.9 9.0 9.0

In: R.ImgNet Flowers FGVC Cars Smooth
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

OE 97.10 96.9 0.0 0.2 99.7 0.0 0.4 99.9 0.0 1.8 98.0 0.0 1.9
ProoD-S ∆=4 97.10 96.9 50.1 50.7 99.7 59.7 60.6 99.9 57.9 58.9 98.0 40.8 42.3
ProoD ∆=4 97.25 96.9 57.5 58.0 99.8 67.4 67.9 99.9 65.7 66.2 98.6 52.7 53.5
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C Proof of Theorem 1

The following result of [20] basically says that as one moves to infinity by upscaling a vector one
eventually ends up in a polytope which extends to infinity. We use this in the proof of our Theorem.
Lemma 1 ([20]). Let {Qr}Rr=1 be the set of convex polytopes on which a ReLU-network f : Rd →
RK is an affine function, that is for every k ∈ {1, . . . , R} and x ∈ Qk there exists V k ∈ RK×d

and ck ∈ RK such that f(x) = V kx + ck. For any x ∈ Rd with x ̸= 0 there exists α ∈ R and
t ∈ {1, . . . , R} such that βx ∈ Qt for all β ≥ α.

Theorem 1. Let x ∈ Rd with x ̸= 0 and let g : Rd → R be the ReLU-network of the binary
discriminator (with the last activation being a non-leaky ReLU). Denote by {Qr}Rr=1 the finite set
of polytopes on which g is affine (exists by Lemma 1 in App. C). Denote by Qt the polytope such
that βx ∈ Qt for all β ≥ α and let x(L−1)(z) = Uz + d with U ∈ RnL−1×d and d ∈ RnL−1 be the
output of the pre-logit layer of g for z ∈ Qt. If Ux ̸= 0, then limβ→∞ p̂(y|βx) = 1

K .

Proof. We note that with a similar argument as in the derivation of (4) it holds

p̂(y|βx) ≤ p̂(i|βx) + 1

K

(
1− p̂(i|βx)

)
=

K − 1

K
p̂(i|βx) + 1

K
. (13)

Using Lemma 1 we know that there exist a polytope Qt such that βx ∈ Qt for all β ≥ α. Thus for
all β ≥ α it holds that βx ∈ Qt so that

p̂(i|βx) = 1

1 + e−g(βx)
=

1

1 + e

〈
W

(Lg)
g ,Uβx+d

〉
+b

(Lg)
g

.

As x(L−1)
i (x) ≥ 0 for all x ∈ Rd it has to hold (βUx+ d)i ≥ 0 for all β ≥ α and i = 1, . . . , nL−1.

This implies that (Ux)i ≥ 0 for all i = 1, . . . , nL−1 and since Ux ̸= 0 there has to exist at least one
component i∗ such that (Ux)i∗ > 0. Moreover, W (Lg)

g has strictly negative components and thus for
all β ≥ α it holds

g(βx) =
〈
W (Lg)

g , Uβx+ d
〉
+ b(Lg)

g = β
〈
W (Lg)

g , Ux
〉
+
〈
W (Lg)

g , d
〉
+ b(Lg)

g .

As
〈
W

(Lg)
g , Ux

〉
< 0 we get limβ→∞ g(x) = −∞ and thus

lim
β→∞

p̂(i|βx) = 0.

Plugging this into (13) yields the result.

D Experimental Details

Datasets We use CIFAR10 and CIFAR100 [29] (MIT license), SVHN [43] (free for non-commercial
use), LSUN [55] (no license), the ILSVRC2012 split of ImageNet [16, 49] (free for non-commercial
use), FGVC-Aircraft [38] (free for non-commercial use), Stanford Cars [26] (free for non-commercial
use), OpenImages v4 [30] (images have a CC BY 2.0 license), Oxford 102 Flower [45] (no license)
as well as 80M Tiny Images [52] (no license given, see also App. E). For the train/test splits we use
the standard splits, except on 80M Tiny Images where we treat a random but fixed subset of 1000
images in the first 1,000,000 as our test set. For all datasets that get used as a test out-distribution we
use a random but fixed subset of 1000 images.

Following [8], the smooth noise that is used is generated as follows. Uniform noise is generated and
then smoothed using a Gaussian filter with a width that is drawn uniformly at random in [1, 2.5]. Each
datapoint is then shifted and scaled linearly to ensure full range in [0, 1], i.e. x′ = x−min(x)

max(x)−min(x) .

Binary Training The architecture that we use for the binary discriminator is relatively shallow (5
linear layers). The architecture is shown in Table 3. Our results are fairly robust to the exact choice
of architecture and significantly larger models do not necessarily lead to better results as we show in
App. H. Similarly to [56, 8], we use long training schedules, running Adam for 1000 epochs, with an
initial learning rate of 1e− 4 that we decrease by a factor of 5 on epochs 500, 750 and 850 and with a
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Algorithm 1 Training of ProoD

Require: Training data on in-distribution (X,Y )Nn=1 and out-distribution (Z)Mm=1, untrained classi-
fier fθ, untrained binary discriminator gη , adversarial radius ϵ, batch size b, number of classes K,
bias shift ∆
for t in discriminator training steps do ▷ Train the binary discriminator

x← sample minibatch from X
z ← sample minibatch from Z
loss← 0
for r in 1..b do ▷ Parallelized in practice

zr ← Clip(zr − ϵ, 0, 1) ▷ Keeps perturbed values in box
zr ← Clip(zr + ϵ, 0, 1)
gr ← IntervalBoundPropagation(gη, zr, zr) ▷ An algorithm that provides upper bounds

on the output of gη
loss← loss + 1

b log
(
1 + e−gη(xr)

)
+ 1

b log (1 + eḡr)
end for
η ← SGD_Update(η, loss, t)

end for
gη ← gη +∆ ▷ Apply the bias shift
for t in classifier training steps do ▷ Train the classifier using semi-joint training

x, y ← sample minibatch from X,Y
z ← sample minibatch from Z
loss← 0
for r in 1..b do

pi ← SoftMax(fθ(xr), yr) · Sigmoid(gη(xr)) +
1
K

(
1− Sigmoid(gη(xr))

)
po ← 1

K

(
1− Sigmoid(gη(zr))

)
+ 1

K

∑K
c=1 SoftMax(fθ(zr), c) · Sigmoid(gη(zr))

loss← loss + 1
bpi +

1
bpo

end for
θ ← SGD_Update(θ, loss, t) ▷ Only θ gets updated - not η.

end for

batch size of 128 from the in-distribution and 128 from the out-distribution (for R.ImgNet: 50 epochs
with drops at 25, 35, 45, batch sizes 32). In order to avoid large losses we also use a simple ramp up
schedule for the ϵ used in IBP and we downweight the out-distribution loss during the initial phase
of training by a scalar κ. Both ϵ and κ are increased linearly from 0 to their final values (0.01 and
1, respectively) over the first 300 epochs (for R.ImgNet over the first 25 epochs). Compared to the
training of [8] which sometimes fails, we found that training of the binary discriminator is very stable
and even 100 epochs on CIFAR would be sufficient, but we found that longer training lead to slightly
better results. Weight decay is set to 5 · 10−4, but is disabled for the weights in the final layer. As
data augmentation we use AutoAugment [14] for CIFAR and simple 4 pixel crops and reflections on
R.ImgNet. The strict negativity of the weights leads to a negative bias of g which can cause problems
at an early stage if the b

(Lg)
g is initialized at 0 and thus we choose 3 as initialization. All binary

discriminators were trained on single 2080Ti GPUs, managed on a SLURM cluster. Overall, the
training of a provable discriminator takes around 16h on CIFAR and 44h on R.ImgNet (wall clock
time including evaluations and logging on each epoch).

Semi-Joint Training On CIFAR we train for 100 epochs using SGD with momentum of 0.9 and a
learning rate of 0.1 that drops by a factor of 10 on epochs 50, 75 and 90 (on R.ImgNet 75 epochs
with drops at 30 and 60). For all datasets we train using a batch size of 128 (plus 128 out-distribution
samples in the case of OE). The CIFAR experiments were run on single 2080Ti GPUs. This takes
about 4h20min in wall clock time. In order to fit batches of 128 in-distribution samples and 128
out-distribution samples on R.ImgNet we had to train using 4 V100 GPUs in parallel. Because of
batch normalization in multi-GPU training it is important to not simply stack the batches but to
interlace in- and out-distribution samples. The wall clock time was around 15h for the semi-joint
training on R.ImgNet. For selecting the bias we use the procedure described in Section 4. The
trade-off curves for the AUC and GAUC on CIFAR100 and R.ImgNet are given in Figure 3.
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Algorithm 2 Training of ProoD-S

Require: Training data on in-distribution (X,Y )Nn=1 and out-distribution (Z)Mm=1, untrained classi-
fier fθ, untrained binary discriminator gη , adversarial radius ϵ, batch size b, number of classes K,
bias shift ∆
for t in discriminator training steps do ▷ Train the binary discriminator

x← sample minibatch from X
z ← sample minibatch from Z
loss← 0
for r in 1..b do ▷ Parallelized in practice

zr ← Clip(zr − ϵ, 0, 1) ▷ Keeps perturbed values in box
zr ← Clip(zr + ϵ, 0, 1)
gr ← IntervalBoundPropagation(gη, zr, zr) ▷ An algorithm that provides upper bounds

on the output of gη
loss← loss + 1

b log
(
1 + e−gη(xr)

)
+ 1

b log (1 + eḡr)
end for
η ← SGD_Update(η, loss, t)

end for
gη ← gη +∆ ▷ Apply the bias shift
for t in classifier training steps do ▷ Train the classifier completely separately

x, y ← sample minibatch from X,Y
z ← sample minibatch from Z
loss← 0
for r in 1..b do

pi ← SoftMax(fθ(xr), yr) ▷ The difference to Alg. 1 is here.
po ← 1

K

∑K
c=1 SoftMax(fθ(zr), c) ▷ Note that gη does not appear in this loss.

loss← loss + 1
bpi +

1
bpo

end for
θ ← SGD_Update(θ, loss, t)

end for

E 80M Tiny Images as Training Out-Distribution

The 80M Tiny Images dataset has been retracted by the authors due to concerns over offensive class
labels [6]. We support the decision of the community to move away from the use of 80M Tiny Images,
so we choose to train our CIFAR models using a downscaled version of OpenImages v4 [30] as a
training out-distribution. However, since all prior work used this dataset, we present results on 80M
Tiny Images here in order to compare ProoD’s performance to prior baselines. We encourage the
community to use the results in Table 2 for future comparisons.

Our results on 80M Tiny Images are shown in Table 5. Apart from the models shown in Table 2
we add here the pre-trained energy-based OOD detector EB from [34] as an additional baseline for
clean OOD detection. As EB is not trained robustly, as expected EB has low AAUCs. In terms of
clean OOD detection it performs similarly to OE but with worse results on the more difficult OOD
detection task CIFAR10 vs CIFAR100 and vice versa. For GOOD we use the pre-trained models
from [8]. For ATOM and ACET we use the pre-trained models from [9]. Note that these use the
densenet architecture and were actually trained to withstand attacks in the much stronger threat
model of ϵ = 8

255 . In the original paper, the authors claim near perfect AAUCs on this task but we
can show that this is a case of gross overestimation of robustness. Even on the easier threat model
ϵ = 0.01 that we test in Table 5, their robustness is almost non-existent for both ATOM models and
the CIFAR100 ACET model. The fact that their adversarial attacks were unable to find these samples
clearly demonstrates that evaluating models adversarially is very difficult and potentially unreliable.
Because of this we believe that our guarantees are a valuable contribution to the community.

F False Positive Rates

Since in a practical setting a threshold for OOD detection ultimately has to be chosen, it can be
interesting to study the false positive rate at a fixed threshold. It is relatively standard to pick the
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Figure 3: Bias selection for CIFAR100 and RImgNet: Using CIFAR10 (top), CIFAR100 (middle)
and R.ImgNet (bottom) as the in-distribution and the test set of OpenImages (or NotR.ImgNet
respectively) as OOD we plot the test accuracy, AUC and GAUC as a function of the bias shift ∆
(see Eq. (9)).

false positive rate at 95% true positive rate (called FPR in Table 6), where low values are desirable.
We show the results for all methods and datasets in Table 6. Although ProoD has similarly good
performance as OE on this task, it fails to give non-trivial guarantees. Therefore achieving stronger
bounds on the worst-case FPR is an interesting task for future work.

G Additional Datasets

In addition to the results shown in Table 2, it is interesting to study how ProoD performs on additional
datasets as well as the test set of the out-distribution it was trained on. For the CIFAR datasets, we
report LSUN crops, LSUN_resize, Places365 [57], iSUN [54], Textures [11], 80M Tiny Images and
uniform noise in Table 7. On RImgNet we report uniform noise and the training out-distribution in
Table 8.

As in Table 2 the clean performance of ProoD is comparable to that of OE, but it achieves non-trivial
GAUC. On CIFAR10, GOOD100 achieves almost perfect GAUC against uniform noise, which comes
at the price of significantly worse clean AUCs on all other out-distributions, see Table 2. Almost all
methods achieve very high AAUCs on uniform noise, but it is not clear if a sufficiently powerful attack
could lower those scores significantly. The unusually large gap between the GAUC and AAUC of
ProoD would seem to indicate that that might be the case. Surprisingly, the robustness characteristics
of both ATOM and ACET vary wildly between the different datasets, sometimes appearing to be
perfectly robust and on other datasets displaying no robustness at all. Especially surprising are the
relatively low AAUCs on the test set of the training out-distribution.
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Table 5: Training with 80M Tiny Images: We repeat the evaluation from Table 2 for models that
were trained using 80M Tiny Images as out-distribution instead of OpenImages. Plain is identical
to before and is just repeated for the reader’s convenience. Note that the conclusions from the
main paper still hold, which indicates that our method is robust to changes in the choice of training
out-distribution. For ATOM and ACET we compare to pre-trained models from [9]. Note that these
models show almost no robustness on CIFAR100 - despite the far stronger claims in [9]. Models with
accuracy drop of > 3% relative to the model with highest accuracy are grayed out. Of the remaining
models, we highlight the best OOD detection performance.
In: CIFAR10 CIFAR100 SVHN LSUN_CR Smooth

Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 95.01 90.0 0.0 0.6 93.8 0.0 0.1 93.1 0.0 0.5 98.2 0.0 0.6
OE 95.53 96.1 0.0 6.0 99.2 0.0 0.4 99.5 0.0 15.2 99.0 0.0 11.3
EB⋆ 95.22 93.8 0.0 2.8 99.3 0.0 0.0 99.5 0.0 6.0 99.4 0.0 3.5
ATOM† 95.20 93.7 0.0 14.4 99.6 0.0 8.6 99.7 0.0 40.0 99.6 0.0 18.8
ACET† 91.48 91.2 0.0 80.5 95.3 0.0 87.6 98.9 0.0 95.0 99.9 0.0 98.3
GOOD80* 90.13 87.2 42.5 63.9 94.2 37.5 67.4 93.3 55.2 83.6 95.3 57.3 88.5
GOOD100* 90.14 70.7 54.5 55.0 74.9 56.3 56.6 75.2 61.0 61.6 81.4 66.6 67.5
ProoD-Disc - 67.4 61.0 61.7 73.2 65.5 66.4 78.0 72.2 72.7 82.3 71.5 72.9
ProoD ∆=3 95.47 96.0 41.9 43.9 99.5 48.8 49.4 99.6 47.6 53.1 99.7 55.8 57.0
In: CIFAR100 CIFAR10 SVHN LSUN_CR Smooth

Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 77.38 77.7 0.0 0.3 81.9 0.0 0.2 76.4 0.0 0.3 88.8 0.0 0.5
OE 77.28 83.9 0.0 0.8 92.8 0.0 0.1 97.4 0.0 4.6 97.6 0.0 0.9
EB⋆ 75.70 77.4 0.0 0.8 96.5 0.0 0.0 96.7 0.0 5.9 98.9 0.0 4.3
ATOM† 75.06 64.3 0.0 0.2 93.6 0.0 0.2 97.5 0.0 9.3 98.5 0.0 15.0
ACET† 74.43 79.8 0.0 0.2 90.2 0.0 0.0 96.0 0.0 2.1 92.9 0.0 0.3
ProoD-Disc - 53.8 50.3 50.4 73.1 69.8 69.9 68.1 63.8 64.0 67.2 63.8 63.9
ProoD ∆=1 76.79 80.5 23.1 23.2 93.7 33.9 34.0 97.2 29.6 30.4 98.9 29.7 31.3
⋆ Pre-trained WideResnet from [34].
†Densenet architecture, using models from [9] pre-trained with ϵ = 8

255 .
*CNN architecture using pre-trained models from [8].

H Size Ablation for Binary Discriminator

Since larger models should typically lead to better performance, we investigated the impact that
model size has on the performance of our binary discriminator. We retrained ProoD-Disc models
with CIFAR10 as in-distribution and 80M Tiny images as the out-distribution (since our dataloader
is faster than for OpenImages which speeds up training). Since longer schedules only slightly
improve results we also used shorter schedules with only 300 epochs where ϵ and κ linearly increase
from 0 to 0.01 and 1.0 respectively within the first 100 epochs and the learning rate drops occur
at 150, 200 and 250 epochs. As architectures we use 10 different CNNs with different widths and
depths ranging from 5 to 8 layers (for the precise architectures please refer to sizes {S, XL_b, XS,
SR, SR2, C1, C3s, C3, C2, C4} in the file provable_classifiers.py of the code provided at
https://github.com/AlexMeinke/Provable-OOD-Detection). We present scatter plots of the
models’ their performance on CIFAR100 and 80M Tiny Images in Figure 4 against their size. Clearly,
there is no correlation between model size and performance and most differences are rather small,
justifying our choice of a fairly small architecture in the main paper.

I Generalization to Larger Threat Model

Since ϵ = 0.01 is a relatively weak threat model we evaluate if ProoD’s guarantees actually generalize
to the much stronger ϵ = 8

255 ≈ 0.031 that is standard in much of the literature on adversarial
robustness. We use the exact same CIFAR models from Table 2 and show the results of our evaluation
at ϵ = 8

255 in Table 9.

21

https://github.com/AlexMeinke/Provable-OOD-Detection


Table 6: False positive rates: For all models we report accuracy on the test of the in-distribution and
the false positive rate at 95% true positive rate (FPR) (smaller is better). We also show the adversarial
FPR (AFPR) and the guaranteed FPR (GFPR) for different test out-distributions. The radius of the
l∞-ball for the adversarial manipulations of the OOD data is ϵ = 0.01 for all datasets. The bias shift
∆ that was used for ProoD is shown for each in-distribution. ProoD struggles to give non-trivial
guarantees for the FPR@95% on most datasets. However, different from GOOD or ProoD-Disc, the
clean performance is generally as good as that of OE. Models with accuracy drop of > 3% relative
to the model with highest accuracy are grayed out. Of the remaining models, we highlight the best
OOD detection performance.
In: CIFAR10 CIFAR100 SVHN LSUN_CR Smooth

Acc FPR GFPR AFPR FPR GFPR AFPR FPR GFPR AFPR FPR GFPR AFPR

Plain 95.01 56.3 100.0 100.0 40.7 100.0 100.0 46.7 100.0 100.0 10.6 100.0 100.0
OE 94.91 52.2 100.0 99.9 15.4 100.0 100.0 0.0 100.0 99.0 0.0 100.0 99.0
ATOM 93.63 73.4 100.0 98.8 33.9 100.0 100.0 85.3 100.0 100.0 0.0 100.0 86.1
ACET 93.43 65.4 100.0 99.5 3.0 100.0 99.8 62.7 100.0 100.0 0.0 100.0 89.0
GOOD80 87.39 65.1 100.0 84.8 26.8 100.0 48.8 6.0 100.0 24.7 19.6 100.0 52.8
GOOD100 86.96 84.8 100.0 99.3 87.9 100.0 99.7 66.0 100.0 99.0 68.6 100.0 98.2
ProoD-Disc - 83.9 87.5 87.2 76.9 84.9 84.2 76.7 85.3 84.7 96.6 98.4 98.4
ProoD ∆=3 94.99 48.0 99.9 99.7 9.1 100.0 100.0 0.0 100.0 98.7 0.0 100.0 100.0

In: CIFAR100 CIFAR10 SVHN LSUN_CR Smooth
Acc FPR GFPR AFPR FPR GFPR AFPR FPR GFPR AFPR FPR GFPR AFPR

Plain 77.38 80.1 100.0 100.0 77.3 100.0 100.0 79.0 100.0 100.0 70.0 100.0 100.0
OE 77.25 81.8 100.0 100.0 37.7 100.0 100.0 0.0 100.0 99.7 0.0 100.0 100.0
ATOM 68.32 81.3 100.0 99.6 51.0 100.0 97.4 26.3 100.0 94.7 10.0 100.0 86.0
ACET 73.02 87.9 100.0 100.0 8.2 100.0 100.0 87.0 100.0 100.0 0.0 100.0 98.2
ProoD-Disc - 95.9 97.5 97.5 91.3 92.8 92.7 91.7 95.3 95.0 100.0 100.0 100.0
ProoD ∆=5 77.16 82.2 100.0 100.0 37.6 100.0 100.0 0.0 100.0 99.3 3.4 100.0 100.0

In: R.ImgNet Flowers FGVC Cars Smooth
Acc FPR GFPR AFPR FPR GFPR AFPR FPR GFPR AFPR FPR GFPR AFPR

Plain 96.34 55.2 100.0 100.0 48.2 100.0 100.0 75.2 100.0 100.0 0.0 100.0 100.0
OE 97.10 18.2 100.0 100.0 0.2 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0
ProoD-Disc - 59.2 65.2 65.0 51.0 67.8 66.5 51.7 63.7 62.3 100.0 100.0 100.0
ProoD ∆=4 97.25 18.5 100.0 100.0 0.5 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0

Perhaps surprisingly, ProoD’s guarantees generalize remarkably well to the much larger radius on
CIFAR10. The same holds for GOOD, as was already observed in [8]. ATOM and ACET are
not robust at this radius, despite having lower accuracy, lower clean OOD performance and more
expensive training. On the other hand ProoD’s guarantees on CIFAR100 are quite weak at this radius,
but given ATOM’s and ACET’s low AAUCs here and the fact that GOOD cannot be trained at all on
CIFAR100, the results are not worse than for the competitors.

J Error Bars

In order to be mindful of our resource consumption we restrict the computation of error bars to
our experiments on CIFAR10. Additionally, because the dataloader was much faster we ran these
experiments using 80M Tiny Images as an out-distribution as opposed to OpenImages. We reran
our experiments using the same hyperparameters 5 times. We computed the mean and the standard
deviations for our models for all metrics shown in Table 5. The results are shown in Table 10. We see
that the fluctuations across different runs are indeed rather small. Furthermore, the clean performance
of OE and ProoD show no significant discrepancies.
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Table 7: Additional datasets: We show the AUC, AAUC and GAUC for all models on uniform noise
and on the test set of the train out-distribution. Models with accuracy drop of > 3% relative to the
model with highest accuracy are grayed out. Of the remaining models, we highlight the best OOD
detection performance.
In: CIFAR10 LSUN LSUN_resize Places365 iSUN

Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 95.01 95.9 0.0 1.3 95.0 0.0 8.7 89.5 0.0 0.3 94.5 0.0 10.4
OE 94.91 98.7 0.0 0.9 97.4 0.0 6.1 99.9 0.0 2.5 97.6 0.0 9.4
ATOM 93.63 77.3 0.0 12.1 100.0 0.0 98.4 82.6 0.0 22.0 100.0 0.0 98.8
ACET 93.43 89.2 0.0 2.5 100.0 0.0 91.3 88.0 0.0 3.4 100.0 0.0 92.1
GOOD80 87.39 96.5 68.4 89.7 87.4 61.7 69.5 96.8 58.8 90.2 87.1 58.9 70.3
GOOD100 86.96 95.0 86.0 86.7 81.1 67.6 67.9 74.4 59.7 60.9 77.5 63.3 65.2
ProoD-Disc - 95.8 94.1 94.2 76.4 70.3 71.5 76.6 71.1 71.5 74.9 69.0 70.3
ProoD ∆=3 94.99 99.2 82.2 82.3 97.1 57.7 59.2 99.9 58.7 59.6 97.1 56.4 58.1

In: CIFAR10 Uniform Textures 80M Tiny Images OpenImages
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 95.01 97.9 0.0 83.1 92.0 0.0 8.6 91.1 0.0 0.8 84.0 0.0 0.4
OE 94.91 99.9 0.0 98.2 99.9 0.0 13.8 93.6 0.0 0.6 99.7 0.0 2.5
ATOM 93.63 100.0 0.0 100.0 97.5 0.0 74.7 82.8 0.0 26.7 73.4 0.0 22.3
ACET 93.43 100.0 0.0 99.9 98.0 0.0 41.6 89.0 0.0 7.8 81.7 0.0 5.6
GOOD80 87.39 99.1 83.9 98.1 96.1 54.7 89.9 84.7 50.5 66.8 93.6 53.7 85.6
GOOD100 86.96 94.6 86.1 89.3 71.0 49.9 57.1 74.5 56.7 58.2 69.5 54.2 55.6
ProoD-Disc - 53.8 46.7 46.7 75.3 69.9 70.5 75.7 69.8 70.9 64.8 59.0 59.6
ProoD ∆=3 94.99 99.9 35.0 94.7 99.9 57.6 63.1 93.8 57.5 59.0 99.8 47.7 49.7
In: CIFAR100 LSUN LSUN_resize Places365 iSUN

Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 77.38 84.5 0.0 0.9 78.9 0.0 3.9 75.7 0.0 0.6 79.4 0.0 5.6
OE 77.25 94.5 0.0 1.3 88.2 0.0 2.1 99.7 0.0 1.9 88.3 0.0 3.1
ATOM 68.32 83.4 0.0 66.7 92.1 0.0 71.3 87.0 0.0 62.1 91.7 0.0 73.7
ACET 73.02 81.3 0.0 4.3 100.0 0.0 77.0 74.8 0.0 4.3 100.0 0.0 78.2
ProoD-Disc - 81.4 78.8 79.3 70.1 66.7 67.1 71.7 68.2 68.5 69.3 65.6 66.0
ProoD ∆=5 77.16 94.8 28.5 28.7 86.3 22.6 22.8 99.7 23.6 23.8 87.2 22.1 22.4
In: CIFAR100 Uniform Textures 80M Tiny Images OpenImages

Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 77.38 82.7 0.0 53.0 77.5 0.0 5.3 79.7 0.0 1.2 75.5 0.0 0.7
OE 77.25 99.3 0.0 91.4 99.0 0.0 7.5 80.2 0.0 1.5 99.6 0.0 1.0
ATOM 68.32 100.0 0.0 100.0 90.0 0.0 66.6 90.1 0.0 70.0 83.7 0.0 58.9
ACET 73.02 100.0 0.0 99.9 91.5 0.0 21.0 77.0 0.0 6.8 74.5 0.0 3.0
ProoD-Disc - 40.9 37.0 37.4 53.6 50.2 50.3 59.7 56.7 56.9 58.3 54.6 54.8
ProoD ∆=5 77.16 99.7 12.1 87.0 99.1 16.8 22.6 80.5 19.5 19.7 99.7 18.6 20.1

K Combining ProoD with a Robust Classifier

In this work we have provided guarantees on adversarially robust out-of-distribution detection that
do not come at the cost of accuracy. This is the main reason why we did not consider adversarial
robustness on the in-distribution since this is known to come at the cost of clean accuracy [53].
However, it is an interesting question if ProoD can nonetheless be applied to models that are also
adversarially robust on the in-distribution. In order to illustrate that it in fact can, we combine an
adversarially robust Resnet-18 [18] from RobustBench [12] with a robust accuracy of 58.5% at l∞
ϵ = 8/255 on CIFAR10 with our binary discriminator as described in App. B. We use the same bias
shift of ∆ = 3 as for our ProoD model on CIFAR10. We call the robust model "Robust" and the
combined model "Robust-ProoD". Note that because no retraining is necessary, both clean accuracy
and robust accuracy of both models are guaranteed to stay the same (ProoD does not change the
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Table 8: Additional datasets: For RImgNet, we show the AUC, AAUC and GAUC for all models on
uniform noise and on the test set of the train out-distribution, i.e. NotRImgNet.

In: R.ImgNet Uniform NotR.ImgNet
Acc AUC GAUC AAUC AUC GAUC AAUC

Plain 96.34 99.3 0.0 74.9 91.7 0.0 0.2
OE 97.10 99.6 0.0 84.6 98.7 0.0 1.2
ProoD-Disc - 99.7 99.2 99.3 73.6 69.9 69.9
ProoD ∆=4 97.25 99.8 79.7 95.2 98.6 50.1 51.3
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Figure 4: Bigger models do not yield better guarantees: We show scatter plots of the GAUC
of different architectures against the log of the number of trainable parameters in the model. The
orange cross indicates the architecture that is used in the main paper. There is no clear dependence of
performance on model size, so it is preferable to use fairly small models.

predictions). We evaluate the adversarial robustness on the out-distribution and report the results in
Table 11.

We can see that while the robust model already has remarkably strong empirical robustness on the
out-distribution, ProoD does not harm the OOD detection performance of the model - neither clean
nor adversarial. In fact, in all but a single case ProoD strictly improves the results (except for a 0.1%
drop in clean AUC on LSUN_CR). In addition to this, ProoD provides non-zero GAUCs as well as
the guarantees on asymptotically low confidence. The fact that ProoD operates so well in a regime
for which it was not designed highlights its versatility.
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Table 9: Generalization to Larger ϵ: We evaluate all CIFAR models in Table 2 using an ϵ = 8
255 ,

and thus an unseen threat model. The provable methods GOOD and ProoD generalize surprisingly
well, while neither ATOM nor ACET display any generalization to the larger threat model. l
In: CIFAR10 CIFAR100 SVHN LSUN_CR Smooth

Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 95.01 90.0 0.0 0.0 93.8 0.0 0.0 93.1 0.0 0.0 98.0 0.0 0.0
OE 94.91 91.1 0.0 0.1 97.3 0.0 0.0 100.0 0.0 0.1 99.9 0.0 0.0
ATOM 93.63 78.3 0.0 1.3 94.4 0.0 1.5 79.8 0.0 0.2 99.5 0.0 9.6
ACET 93.43 86.0 0.0 1.1 99.3 0.0 1.1 89.2 0.0 0.8 99.9 0.0 3.8
GOOD80* 87.39 76.7 37.5 51.6 90.8 38.6 74.3 97.4 57.6 90.2 96.2 61.1 87.8
GOOD100* 86.96 67.8 39.4 43.5 62.6 29.0 30.9 84.9 67.6 70.7 87.0 63.3 69.2
ProoD-Disc - 62.9 44.1 46.1 72.6 52.5 57.1 78.1 56.3 58.9 59.2 34.9 37.2
ProoD ∆=3 94.99 89.8 39.2 41.0 98.3 46.9 50.8 100.0 50.2 52.7 99.9 30.4 30.6
In: CIFAR100 CIFAR10 SVHN LSUN_CR Smooth

Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 77.38 77.7 0.0 0.4 81.9 0.0 0.2 76.4 0.0 0.3 86.6 0.0 0.3
OE 77.25 77.4 0.0 0.2 92.3 0.0 0.0 100.0 0.0 0.7 99.5 0.0 0.5
ATOM 68.32 78.3 0.0 10.4 91.1 0.0 15.2 95.9 0.0 23.0 98.2 0.0 23.5
ACET 73.02 73.0 0.0 1.4 97.8 0.0 0.7 75.8 0.0 2.6 99.9 0.0 3.8
ProoD-Disc - 56.1 41.1 43.1 61.0 50.5 51.8 70.4 57.5 58.8 29.6 20.9 20.8
ProoD ∆=5 76.51 76.6 13.7 14.1 91.5 16.9 16.9 100.0 18.1 18.2 98.9 8.1 8.1
In: R.ImgNet Flowers FGVC Cars Smooth

Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 96.34 92.3 0.0 0.0 92.6 0.0 0.0 92.7 0.0 0.0 98.9 0.0 0.0
OE 97.10 96.9 0.0 0.2 99.7 0.0 0.0 99.9 0.0 0.0 98.0 0.0 0.0
ProoD-Disc - 81.5 60.4 61.4 92.8 78.0 80.8 90.7 76.3 79.2 81.0 47.3 53.7
ProoD ∆=4 97.25 96.9 42.8 45.0 99.8 57.0 59.4 99.9 56.0 58.7 98.6 31.6 36.3

*Uses different architecture of classifier, see “Baselines” in Section 4.2.

Table 10: Error bars: We show the mean and standard deviation σ of all metrics for our CIFAR10
models across 5 runs. The tolerances for ProoD’s clean performance are very small and yet the
differences in clean performance between OE ProoD are not significant.
In: CIFAR10 CIFAR100 SVHN LSUN_CR Smooth

Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 94.91 90.0 0.0 0.6 93.9 0.0 0.1 93.4 0.0 0.7 96.7 0.0 1.2
Plain σ 0.16 0.1 0.0 0.1 1.2 0.0 0.0 0.3 0.0 0.2 2.1 0.0 0.5

OE 95.56 96.1 0.0 7.6 99.4 0.0 0.4 99.6 0.0 16.7 99.6 0.0 4.3
OE σ 0.04 0.1 0.0 1.5 0.1 0.0 0.2 0.1 0.0 3.5 0.3 0.0 3.7

ProoD-Disc - 67.7 61.6 62.2 75.5 68.6 69.3 76.5 70.4 70.9 87.2 77.7 78.8
ProoD-Disc σ - 0.7 0.7 0.7 1.4 1.7 1.5 1.4 1.7 1.7 3.6 4.3 4.3

ProoD ∆=3 95.60 96.0 42.2 44.1 99.4 48.6 49.2 99.6 47.1 52.0 99.8 55.2 57.0
ProoD ∆=3 σ 0.11 0.1 0.8 0.8 0.1 0.6 0.6 0.1 1.5 1.9 0.1 2.9 3.4

Table 11: Robust models: We report the OOD detection performance (AUCs, AAUCs and GAUCs)
of a model that is adversarially robust on the in-distribution for different test out-distributions. The
radius of the l∞-ball for the adversarial manipulations of the OOD data is ϵ = 0.01 for all datasets.
In: CIFAR10 CIFAR100 SVHN LSUN_CR Smooth

Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Robust 87.35 82.7 0.0 75.3 90.0 0.0 84.0 89.7 0.0 82.9 94.5 0.0 85.7
Robust-ProoD 87.35 82.9 14.3 75.6 90.4 17.9 84.5 90.1 18.8 83.4 94.4 10.3 85.8
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