
A Appendix A: Proofs

A.1 Proof of Proposition 3.1

We first prove the following Lemmas:

Lemma A.0.1. E[(L− τ)+] = E[(1− πτ )
∑∞
k=0 Sτ (k)] = E[(1− πτ )

∑∞
k=0

∏k
m=0(1− hτ (m))]

Proof. Note that we can write

(L− τ)+ =
∑
k≥0

1(L− τ > k) (14)

=
∑
k≥0

1(L > τ + k) (15)

Taking expectations and using the law of iterated expectations we have:

E[(L− τ)+] = E

∑
k≥0

E[1(L > τ + k)|Xτ ]

 (16)

= E

∑
k≥0

P(L > τ + k|Xτ )

 (17)

= E

∑
k≥0

(1− πτ )P(L > τ + k|Xτ , L ≥ τ) + πτP(L > τ + k|Xτ , L < τ)


= E

∑
k≥0

(1− πτ )P(L > τ + k|Xτ , L ≥ τ)

 (18)

= E

(1− πτ )∑
k≥0

Sτ (k)

 (19)

This proves the first equality in the lemma. Also, we have:

Sτ (k) = P(L > τ + k|Xτ , L ≥ τ)
= [1− P(L = τ |Xτ , L ≥ τ)][(1− P(L = τ + 1|Xτ , L ≥ τ)] · · · [(1− P(L = τ + k|Xτ , L ≥ τ)]

=

k∏
m=0

(1− hτ (m)) (20)

proving the second equality, and hence the lemma.

Lemma A.0.2. P(L ≤ τ) = E[(1− πτ )hτ (0) + πτ ]

Proof. Using the law of iterated expectations:

P(L ≤ τ) = E[1(L ≤ τ)] = E [E [1(L ≤ τ)|Xτ ]] (21)
= E[(1− πτ )P(L ≤ τ |Xτ , L ≥ τ) + πτP(L ≤ τ |Xτ , L < τ)] (22)
= E[(1− πτ )P(L = τ |Xτ , L ≥ τ) + πτ ] (23)
= E[(1− πτ )hτ (0) + πτ ] (24)
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Now we are ready to prove Proposition 3.1:

Starting with the OTI problem and using Lemmas A.0.1 and Lemma A.0.2, while also noting that the
critical event has a maximum duration Lmax <∞, so that Sτ (k) = 0,∀k ≥ Lmax, we have:

τ∗ = arg inf
τ
E

[
(1− πτ )

Lmax−1∑
k=0

k∏
m=0

(1− hτ (m)) + (1− πτ )Cαhτ (0) + πτCα

]
(25)

= arg inf
τ
E
[
(1− πτ )RH(Hτ ) + πτCα

]
(26)

where

RH(Hτ ) :=

Lmax−1∑
k=0

k∏
m=0

(1− hτ (m)) + Cαhτ (0) (27)

with Hτ = [hτ (0), hτ (1) · · ·hτ (Lmax − 1)]T . This completes the proof of Proposition 3.1

A.2 Proof of Theorem 4.1

The proof of this Theorem relies on the following key results from optimal stopping theory[9, 4, 11,
27] stated below.

Definition A.1 (Optimal stopping problem with Markov representation). An optimal stopping prob-
lem τ∗ = arg infτ E[R̃τ ], is said to have a Markov representation if the risk process can be expressed
as R̃j = gj(Xj) where the gj are a sequence of functions and {Xj} is a Markov process in the sense:
P(Xj+1|Xj) = P(Xj+1|Xj), ∀j.
Theorem A.1 (Optimal stopping policy for problems with Markov representation). Assume that
we have an optimal stopping problem with Markov representation, with associated risk process
R̃j = gj(Xj). The optimal stopping policy ϕ∗ and corresponding optimal stopping time τ∗ are
given by:

τ∗ = inf {j ≥ 1 : ϕj(Xj) = 1} , ϕ∗j (Xj) = 1(R̃j ≤ Ṽj(Xj)) (28)

where Ṽj(Xj) = ess infτ>j E[R̃τ |Xj ].4

Now we proceed to prove Theorem 4.1:

First, we show that the OTI problem for Markov hazard rate processes is an optimal stopping problem
with Markov representation.

Lemma A.1.1. Given a Markov hazard rate process {(Xj ,Hj)} with associated risk process {R̃j} =
{R(πj ,Hj)}, the optimal stopping problem τ∗ = arg infτ E[R̃τ ] has a Markov representation.

Proof. The process {Xj} is a Markov process by definition. Further, the risk process may be written
as R̃j = R(πj ,Hj) = g(Xj), since we have Hj = fj(Xj) and πj = 1(L < j|Xj) = ej(Xj)
where ej(·) and fj(·) are functions of Xj . Thus, a Markov hazard rate process meets both conditions
for an optimal stopping problem with a Markov representation.

Thus the consequences of Theorem A.1 hold. The optimal policy ϕ∗ calls for stopping at:

τ∗ = min
{
1 ≤ j < Lmax : ϕ∗j (Xj) = 1

}
, ϕ∗j (Xj) = 1(R̃j ≤ Ṽj(Xj)) (29)

where,
Ṽj(Xj) = ess inf

τ>j
E[R̃τ |Xj ] = min

0<l<Lmax−j
E[R̃j+l|Xj ] (30)

We either have πj = 0 or πj = 1. First, we consider the case when πj = 0, so 1(L ≥ j|Xj) = 1:

4Note that the essential infimum (ess inf) of a set of random variables X is any extended random variable Z
having the properties [27]
(i) P(Z ≤ X) = 1, ∀X ∈ X , and
(ii) {P(Y ≤ X) = 1, ∀X ∈ X} =⇒ P(Y ≤ Z) = 1, ∀X ∈ X .
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For l = 0, E[R̃j |Xj ] is the expected risk of stopping at time step τ = j. If the critical event does
not occur at time-step j, then the risk incurred by stopping at time-step j is the expected time to
event conditioned on L > j. Alternatively, if the critical event does occur at time-step j, stopping
effectively misses the event, accruing risk of Cα. Since the two cases occur with probabilities
(1− hj(0)) and hj(0) respectively, we have:

E[R̃j |Xj ] = (1− hj(0))
Lmax−1∑
k=0

Sj(k|L > j) + Cαhj(0) (31)

Since Sj(k|L > j) =
Sj(k)
Sj(0)

=
Sj(k)

(1−hj(0)) :

E[Rj |Xj ] =

Lmax−1∑
k=0

Sj(k) + Cαhj(0) =

Lmax−1∑
k=0

k∏
m=0

(1− hj(m)) + Cαhj(0) (32)

For l = 1, E[R̃j+1|Xj ] is the expected risk of stopping at time step τ = j + 1. If the critical event
does not occur at time j and j + 1, then the risk incurred by stopping at j is the expected time to
event conditioned on L > j + 1. Alternatively, if the critical event does occur at either time j or
j + 1, a policy that contemplates stopping at j + 1 effectively misses the event, accruing risk of Cα.
Since the two cases occur with probabilities (1− hj(0))(1− hj(1)) and [hj(0) + (1− hj(0))hj(1)]
respectively, we have:

E[R̃j+1|Xj ] = (1−hj(0))(1−hj(1))
Lmax−2∑
k=0

Sj(k+1|L > j+1)+Cα[hj(0)+(1−hj(0))hj(1)]

(33)
Since Sj(k + 1|L > j + 1) =

Sj(k+1)
Sj(1)

=
Sj(k+1)

(1−hj(0)(1−hj(1)) :

E[R̃j+1|Xj ] =

Lmax−2∑
k=0

Sj(k + 1) + Cα[hj(0) + (1− hj(0))hj(1)] (34)

=

Lmax−2∑
k=0

k+1∏
m=0

(1− hj(m)) + Cα[hj(0) + (1− hj(0))hj(1)] (35)

Extending this approach we may write the expected risk of stopping l steps ahead of the current step
as:

E[R̃j+l|Xj ] =

Lmax−l−1∑
k=0

Sj(k + l) + Cαhj(0) + Cα

l∑
m=1

[
m−1∏
k=0

(1− hj(k))

]
hj(m) (36)

=

Lmax−l−1∑
k=0

k+l∏
m=0

(1− hj(m)) + Cαhj(0) + Cα

l∑
m=1

[
m−1∏
k=0

(1− hj(k))

]
hj(m)

By equation (30) the continuation value function Ṽj(Xj) for the optimal stopping rule is:

min
0<l<Lmax−j

{
Lmax−l−1∑

k=0

k+l∏
m=0

(1− hj(m)) + Cαhj(0) + Cα

l∑
m=1

[
m−1∏
k=0

(1− hj(k))

]
hj(m)

}
:= Vj(Hj) (37)

Next, we consider the case when πj = 1, so 1(L < j|Xj) = 1:

In this case, R̃j = Cα. Also, E[R̃j+l|Xj ] = Cα, ∀l > 0. Therefore, Ṽj(Xj) = Cα, so it is optimal
to trigger intervention, setting ϕ∗j (Xj) = 1.

Finally, we have ϕ∗Lmax−1(Xj) = 1, by definition, giving rise to the final form of the optimal policy.

This completes the proof of Theorem 4.1
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A.3 Proof of Corollary 4.1.1

Note that when πj = 0, the immediate stopping risk for time j can be written as:

R̃j =

Lmax−1∑
k=0

Sj(k) + Cαhj(0) (38)

= Tj + Cαhj(0) (39)

where Tj is the expected time to event having observed Xj . We note from equation (37) that the
term hj(0)Cα is also always present in the continuation value function Vj(Hj). This allows us to
cancel this term on both sides of the inequality defining the optimal stopping policy, resulting in the
simplified rule written in terms of Tj as:

ϕ∗j (Xj) =
{
1(Tj ≤ V

′

j (Hj)), if j < Lmax − 1 and πj = 0
1, else

(40)

where,

V
′

j (Hj) = min
0<l<Lmax−j

{
Lmax−l−1∑

k=0

k+l∏
m=0

(1− hj(m)) +

l∑
m=1

[
m−1∏
k=0

(1− hj(k))hj(m)

]
Cα

}
(41)

This completes the proof of Corollary 4.1.1

B Model hyper-parameter settings

Table 1: model hyper-parameters
Hyper-parameter Description value

encoder look-back encoder input time-steps 128
batch size 512 512
learning rate (WBI) model selected from {0.1, 0.01, 0.001, 0.0001} 0.001
learning rate (OTI, TTE) model selected from {0.1, 0.01, 0.001, 0.0001} 0.01
epochs early stopping on validation loss patience: 10
batches per epoch training batches for one epoch 100
WBI window (W ) selected from {8, 16, 32, 64} 16
encoder/decoder hidden units 16
WBI intervention threshold tuned in range [0, 1] step size: 0.001
TTE intervention threshold tuned in range [0, 1]. Threshold applied to T̂j

Lmax
step size: 0.001

Decoder max steps (training) M steps before censoring kicks in 64
λ for DDRSA loss 0.75
optimizer Adam

C Experiments on synthetic data

In this section we further validate the OTI policy by constructing synthetic data for which the optimal
policy appears to be a static threshold. We show empirically that the threshold function of the OTI
policy does indeed approach static thresholds for this problem.

Synthetic failure data: A dataset of 512 series of length 300 time steps each was prepared by
selecting a random change point 10% to 35% from the end of the series. A Normal distribution with
µf = 0.2, σf = 1 was used to draw i.i.d. samples representing co-variates in the region after the
change point (failure region) while a Normal distribution with mean µ0 = 0, σ0 = 0.8 was used to
draw i.i.d. samples representing normal behavior in the period before the change point. The start
of each sequence is randomly chosen in the range 0% to 50% of max sequence length, from the
beginning of the series.
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(a) Synthetic data: trade-off plot
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(b) Synthetic data:OTI-policy in action.

Figure 4: Experiments on synthetic failure data.

Figure 4 shows the trade-off curves for this case. The results suggest that threshold policies seem to
be optimal for this problem. We can see this empirically by observing the OTI policy on an example
sequence. We see that the threshold function of the OTI policy does approach a constant threshold
level. This experiment raises the question: Under what conditions are static threshold intervention
policies optimal? This is a topic for future work.
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