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Abstract

Providing a timely intervention before the onset of a critical event, such as a system
failure, is of importance in many industrial settings. Before the onset of the critical
event, systems typically exhibit behavioral changes which often manifest as stochas-
tic co-variate observations which may be leveraged to trigger intervention. In this
paper, for the first time, we formulate the problem of finding an optimally timed
intervention (OTI) policy as minimizing the expected residual time to event, subject
to a constraint on the probability of missing the event. Existing machine learning
approaches to intervention on critical events focus on predicting event occurrence
within a pre-defined window (a classification problem) or predicting time-to-event
(a regression problem). Interventions are then triggered by setting model thresholds.
These are heuristic-driven, lacking guarantees regarding optimality. To model the
evolution of system behavior, we introduce the concept of a hazard rate process.
We show that the OTI problem is equivalent to an optimal stopping problem on the
associated hazard rate process. This key link has not been explored in literature.
Under Markovian assumptions on the hazard rate process, we show that an OTI
policy at any time can be analytically determined from the conditional hazard
rate function at that time. Further, we show that our theory includes, as a special
case, the important class of neural hazard rate processes generated by recurrent
neural networks (RNNs). To model such processes, we propose a dynamic deep
recurrent survival analysis (DDRSA) architecture, introducing an RNN encoder
into the static DRSA setting. Finally, we demonstrate RNN-based OTI policies
with experiments and show that they outperform popular intervention methods.

1 Introduction

We consider a problem that involves the monitoring of observations from a discrete-time stochastic
process with the goal of intervening to prevent the costly occurrence of a critical event in the future. A
critical event is missed when intervention is not triggered before the critical event occurs. Intervening
too soon, before the critical event occurs, also incurs cost. In general, delaying an intervention
in order to be more confident of the intervention decision leads to an increased probability of
missing the event. The general goal is the design of algorithms that can be used to trigger a timely
intervention. The objective is to intervene as late as possible, by minimizing residual time-to-event
subject to a constraint on the probability of missing the event. We term this problem the Optimally
Timed Intervention problem (OTI Problem). Note that we are concerned only with the timing of an
intervention, not with its effectiveness in mitigating the occurrence of the critical event.
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The OTI problem has significant practical significance in a number of fields. Critical events could be,
for example, the failure of a machine or key component, customer churn, or a fall that could result in
death. Contemplated interventions in these cases could be a machine or part replacement, sending
a marketing offer, or a move to managed care, respectively. Intervening on such events ahead of
time, in an optimal manner is of great significance to businesses and society, due to the potential of
mitigating the impact of the occurrences of these events. However, the literature formally studying
this problem has remained sparse.

1.1 Outline of contributions

The OTI problem is hard since evolution towards a critical event is complex with typically scarce
occurrences of critical events. We make the following contributions to the study of the OTI problem:

• A process under observation may exhibit degradation/disorder as it evolves towards a critical
event. We capture this feature by introducing the concept of a hazard rate process, which is
a stochastic process modeling the evolution of conditional hazard rates as new observations
are taken. A key contribution of our work is to formalize the OTI problem in equation (OTI
problem) and show that the OTI problem is equivalent to an optimal stopping problem on the
underlying hazard rate process (Proposition 3.1). This allows us to tap into optimal stopping
theory [37, 9, 4] to unlock the structure of OTI policies and also leverage computational
methods of estimating/learning hazard rate functions. These are key to our development of a
general machine learning approach to the OTI problem.

• Under Markovian assumptions on the hazard rate process, we show that the optimal interven-
tion policy decision rule at each time step can be analytically determined by the conditional
hazard rate function at that time step (Theorem 4.1). Further we show that the optimal policy
reduces to a variable threshold on the expected time-to-event(Corollary 4.1.1), showing that
static threshold policies are sub-optimal in general.

• We show that our theory applies to an important class of hazard rate processes generated by
recurrent neural networks (Section 5). We term these processes neural hazard rate processes.
We may therefore apply survival analysis methods to learn such neural hazard rate processes
and analytically compute optimal intervention policies for critical events. We adapt the state
of the art deep dynamic survival analysis (DRSA) work [29] to our setting. Unlike DRSA,
our dynamic DRSA (DDRSA) setting requires modeling dynamic hazard rate functions. We
do this by adapting the DRSA architecture to our dynamic covariate evolution setting using
an encoder-decoder sequence-to-sequence (seq2seq) architecture.

2 Optimally Timed Interventions (OTI) on critical events

2.1 Notation

We represent the monitored stochastic process by a discrete, temporal sequence of random variables
with the random vector Xj representing a d-dimensional real-valued observation at time step j.
Let the d × j random matrix Xj = [X1,X2, · · ·Xj ] represent the observation history until time
step j. The critical event is assumed to occur at a random time-step L ≤ Lmax

2, Lmax ∈ N. An
intervention at time step j is considered early if the intervention occurs at a time-step j < L. We
consider interventions at j ≥ L late, by definition. We assume, without loss of generality, that
interventions are instantaneous. If a fixed lead time of δ time-steps is required for an intervention,
we may simply consider the random variable L′ = L − δ as the event occurrence time-step and
seek timely intervention before L′. For any process realization, at a time-step j, we assume that we
know with certainty, if the critical event has already occurred at a prior time-step or not. We define
πj := 1(L < j|Xj) = 1(L < j|Xj). πj serves to indicate if the critical event has already occurred
(πj = 1) or not (πj = 0) prior to time step j, given Xj .

Given a dataset of process trajectories along with corresponding critical event occurrences, we seek
intervention strategies for timely intervention. We consider data-driven sequential decision rules
(intervention policies) that are defined as follows:

2This upper bound assumption does not pose practical limitations due to our survival analysis approach. We
may treat unobserved critical events as censored. See Section 5.1 for details
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Definition 2.1 (Intervention policies). An intervention policy is a sequence of functions ϕ =
(ϕ1, ϕ2, · · ·ϕj , · · · ), where ϕj : Rd×j 7→ {0, 1} maps the history of observations at a time step j to
a decision of whether to intervene (ϕj(Xj) = 1) or not (ϕj(Xj) = 0).

We define ϕLmax−1(XLmax−1) := 1 to ensure that we have at least one decision to intervene before
Lmax. Thus, for technical completeness, we assume observations can be taken until Lmax − 1. In
cases where the occurrence of the critical event makes it impossible to collect further observations in
practice, we can can simply fill such observations with dummy values (ex: zeros) without any loss
of generality since these observations are not predictive of the critical event, and therefore do not
feature in computing optimal intervention decisions (see discussion of Proposition 3.1).

The intervention policies we consider in this paper are terminal, so only a single intervention is
contemplated on each process realization. Once the first decision to intervene is triggered on a given
realization of the monitored process, the policy effectively stops, i.e. an intervention action is assumed
to be initiated and all future policy triggers for that process realization are ignored. Note however,
that we can allow for policy reactivation after recovering from the critical event. The observations
starting at such policy reactivations are treated as independent realizations of the process. So if we
recover from the occurrence of a first critical event and re-activate the policy to to monitor for a
second second critical event, these cases will be considered as independent trials.

Definition 2.2 (policy stopping time). Intervention on a monitored process happens at a random time
step τ := min{0 < j < Lmax : ϕj(Xj) = 1}. We call this time the stopping time 3 of the policy.

2.2 Optimally timed intervention (OTI) on critical events

We now formally state the optimally timed intervention (OTI) problem for the first time. We seek
to find intervention policy (or equivalently, the stopping time) that minimizes expected residual
time-to-event, defined as E[(L − τ)+] subject to the constraint that the probability of missing the
critical event is at most α ∈ (0, 1]:

τ∗ = arg inf
τ∈Mα

E[(L− τ)+] where:Mα = {0 < τ < Lmax : P(L ≤ τ) ≤ α} (1)

The expected residual time-to-event is a variant of mean residual life (MRL), a quantity that is well
studied in literature with application in multiple domains [1, 14]. Note that there exists a multiplier
Cα, such that the OTI problem may be expressed in the following equivalent, unconstrained form:

τ∗ = arg inf
0<τ<Lmax

E[(L− τ)+] + CαP(L ≤ τ) for some Cα > 0 (OTI problem)

The objective encodes the natural trade-off between expected residual time-to-event, and the proba-
bility of missing the critical event: as one attempts to intervene closer to the event, the probability of
missing the event goes up. Cα can directly be interpreted as the risk (cost) of missing the critical event.
Changing Cα allows one to vary the risk trade off between the miss-rate and expected time-to-event.
Note that the theory allows observations after an intervention in the problem formulation. So an
intervention policy can consider these covariates and fire multiple times, however, the OTI objective
function in equation (OTI problem) is designed to consider only the first policy trigger due to the fact
that the stopping time τ is set based on the first policy trigger (see definition 2.2).

A related objective also appears in optimal stopping formulations for Bayesian quickest change
point detection problem [35], famously called the Shirayaev problem [27], where the objective is
to monitor a stochastic process for the quickest possible detection of a change point or stochastic
disorder. Here the trade-off is between stopping early (a false alarm), before a change point manifests,
versus incurring the expected delay in detecting a change point, after it has occurred. The goal is
to minimize expected detection time delay from the true change point subject to a constraint on the
probability of a false alarm.

3a stopping time in probability theory is random a variable τ such that 1(τ = j) is a function of Xj . So we
can determine if τ = j or not by only considering Xj [27].
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2.3 Related work

Existing widely used approaches to timely intervention on critical events focus on predicting event
occurrence with either a classification or regression problem formulation. Interventions are triggered
by tuning model thresholds, a process which lacks any guarantee on optimality:

Window based critical event prediction: Intervention is a binary decision. At each time-step a
decision must be made to intervene or not. In window based intervention (WBI) this is often modeled
directly as a binary classification problem where we look for event occurrence within a specified future
window. A classifier may then be learnt to predict the probability of event occurrence in the window.
An optimal threshold on this probability is then tuned to choose an optimal intervention trigger
threshold. WBI policies are standard practice in predictive maintenance[31, 2, 20, 2, 36, 38, 13].

Time-to-Event prediction (Survival analysis): Classical survival analysis deals with predicting the
time to an event (ex: death, machine failure) given a vector of observations (co-variates) obtained
from a subject in the presence of incomplete (censored) observations [21]. The goal is to estimate
functions such as the hazard rate (rate of death as a function of time) or survival function (probability
of survival past a given time) and understand the impact of co-variates on these functions. Classical
parametric models [10, 39] have been extended in recent work using machine learning approaches
[40, 17, 5, 28, 19] including approaches that extend survival analysis to model the time-varying
effects of covariates [33, 3]. These have deep learning counterparts [29, 12] that use recurrent neural
networks to model the survival function. Recent work has applied modern deep learning approaches
to longitudinal data which are sequential observations taken over time for each subject. [15, 18, 16].
Corresponding work also exists in the area of machine failure prediction [24]. These methods are
complementary to the primary goal of this paper where we focus on obtaining optimal intervention
policies. In practice, intervention policies based on survival analysis are typically just thresholds on
the predicted time-to-event.

3 OTI as an optimal stopping problem

Definition 3.1 (Optimal Stopping Problem). A problem of the form: τ∗ = arg infτ E [Rτ (Xτ )]
where Rj(·) is a risk function, τ is a stopping time, and {Xj} is a stochastic process.

Optimal stopping problems [37, 9, 4] are a subclass of stochastic control problems with only two
possible actions, stop and continue. The goal is to determine when to stop, based on the observations,
so that overall expected cost/risk over possible stopping times, is minimized. Optimal stopping
techniques have been applied to several problems such as sequential hypothesis testing [37, 11, 7]
(the sequential probability ratio test (SPRT)), early change point detection [27, 35, 34, 30] (the
Shirayaev problem), early classification [23] and reliability theory [6, 22]. However, the approaches
in such cases are limited to simple probabilistic models of machine degradation with a single or few
co-variates. General model-free reinforcement learning approaches to the optimal stopping problem
are generally feasible in situations where we have a lot of data or in a model-based setting where the
underlying randomness can efficiently be simulated and the model can be used to draw Monte-Carlo
samples [8]. This is not an option in most critical event prediction settings when the critical event
data is often scarce and no simple model exists for the evolution of the co-variates.

In this section we formulate the OTI problem as an optimal stopping problem. Our formulation
of the OTI problem in this section, establishes, for the first time, a link between the OTI problem,
survival analysis (allowing the modeling of complex co-variate evolution with impact on critical-event
occurrence) and optimal stopping theory. We model the dependence of the critical event time on the
monitored covariate observations by hazard rate functions conditioned on observation history. To this
end, we will use the following definitions of a conditional hazard rate function, hj(·), and conditional
survival function, Sj(·):

hj(k) := P(L = j + k|Xj , L ≥ j) Sj(k) := P(L > j + k|Xj , L ≥ j) (2)
Note that we have omitted the implied conditioning on the covariates in our notation for hj(k), purely
for convenience. We now define the concept of a hazard rate process that encodes the relationship
between the evolution of co-variates and onset of the critical event.

Definition 3.2 (Hazard Rate Process). Consider the random vector constructed from the conditional
hazard rate function hj(·) given by Hj = [hj(0), hj(1) · · ·hj(Lmax − 1)]T . We call the sequence
of tuples {(Xj ,Hj)} a hazard rate process.
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3.1 OTI as an optimal stopping problem on a hazard rate process

Proposition 3.1 (OTI on a hazard rate process). Given a hazard rate process {(Xj ,Hj)}, the optimal
critical event intervention problem of equation (OTI problem) reduces to the following optimal
stopping problem on the corresponding hazard rate processes:

τ∗ = arg inf
0<τ<Lmax

E
[
(1− πτ )RH(Hτ ) + πτCα

]
:= arg inf

0<τ<Lmax

E [R(πτ ,Hτ )] (3)

where RH(Hτ ) is the intervention risk of stopping at time τ , given that the critical event has not
already occurred prior to τ , given by:

RH(Hτ ) =

Lmax−1∑
k=0

k∏
m=0

(1− hτ (m)) + Cαhτ (0) (4)

Proof. We only give a proof sketch here. The proof of the theorem is given in Appendix A. Starting
with terms in the OTI problem: for residual time to event we may write (L− τ)+ =

∑
k≥0 1(L >

τ+k), and then use the law of iterated expectations, E[(L−τ)+] = E[
∑
k≥0 E[1(L > τ+k)|Xτ , L ≥

τ ](1−πτ )]. We see that this expression is E[(1−πτ )
∑
k≥0 Sτ (k)] = E[(1−πτ )

∑
k≥0

∏k
m=0(1−

hτ (m))]. Similarly, we have P(L ≤ τ) = E[(1− πτ )hτ (0) + πτ ]. Therefore the OTI objective may
be expressed as E [R(πτ ,Hτ )] = E

[
(1− πτ )RH(Hτ ) + πτCα

]
.

Note that the formulation of equations (3) and (4) exposes the dependence of the OTI objective on the
co-variates, since hτ (.) depends on the covariates. This was implicit in the original formulation in the
previous section. A key observation is that if the critical event has already occurred (when πτ = 1),
the objective reduces to a constant (Cα), independent of the co-variates, and policy actions have no
influence on the objective. Hence, we may effectively restrict our attention to the case πτ = 0.

4 Analytic solution to the OTI problem

In order to solve the OTI optimal stopping problem we make the assumption that the hazard rate
processes we deal with satisfy the Markov property:

Definition 4.1 (Markov hazard rate process). Consider the hazard rate process {(Xj ,Hj)}. We call
it a Markov hazard rate process, if we have:

P(Xj+1|Xj) = P(Xj+1|Xj) ∀j (5)

As a consequence, we can write Hj = fj(Xj) where fj(·) is a function encoding the dependence of
the hazard rates on the co-variates at time-step j. With this assumption in place, we have:
Theorem 4.1 (OTI policy for a Markov hazard rate process). Given a Markov hazard rate process
{(Xj ,Hj)} and associated risk process {RH(Hj)}, the optimal intervention policy that solves
the problem posed in Proposition 3.1 is a policy ϕ∗ that calls for intervention at stopping time
τ∗ = min{0 < j < Lmax : ϕ∗j (Xj) = 1} where:

ϕ∗j (Xj) =
{
1(RH(Hj) ≤ Vj(Hj)), if j < Lmax − 1 and πj = 0

1, else (6)

with continuation value functions Vj(Hj) given by:

min
0<l<Lmax−j

Lmax−l−1∑
k=0

k+l∏
m=0

(1− hj(m)) + Cαhj(0) + Cα

l∑
m=1

[
m−1∏
k=0

(1− hj(k))

]
hj(m) (7)

Proof. We only give a proof sketch here. The complete proof of the theorem is given in Appendix
A. The key is to notice that under the Markov hazard rate process assumption, and the form of of
equations (3) and (4), that risk R̃j = R(πj ,Hj) is a function of Xj , so we have an optimal stopping
problem that has a so-called Markov Representation [27]. The optimal policy has can be expressed
as ϕ∗j (Xj) = 1(R̃j ≤ Ṽj(Xj)) with Ṽj(Xj) = minl>0 E[R̃j+l|Xj ]. So we need only compute
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E[R̃j+l|Xj ], which is the expected future risk over the possible occurrences of the critical event for
a policy that stops at j + l. When πj = 0, we have R̃j = RH(Hj). Further, reasoning using the
hazard rates hj(k), we calculate E[R̃j+l|Xj ] analytically giving rise to the final form for Ṽj(Xj)
which we express as Vj(Hj). When πj = 1, R̃j = minl>0 E[R̃j+l|Xj ] = Cα, so it is optimal to
trigger intervention, setting ϕ∗j (Xj) = 1. Finally, we have ϕ∗Lmax−1(Xj) = 1, by definition, giving
rise to the final form of the optimal policy.

Thus, the optimal policy may be constructed explicitly with knowledge of only the conditional hazard
rate functions at that time. The continuation value function Vj(·) gives the minimum expected cost
of continuing to take observations, having obtained a conditional hazard rate function (Hj) at time j.
It is clear that the the optimal policy is a time-varying threshold on the risk process in general.

The following Corollary allows a further important simplification of the optimal policy:
Corollary 4.1.1 (OTI policy as a time varying threshold on time-to-event). Given πj = 0, let Tj be
the expected residual time-to-event at time j. The optimal OTI policy of Theorem 4.1 may be reduced
to the following form:

ϕ∗j (Xj) =
{
1(Tj ≤ V

′

j (Hj)), if j < Lmax − 1 and πj = 0
1, else

(8)

where, V
′

j (Hj) = min
0<l<Lmax−j

Lmax−l−1∑
k=0

k+l∏
m=0

(1− hj(m)) + Cα

l∑
m=1

[
m−1∏
k=0

(1− hj(k))

]
hj(m)

(9)

with, Tj =
Lmax−1∑
k=0

k∏
m=0

(1− hj(m)) =

Lmax−1∑
k=0

Sj(k) (10)

Proof. The full proof is given in Appendix A. We note that the immediate stopping risk for time j
can be written as: R̃j = Tj + Cαhj(0). Further, the second term, Cαhj(0), may be canceled from
both sides of the inequality defining the optimal stopping policy, resulting in the simplified rule.

This Corollary clearly shows that static threshold TTE policies are sub-optimal in general, since
V

′

j (Hj) may vary with time index j . V
′

j (Hj) contains two terms. The first term, which is the risk of
stopping early, before the critical event, intuitively gets smaller as j progresses toward the critical
event. The second term is the risk of missing the critical event that depends on the cost of missing the
event. It is high where the onset of the critical event is anticipated.

5 Neural hazard rate processes

The Markov assumption is not a significant restriction since any co-variate process may be made
Markovian, by including all relevant information from the past into the current state (at the cost of
increasing the dimension of the problem). While one may adapt any survival analysis technique
(in theory) that estimates conditional hazard rate functions and apply our theory, recurrent neural
networks (RNNs) are a good fit for being able to model complex patterns in multi-variate time-series
data and for summarizing observation history.

The class of hazard rate processes {(Zj ,Hj)} that can be modeled by recurrent neural networks with
hidden-states Zj and conditional hazard rates given by Hj = f(Zj) for some function f(·) of the
hidden states), satisfy our Markov hazard rate process assumptions. Indeed, from the RNN dynamics,
the probability of the next hidden state is conditionally independent of the past hidden states, given
the current hidden state. Specifically, we have: P(Zj+1|Zj) = P(Zj+1|Zj), ∀j. Note, however, that
we do not require the co-variate evolution to be Markovian. The hazard rate functions can depend on
the past history of co-variates in general. RNNs compute feature transformations of past covariate
history (prior to j) and seek to embed all required information about the past into Zj , so a hazard rate
function that is computed from Zj , can be quite complex and include (to the extent it is present in
Zj) information from past covariates.
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Figure 1: Architecture diagram for Dynamic Deep Recurrent Survival Analysis (DDRSA).

5.1 Dynamic Deep Recurrent Survival Analysis (DDRSA)

Since the OTI theory developed in the previous section directly applies to neural neural hazard rate
processes, we may fit a neural hazard rate process model to data and then apply the optimal OTI
policy to intervene. Thus, our approach requires estimates of conditional hazard rates, that evolve
over time (hazard rate processes).

Ren et. al. [29] developed Deep Recurrent Survival Analysis (DRSA), a deep recurrent neural
architecture that uses and RNN to map a static covariate vector to a single conditonal hazard rate
function (so it is not a hazard rate process that evolves over time). Unlike DRSA, our Dynamic
DRSA (DDRSA) setting requires modeling dynamic survival and hazard rate functions. We do
this by adapting the DRSA architecture to our dynamic covariate evolution setting. While there are
other attempts at modeling the dynamic evolution of survival functions [18, 24] they either make
distributional assumptions [24] or have difficulty with long sequences due to large softmax layer [18].

Figure 1 shows our DDRSA architecture which is a classic encoder-decoder architecture. DDRSA
uses an encoder RNN that maps co-variate history Xj to an encoder hidden state vector Zj . This
vector is then passed into a decoder DRSA-RNN architecture, producing decoder hidden states Qjk

and corresponding conditional hazard rates hj(k) = σ(D(Qjk)), where σ(·) represents the sigmoid
activation function and D(·) represents a Dense layer. DDRSA can also be seen as a generative
model for a neural hazard rate process.

During training, each training sample, randomly selected from one of the time-series at time step j
includes a look-back window of co-variates Xj−K · · ·Xj that are fed into the encoder input. The
encoder’s final hidden state is replicated and provided to the decoder as input to each time step. We
leverage the DRSA loss of Ren et. al. [29] which is composed of the following loss components for
each sample:

lz =

l−1∏
k=0

[
1− ĥj(k)

]
ĥj(l) , lu =

[
1−

Lmax−1∏
k=0

(1− ĥj(k))

]
, lc =

Lmax−1∏
k=0

(1− ĥj(k)) (11)

lz is the likelihood of the critical event occurrence at at time j + l, assuming that the event is not
censored. lu is the likelihood of event occurrence (a.k.a. event rate) at any future time in the decoder
output, given that the sample is not censored. lc gives the likelihood of a censored sample, when the
event does not occur at a future time over the decoder time-steps. The final loss for a sample is :

Lf = −λ log lz − (1− λ) [(1− c) log lu + c log lc] (12)
where λ is a trade off fraction and c is the censoring indicator, with c = 1 for a censored sample and
c = 0 for uncensored. Losses averaged over a mini-batch of samples are used to learn the survival
model. The sequential DRSA loss allows effective supervision at each time-step allowing it to be
applied to model long survival functions without resorting to restrictive parametric distributions.

During inference, we estimate, at any time-index j, hj(0), hj(1), · · ·hj(Lmax − 1) as decoder
outputs by passing values of co-variates Xj−K · · ·Xj into the DDRSA architecture encoder. Then,
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we estimate the expected residual time-to-event using equation (10) and the threshold function using
equation (9). Intervention is triggered at time j if the estimated expected residual time-to-event falls
below the threshold function.

Note that the model architecture is such that we can generate a long sequence of hazard rates. During
training time, we restrict the decoder time-steps to a fixed value (M ≤ Lmax) and consider events
appearing outside this implied range as censored. However, during inference, the RNN is unrolled
over the full Lmax time-steps. To allow for such unrolling, we eschew explicit decoder time-step
inputs, instead forcing the decoder to learn to increment time-index. Providing the decoder time-step
indices explicitly as inputs to the decoder as is done in the original DRSA-RNN [29] architecture,
is not desirable, because, when we unroll the RNN to Lmax time-steps, we would need to give the
decoder inputs it has not seen during training. Such flexible handling of long sequences is a key
practical advantage of the DDRSA architecture and our survival formulation.

6 Experiments

The goal of this section is twofold:

1. To complement the theory developed in the earlier sections with examples to validate and
build intuition into survival and hazard rate processes how the optimal policy works to
produce interventions. (Section 6.1)

2. To demonstrate that the theory does indeed translate into an effective practical methodology
embodied by the DDRSA-RNN that can model hazard rate processes and generate inter-
ventions using the OTI policy. We call this combined approach the OTI-DDRSA-RNN. We
show that OTI-DDRSA-RNN outperforms static threshold policies that are either window
based (WBI-RNN) or time-to-event based (TTE-RNN)(Section 6.2).

Experiments are performed on two real-world datasets to validate our goals. Experiments on a third
synthetic dataset are included in Appendix C.

Turbofan Engine Failure Data [26, 32]: This dataset from NASA provides train and test data to
predict Turbofan engine failures. The training set has simulated multivariate time-series observations
from 21 sensors on a fleet of 218 engines. Each engine operates normally at the start and develops a
fault at some point resulting in eventual failure. The test set consists of 218 partial engine time-series
with remaining useful life (in engine cycles) indicated in each case. We could not use the test data as
provided since it is missing part of every time series close to failure.

Azure Predictive Maintenance Guide Data[25]: This is a dataset from a guide provided by Mi-
crosoft as a case study in failure prediction. The data comes from multiple sources including
time-series of voltage, rotation, pressure and vibration measurements collected from 100 machines
in real time averaged over every hour, error logs, machine information (type, age etc.) and 720
failure records. We adopt the same pre-processing, feature generation as given in the guide. Also, we
down-sample the data to take one sample every 15 hours.

For both datasets, we train on 70% of randomly selected co-variate time-series sequences and hold out
30% of the sequences for testing. From the training set a further 30% of the sequences are set aside as
validation data to tune model parameters and policy thresholds. This process is repeated to produce
10 random train-validation-test splits. Observations are normalized with min-max transformation that
transforms training inputs to lie in the range [−1, 1]. Model selection details and parameter settings
are discussed in Appendix B.

6.1 Discussion of OTI interventions on real data

We fit the DDRSA-RNN on the covariate time-series leading upto failure and predict on a single test
set sequence. This produces, at each time step j of the sequence, an estimated conditional hazard rate
vector Hj (representing the conditional hazard rates into the future), which gives us a probabilistic
estimate of the onset of the critical event at each time step, taking into account co-variate history upto
that time step. Figure 2(a) shows the evolution of estimated conditional hazard rate functions. We see
that the onset of the critical event is clearly reflected in the progression of the estimated vectors Hj .
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Figure 2: (a) Example of typical evolution of estimated conditional hazard rates estimated by DDRSA
as j approaches the critical event. (b)The OTI policy in action. The OTI policy calls for intervention
when the estimated time-to-event falls below a time-varying policy threshold. As the cost C of
missing the critical event increases, interventions are triggered earlier.
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(a) NASA turbofan data: policy trade-off plot
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(b) Azure PM guide data: policy trade-off plot

Figure 3: Performance comparison of OTI-DDRSA-RNN, WBI-RNN and TTE-RNN policies.
Trade-off plots showing the median (solid circle) and inter-quartile range (vertical bars) for each
Cα ∈ {8, 10, · · · , 256} computed over 10 randomized test folds.

Next, we demonstrate the working of the OTI-policy. Figure 2(b) plots the estimated time-to-event at
each time step, estimated from Hj using equation (10). We also plot the adaptive threshold V

′

j (Hj),
calculated using equation (9) of Corollary 4.1.1. An intervention is triggered when our time-to-event
estimate falls on or below the adaptive threshold. Consider what happens as the cost of missing the
critical event is varied. First, note that since time-to-event is independent of Cα, only the threshold
changes. Increasing the cost of missing the critical event increases the threshold causing earlier
intervention as we would expect.

6.2 Performance Evaluation

In this section we will evaluate the performance of the proposed OTI-DDRSA-RNN vs. two static
threshold policy baselines: A window based intervention RNN (WBI-RNN) and a time-to-event
based intervention RNN (TTE-RNN). All RNNs share the same encoder architecture which is an
LSTM with 128 step look-back and hidden state dimension of 16 units.

WBI-RNN architecture: The WBI-RNN has the same encoder as the DDRSA-RNN with the final
encoder output Zj in Figure 1 passed to a dense (fully connected) layer to produce a single output
probability per training sample. We train the model with a binary cross-entropy loss between the
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probability output and the binary state of event in a future window W of time steps. A threshold is
used on this probability to trigger interventions once the probability is greater than the threshold. The
window size and threshold are selected by cross-validation (see Appendix B).

TTE-RNN architecture: The TTE-RNN uses the DDRSA architecture shown in Figure 1 and is
learnt with the DRSA loss as discussed above. However, interventions are triggered with a static
threshold that is set via cross-validation similar to the WBI-RNN.

All methods were trained, validated and tested using 10 randomized train-validation-test splits. Model
parameter initialization seeds are also randomized across trials. Results reported are medians over
the 10 test folds. WBI and TTE thresholds are tuned (individually, for 125 different settings of
Cα ∈ {8, 10, · · · 256}) on each validation set using an empirical intervention policy risk:

Remp(ϕ) =
1

N

N∑
i=1

(Li − τi)1(Li ≥ τi)︸ ︷︷ ︸
average time-to-event

+Cα
1

N

N∑
i=1

1(Li ≤ τi)︸ ︷︷ ︸
event miss-rate

(13)

where (L = Li, τ = τi) are realized outcomes for the ith series.

Computational setup and inference time: All experiments were run on a Tensorbook Laptop with
32GB RAM and having a single NVIDIA GeForce GTX 1070 with Max-Q GPU. Training on a single
dataset for 10 folds and 125 cost points took around 2 hours. DDRSA inference time per time-step
time was around 12 milliseconds. The corresponding OTI policy evaluation time per time-step was
around 0.5 milliseconds.

Figure 3 summarizes the evaluation results in the form of policy trade-off curves. Each point
represents a plot of the median average time-to-event vs the median event miss-rate, calculated
for a particular setting of Cα (the corresponding inter-quartile ranges are also shown as vertical
bars). Regarding the trade-off plots, a lower frontier is preferred, since it implies a lower average
time-to-event for a given miss-rate and a lower miss-rate for a given average time-to-event. We see
that the OTI-DDRSA-RNN outperforms the static threshold policies on both datasets.

Limitations: The quality of the OTI policy depends on the accuracy of the underlying survival
analysis. Note that our approach requires fitting a survival model for hj(k) at each time step over
several values of k. It is possible that some of these are better estimated than others. Also, in contrast,
a threshold algorithm can be tuned for a specific Cα on a validation set while there is no Cα specific
tuning for the OTI policy. Also, there is no direct way of setting Cα to guarantee a particular α. We
are forced to try a range of values for Cα and pick the values with most acceptable trade-offs.

7 Conclusions

We consider the task of monitoring a system for the occurrence of a critical event, by observing
co-variates over time. The goal is to intervene in a timely manner. We formalize this for the first time
as the Optimally Timed Intervention (OTI problem) which seeks a policy that triggers interventions
such that for a given probability of missing the event, the expected residual time-to-event is minimized.
We show that the OTI problem may be posed as an optimal stopping problem on a hazard rate process,
which may be solved analytically under Markovian assumptions. A significant new insight is that
the optimal policy at any time is an analytically computable threshold on expected time-to event
that depends only on the conditional hazard rate function at that time. Finally, based on the theory
we develop a practical RNN architecture (the OTI-DDRSA-RNN) to produce optimal interventions.
Future directions include an analysis of the impact of inaccuracies in estimating the hazard rate
process on the resulting intervention policy and the ability to focus the estimation of the hazard rate
process to achieve optimal performance for a specified event miss-rate.
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