
A Appendix

A.1 Additional Motivational Observations

A.1.1 Additional Results on Difficulty-agnostic Analysis

Fig. 3 shows additional results of TNA [11] and PAPU [51] on ML-100K [14]. We follow the same
experiment setting in Sec 3.1.1, and show the average loss

P
u2Ug Latk(u,t)

|Ug|
, the average gradient

P
u2Ug kr'Latk(u,t)k1

|Ug|·(|Uf |·|I|) , and the HR@50 on each user group. As shown in Fig. 3, TNA and PAPU
put more efforts (i.e. greater loss and gradients) into more difficult users, while only HR@50 of the
easy group increases and the medium and difficult groups perform poorly. The results also verify the
conclusion in the Sec 3.1.1: it is simpler to promote the target item to easier users than more difficult
ones, and putting more efforts on more difficult users will reduce the effectiveness of attackers. Also,
we do not show the result of TrialAttack [45], since it satisfies the difficulty-property 1 that enables
attackers to put more efforts on easy users (see Sec. 3.1.2).

(a) Loss of TNA. (b) Gradient of TNA. (c) HR@50 of TNA.

(d) Loss of PAPU. (e) Gradient of PAPU. (f) HR@50 of PAPU.

Figure 3: Additional results for difficulty-agnostic analysis.

(a) Distribution of TNA. (b) HR@50 of TNA. (c) Distribution of PAPU.

(d) HR@50 of PAPU. (e) Distribution of TrialAttack. (f) HR@50 of TrialAttack.

Figure 4: Additional results for diversity-deficit analysis.

15

A.1.2 Additional Results on Diversity-agnostic Analysis

Fig. 4 shows additional results of TNA [11], PAPU [51], and TrialAttack [45] on ML-100K [14]. We
follow the same experiment setting in Sec 3.2.1. As shown in Fig. 4 (a) and (c), the fake users of
TNA and PAPU form a cluster that is distributed in community 3 and community 1, respectively.
Consequently, in Fig. 4 (b) and (d), TNA and PAPU improve HR@50 on community 3 and 1,
respectively, while keeping similar HR@50 on the other communities. Thus, they suffer from the
diversity-deficit issue. Particularly, in Fig. 4 (e), the fake users of TrialAttack are dispersed diversely
among real users. However, in Fig. 4 (f), TrialAttack only achieves improvements in community 1,
while achieving similar performance in the other communities. It is because TrialAttack uses diverse
noise from various communities as the inputs of generative neural networks, forcing the generated
fake users to disperse diversely. Nevertheless, since its attack objective cannot guarantee fake users
to affect real users diversely, it still cannot improve the performance for each community. Thus,
TrialAttack meets the diversity-deficit issue as well.

A.2 Proof

A.2.1 Proof of Proposition 1

Proof. The derivative of Eq. (4) is as follows:

@Dict(M̂
✓̂⇤(R);u, t)

@Ŝ[u][t]
=

8
<

:

b1

(1� b1 · Ŝ[u][t]) · ln 2
, t /2 �u

0, t 2 �u

,

Given users u and v, and b1 > 0, if Ŝ[v][t] < Ŝ[u][t] and t /2 �u, @Dict(v,t)

@Ŝ[v][t]
< @Dict(u,t)

@Ŝ[u][t]
. Also, when

t 2 �u, the derivative is 0. Thus, our difficulty-aware attack objective satisfy both properties.

A.2.2 Proof of Proposition 2

Proof. The derivative of Eq. (5) is as follows:

@Div(Ŝ[u][t];u, t, Ŝ0[u][t])

@4Ŝ[u][t]
=

8
<

:

b2 exp(�b2(4Ŝ[u][t]� c))

(1 + exp(�b2(4Ŝ[u][t]� c)))2
t /2 �u

0, t 2 �u

,

Given users u and v, and b2 > 0, if 4Ŝ[v][t] > 4Ŝ[u][t] and t /2 �u, @Div(v,t)

@4Ŝ[v][t]
< @Div(u,t)

@4Ŝ[u][t]
.

Also, when t 2 �u, the derivative is 0. Thus, our diversity-aware attack objective satisfy both
properties.

A.3 Gradient-based Algorithm

Algorithm 1: Fake User Behaviors Generation
Input: Real user behaviors Rr , the surrogate RecSys M̂✓̂ , the target item t, fake user budget |Uf

|, the
maximum number of interacted item ⌧ , the threshold th, the epoch number L, and learning rate ↵.

Output: Fake use behaviors Rf
2 {0, 1}|U

f |⇥|I|

1 Initialize Rf
2 {0, 1}|U

f |⇥|I|

2 for l = 1 to L do
3 R = [Rr,Rf]

4 ✓̂⇤ = argmin✓̂ Ltra(M̂✓̂(R),R)
5 Compute Oatk(·) Eq. (6)
6 R̃f = Continuous(Rf)

7 R̃f = R̃f + ↵ ·rR̃fOatk(·)

8 Rf = Proj(R̃f ; ⌧, th)

9 Return Rf

16

Table 4: The statistics of three datasets.
|Ur

| |I| Avg |Iu| kRr
k0 Sparsity

ML-100K 943 1682 6.30% 100,000 93.70%
ML-1M 6040 3706 4.47% 1000,209 95.53%
Gowalla 13149 14007 0.24% 433,356 99.76%

Table 5: The configuration of the surrogate and target RecSys.
RecSys Configuration
Surrogate-WRMF Latent dimension: 128; Learning rate: 1e-2; Weights for positive feedback: 20; L2

regularization coefficient: 1e-5; Training epochs: 100;
WRMF Latent dimension: 128; Learning rate: 1e-2; Weights for positive feedback: 20; L2

regularization coefficient: 1e-5; Training epochs: 100;
NCF Latent dimension: 128; Learning rate: 1e-4; L2 regularization coefficient: 1e-5;

Training epochs: 200;
LightGCN Latent dimension: 128; Learning rate: 1e-4; L2 regularization coefficient: 1e-5; Layer

number: 2; Training epochs: 200;

A.4 Greedy Algorithm Alg. 1.

We propose Alg. 1 to optimize our proposed attack objective in Eq. (6). We analyze its time
complexity as follows. Assuming that we train the surrogate RecSys M̂

✓̂
(R) m times in each attack

epoch l. In each attack epoch, it takes O(m|✓̂||R|) time for training the surrogate RecSys (line
4). Moreover, we compute rR̃fOatk = r

✓̂mOatk · r
✓̂m�1 ✓̂m · · ·rR̃f ✓̂1 (line 7). Based on the

reverse-model algorithm differentiation [3], we need to accumulate the gradients of ✓̂ for m times
to compute rR̃fOatk, which takes O(m|✓̂|) time [41, 52]. Therefore, the total time complexity is
O(Lm|✓̂||R|).

B Experiment Supplementary

B.1 Dataset Description

Following [12, 41, 44, 45, 51], we use three popular datasets for evaluation. The statistics are shown
in Tab. 4.

• MovieLens-100K (ML-100K) and MovieLens-1M (ML-1M) [14]: They are widely used movie
recommendation datasets. Following [31, 51], we transform numerical ratings into implicit
feedback (1 for positive interaction, 0 for negative interaction).

• Gowalla [5]: It consists of implicit check-in feedbacks between users and venues. Following [40,
41], we remove cold-start users and items that have less than 15 feedbacks.

B.2 Additional Experiment and Hyperparameter Setting

Attack Objective Setting. In the main experiments, we select five target items for evaluation, and
the attack objective is the sum of the attack objectives on each target item t 2 It in Eq. (2). Formally,
given multiple target items It, the combined attack objective on multiple target items It can be
computed as follows:

max
Rf

X

u2Ur

X

t2It

Dict(M̂✓⇤(R);u, t) + � ·Div(Ŝ[u][t];u, t, Ŝ0[u][t]),

Then, if one target item t is in the recommendation list of user u, we set the attack objective value of
u regarding t as 0. In other words, we only zero out the gradients of a user u until all target items are
in its top-N recommendation list.

Hyperparameter Setting. For attacker baselines, we use their default hyperparameter set-
tings. For our attacker, we search the hyperparameter b1 in Eq. (4) and b2 in Eq. (5) from
{100, 200, 300, 400, 500} and search � in Eq. (6) from {10, 20, 30, 40, 50} for three datasets. We set

17

Table 6: Evaluation on Gowalla dataset under fake user budget � = 0.01|Ur
|.

Attacker WRMF [18] NCF [16] LightGCN [15]
HR@10 HR@50 HR@100 HR@10 HR@50 HR@100 HR@10 HR@50 HR@100

Clean 0.0007 0.0052 0.0142 0.0019 0.0062 0.0267 0.0013 0.0056 0.0181
Random [51, 12] 0.0010 (+42.86%) 0.0071 0.0192 0.0025 (+31.58%) 0.0097 0.0277 0.0017 (+30.77%) 0.0092 0.0226

Popular [29] 0.0013 (+85.71%) 0.0098 0.0207 0.0031 (+63.16%) 0.0095 0.0283 0.0021 (+61.54%) 0.0112 0.0243
CoVis [49] 0.0016 (+128.57%) 0.0112 0.0217 0.0037 (+94.74%) 0.0116 0.0358 0.0022 (+69.23%) 0.0129 0.0282

TrialAttack [45] 0.0010 (+42.86%) 0.0105 0.0221 0.0042 (+121.05%) 0.0106 0.0351 0.0022 (+69.23%) 0.0117 0.0294
SRWA [12] 0.0012 (+71.43%) 0.0086 0.0175 0.0037 (+94.74%) 0.0092 0.0347 0.0017 (+30.77%) 0.0106 0.0241
PGA [20] 0.0012 (+71.43%) 0.0084 0.0183 0.0029 (+52.63%) 0.0087 0.0319 0.0017 (+30.77%) 0.0092 0.0229

SGLD [20] 0.0008 (+14.29%) 0.0078 0.0172 0.0031 (+63.16%) 0.0073 0.0327 0.0021 (+61.54%) 0.0087 0.0223
TNA [11] 0.0011 (+57.14%) 0.0109 0.0215 0.0036 (+89.47%) 0.0102 0.0328 0.0009 (-30.77%) 0.0106 0.0268

RevAdv [41] 0.0017 +(142.86%) 0.0121 0.0281 0.0032 (+68.42%) 0.0143 0.0355 0.0019 (+46.15%) 0.0138 0.0364
PAPU [51] 0.0021 (+200.00%) 0.0125 0.0282 0.0043 (+126.32%) 0.0161 0.0395 0.0025 (+92.31%) 0.0165 0.0373

DADA-DICT 0.0027 (+285.71%) 0.0134 0.0296 0.0051 (+168.42%) 0.0168 0.0442 0.0031 (+138.46%) 0.0175 0.0407
DADA-DIV 0.0020 (+185.71%) 0.0129 0.0288 0.0039 (+105.26%) 0.0156 0.0382 0.0023 (+76.92%) 0.0142 0.0360

DADA 0.0033 (+371.43%) 0.0157 0.0316 0.0064 (+236.84%) 0.0198 0.0486 0.0040 (+207.69%) 0.0217 0.0451

Table 7: Evaluation on NDCG@50 under fake user budget � = 0.01|Ur
|.

Attacker ML100K ML-1M Gowalla
WRMF NCF LightGCN WRMF NCF LightGCN WRMF NCF LightGCN

Clean 0.0450 0.0312 0.0360 0.0089 0.0082 0.0094 0.0004 0.0004 0.0006
Random [51, 12] 0.0447 (-0.67%) 0.0552 0.0370 0.0099 (+11.24%) 0.0084 0.0097 0.0005 (+25.00%) 0.0006 0.0007

Popular [29] 0.0453 (+0.67%) 0.0571 0.0371 0.0100 (+12.36%) 0.0087 0.0096 0.0006 (+50.00%) 0.0006 0.0007
CoVis [49] 0.0458 (+1.78%) 0.0588 0.0389 0.0101 (+13.48%) 0.0094 0.0103 0.0008 (+100.00%) 0.0009 0.0010

TrialAttack [45] 0.0478 (+6.22%) 0.0601 0.0403 0.0105 (+17.98%) 0.0093 0.0105 0.0011 (+175.00%) 0.0007 0.0010
SRWA [12] 0.0471 (+4.67%) 0.0565 0.0390 0.0094 (+5.62%) 0.0088 0.0107 0.0006 (+50.00%) 0.0007 0.0008
PGA [20] 0.0464 (+3.11%) 0.0558 0.0374 0.0097 (+8.99%) 0.0092 0.0097 0.0006 (+50.00%) 0.0007 0.0008

SGLD [20] 0.0469 (+4.22%) 0.0589 0.0371 0.0095 (+6.74%) 0.0089 0.0101 0.0006 (+50.00%) 0.0009 0.0009
TNA [11] 0.0476 (+5.78%) 0.0605 0.0389 0.0103 (+15.73%) 0.0090 0.0107 0.0009 (+125.00%) 0.0008 0.0010

RevAdv [41] 0.0560 (+24.44%) 0.0610 0.0415 0.0107 (+20.22%) 0.0109 0.0124 0.0016 (+300.00%) 0.0014 0.0013
PAPU [51] 0.0566 (+25.78%) 0.0623 0.0404 0.0109 (+22.47%) 0.0116 0.0136 0.0018 (+350.00%) 0.0015 0.0015

DADA-DICT 0.0581 (+29.11%) 0.0651 0.0433 0.0131 (+47.19%) 0.0129 0.0139 0.0028 (+600.00%) 0.0017 0.0016
DADA-DIV 0.0541 (+20.22%) 0.0625 0.0415 0.0114 (+28.09%) 0.0121 0.0129 0.0023 (+475.00%) 0.0015 0.0014

DADA 0.0612 (+36.00%) 0.0697 0.0459 0.0136 (+52.81%) 0.0142 0.0146 0.0032 (+700.00%) 0.0021 0.0018

the learning rate ↵ in Alg. 1 as 1, and set the threshold th in Eq. (7) as 0.05. Following [11, 20, 41, 51],
we select the representative WRMF [18] as the surrogate RecSys. The default parameters of the
surrogate and target RecSys are listed in Tab. 5.

Also, all experiments are conducted on CentOS 7 machines with a 20-core Intel(R) Xeon(R) Silver
4210 CPU @ 2.20GHz, 8 NVIDIA GeForce RTX 2080 Ti GPUs (11G), and 92G of RAM.

B.3 Additional Results on Gowalla

In this subsection, we show additional results of attackers on Gowalla dataset in Tab. 6. Specifically,
similar to Tab. 2 and Tab. 3, our attacker DADA and the variant DADA-DICT outperform all the
baselines, demonstrating their effectiveness. Also, the hit ratio of the target item on the Gowalla is
lower than that on the ML-100K and ML-1M, owing to the fact that Gowalla’s item number (14007)
is significantly higher than the other two datasets.

B.4 Evaluation on NDCG Metric

In this subsection, we use the NDCG metric to evaluate the rank quality of target items in the top-N
recommendation list of users. We report the results of NDCG@50 of our attacker and baselines on
three datasets under a fake user ratio of 0.01, since results on NDCG@10 and NDCG@100 have a
similar trend to NDCG@50. As shown in Tab. 7, heuristics-based attackers, such as Random, Popular,
and CoVis, achieve unsatisfied results on NDCG@50. It is because such heuristic-based baselines
cannot optimize the attack objective directly. Besides, compared with TrialAttack, RevAdv, and
PAPU, several gradient-based attackers, including SRWA, PGA, SGLD, and TNA, achieve inferior
performance on NDCG. It is because they compute the gradients in a biased way, thus damaging
the rank quality of target items [41, 51]. Finally, our proposed attacker DADA achieves the best
performance compared to baselines, demonstrating the higher rank quality of target items.

18

(a) ML-100K dataset. (b) ML-1M dataset. (c) Gowalla dataset.

Figure 5: Evaluation on partial real user behaviors.

(a) ML-100K dataset. (b) ML-1M dataset. (c) Gowalla dataset.

Figure 6: Evaluation on noisy user behaviors.

B.5 Partial and Noisy User Behaviors

In the real world, the real user behaviors collected by attackers from open platforms may not complete
or may have noise. In this subsection, to show the general practicability of our proposed attacker
DADA, we evaluate DADA under partial user behaviors and noisy user behaviors. Since the results of
DADA and baselines on different target RecSys and different hit ratios have similar trends as shown
in Tab 2, Tab. 3, and Tab. 6, we use WRMF as the target RecSys and use HR@50 as the evaluation
metric. Also, we only compare the effective baselines, including TrialAttack, TNA, RevAdv, and
PAPU. Finally, we discuss how to collect the real user behaviors from real-world platforms.

Partial User Behaviors. We set the size of real user behaviors for training as ||Rp
||0 = �3||Rr

||0,
and vary the real user behavior ratio by �3 2 {1, 0.1, 0.01, 0.001}. Specifically, given real user
behaviors Rr and the ratio �3, we randomly sample �3||Rr

||0 user-item interactions (non-zero
elements) from Rr to construct the partial user behaviors Rp.

As shown in Fig. 5, as the ratio of user behaviors decreases, the HR@50 of all attackers on three
datasets decreases. It is because a low ratio of user behaviors reduces the surrogate RecSys’s ability
to mimic the target RecSys, i.e., the suboptimal surrogate RecSys cannot reflect the tendency between
users and items accurately as the target RecSys. Thus, it impedes the effective fake user behaviors
generation. In addition, our proposed attacker DADA outperforms all baselines under various user
behavior ratios, as indicated by the red solid lines being above the other lines, demonstrating its
effectiveness. It is because our attacker attempts to maximize the positive difference between the
tendency after and before attacks regarding the target items for each user. Such a way treats all users
equally, regardless of their tendency towards the target items learned by the surrogate RecSys that is
trained on the partial user behaviors. Furthermore, DADA can achieve satisfactory performance even
with only 0.001||Rr

||0 real user behaviors as the training data, demonstrating its practicability.

Noisy User Behaviors. Following [51], we add noise into real user behaviors by randomly flipping
the interaction behavior between users and items. Specifically, we set the size of added noisy
user behaviors as �4||Rr

||0, and vary the added noisy user behavior ratio by �4 2 {0, 0.01, 0.1, 1}.
Specifically, given user set Ur, item set I , and noise behavior ratio �4, we randomly sample �4||Rr

||0

pairs of users and items from Ur and I . Then, for each sampled user-item pair (u, i), we set
Rr[u][i] = 0 if Rr[u][i] = 1, or else we set Rr[u][i] = 1 if Rr[u][i] = 0.

As shown in Fig. 6, as the ratio of added noise user behaviors increases, the HR@50 of attackers
on three datasets decreases. Similar to training on partial user behaviors, the suboptimal surrogate

19

Table 8: Evaluation on Target Item with Different Popularity

Attacker Target Item Popularity

Most Pop. Popular Ordinary Unpopular Most Unp.

Clean 0.5421 0.2471 0.0764 0.0025 0.0000

Random [12, 51] 0.5435 0.2513 0.0806 0.0043 0.0006
Popular [29] 0.5422 0.2524 0.0774 0.0045 0.0006
CoVis [49] 0.5412 0.2534 0.0838 0.0036 0.0007

TrialAttack [45] 0.5672 0.2624 0.1026 0.0040 0.0005

SRWA [12] 0.5465 0.2571 0.0827 0.0037 0.0003
PGA [20] 0.5594 0.2515 0.0812 0.0032 0.0003

SGLD [20] 0.5584 0.2491 0.0798 0.0030 0.0001
TNA [11] 0.5599 0.2583 0.0812 0.0041 0.0007

RevAdv [41] 0.5839 0.2880 0.1448 0.0058 0.0006
PAPU [51] 0.5921 0.2922 0.1491 0.0055 0.0008

DADA-DICT 0.6094 0.2990 0.1622 0.0086 0.0013
DADA-DIV 0.5846 0.2916 0.1507 0.0076 0.0010

DADA 0.6116 0.3033 0.1654 0.0088 0.0015

RecSys trained on noise user behaviors may not learn the accurate latent tendency between users
and items accurately as the target RecSys. It impedes attackers to generate effective fake user
behaviors. Particularly, under the noisy user behavior ratio of 1.0, the HR@50 of attackers decreases
dramatically, but the fake user behaviors generated by attackers can still affect the target RecSys to
promote the target items to more real users. It is because the added noise user behaviors are sampled
from all pairs between users and items, and thus the added noise user behaviors of ratio 1.0 may
not completely change the real user behaviors (non-zero elements). Also, our proposed attacker
DADA outperforms all baselines under various noise user behavior ratios, as indicated by the red
solid lines being above the other lines. Similar to the partial user behaviors scenario, it is because
our attacker wants to maximize the positive difference between the tendency after and before attacks
for each user regarding the target items. In this manner, all users are treated equally, regardless of
their tendency towards the target items learned by the suboptimal surrogate RecSys. Additionally,
DADA can achieve superior performance than baselines under the noisy user behavior ratio of 1.0,
demonstrating its practicability.

User Behavior Collection Discussion. Basically, we can collect user behaviors from social media
platforms (e.g., IMDB2, rottentomatoes3, Goodreads4, and YouTube5) and e-commerce platforms
(e.g., Amazon6 and Yelp7). These platforms allow us to access the item interaction histories of users
or the comments of users on items. Then, we can construct user behaviors by crawling the rating
histories of users from their profiles and reviews on items. Particularly, even though the collected
user behaviors may be incomplete and have some noise, they can be used to generate effective fake
user behaviors. It is because they can mimic the real distributions of all users.

B.6 Evaluation on Item Popularity

Note that we have evaluated target items randomly selected from all items in Sec. 4.2 and Appx. B.3.
In this subsection, we comprehensively analyze the attacker on the target items with various popularity.
Following [51], we define Most Popular (Most Pop.) items whose click number (#click) is above
80 percentile. Also, we can define Popular (80 percentile � #click > 60 percentile), Ordinary (60
percentile � #click > 40 percentile), Unpopular (40 percentile � #click > 20 percentile), and Most
Unpop. (#click 20 percentile). As shown in Tab 2, Tab. 3, and Tab. 6, the results of DADA and

2https://www.imdb.com/
3https://www.rottentomatoes.com/
4https://www.goodreads.com/
5https://www.youtube.com/
6https://www.amazon.com.au/
7https://www.yelp.com/

20

Table 9: Ablation study on difficulty-aware objective.
ML-100K ML-1M Gowalla

TrialAttack 0.3902 0.1084 0.0105
TrialAttack++ 0.3976 (+1.90%) 0.1093 (+0.83%) 0.0107 (+1.90%)

TNA 0.3801 0.1068 0.0109
TNA++ 0.3892 (+2.39%) 0.1076 (+0.75%) 0.0112 (+2.75%)

RevAdv 0.4167 0.1168 0.0121
RevAdv++ 0.4231 (+1.54%) 0.1210 (+3.60%) 0.0122 (+0.83%)

PAPU 0.4224 0.1126 0.0125
PAPU++ 0.4284 (+1.42%) 0.1195 (+6.13%) 0.0129 (+3.20%)

DADA-DICT 0.4380 0.1217 0.0134

baselines on different target RecSys and hit ratios have similar trends. Thus, we conduct experiments
on ML-1M, and report the average HR@50 on five runs against the target WRMF RecSys.

As shown in Tab. 8, as the popularity of the target items decreases, the hit ratio of them also decreases.
It is because as the target items become less popular, the tendency of real users toward these target
items deceases as well. Thus, it is more difficult to affect the target RecSys to recommend these
unpopular items to real users. Besides, DADA and DADA-DICT outperform all baselines under
different popularity, demonstrating their effectiveness. More importantly, as the popularity of the
target items decreases, DADA can achieve more improvements over the best baseline PAPU. For
example, Over PAPU, DADA achieves a 3.3% improvement on Most Popular items, while achieving
87.5% improvement on Most Unpopular items. It is because compared with popular target items,
there are fewer real users that have a high tendency toward these unpopular target items. Thus, our
attacker that focuses on easy users diversely can achieve more improvements on these unpopular
target items.

B.7 Additional Ablation Study

In this subsection, we conduct two ablation studies to further investigate our proposed difficulty-aware
and diversity-aware attack objectives. Due to similar observations, we use WRMF as the target
RecSys and use HR@50 as the evaluation metric. Also, for clarification, we only compare the
effective baselines, including TrialAttack, TNA, RevAdv, and PAPU.

Difficulty-aware Objective. As shown in Eq. (4), there are two cases in our difficulty-aware objective
Dict(·): (1) if the target item t is not successfully promoted to the user u, i.e., t /2 �u, we enable
u to dominate the gradient computation more than more difficult users. (2) If t 2 �u, we directly
zero out the gradients provided by the user u. To further reveal the promotion gain from these two
cases, we compare the baseline variants by setting the gradients of successfully promoted users as
0. The variant of each [baseline] is denoted as [baseline]++. The experiment setting is the default
experiment setting in Appx. B.2.

As illustrated in Tab. 9, the variant of each baseline outperforms the original baseline on three datasets.
It indicates that zeroing out the gradients of successfully promoted users whose recommendation lists
contain the target item is beneficial, enabling attackers to generate fake users that affect more users.
Moreover, DADA-DICT outperforms all the variants of baselines. It demonstrates that, except for
zero-outing the gradients of successfully promoted users, it is preferable to concentrate on easy users,
as it is easier to promote the target item for them. In summary, both cases in our difficulty-aware
objective can improve the promotion gain.

Diversity-aware Objective. To address the diversity-deficit issue, we expect that the attackers create
fake user behaviors that can manipulate the target RecSys to recommend the target into the top-N
list of users in different communities. Based on this, we can qualitatively measure the diversity
brought by each attacker based on the hit ratio improvement of each community. Formally, given
communities {Cj}

nc
j=1 and a target item t, we denote the hit ratio improvement of each community Cj

after injecting fake behaviors as 4HR(Cj), and normalized hit ratio difference can be computed as

21

Table 10: Ablation study on diversity-aware objective.

Attacker ML-100K ML-1M Gowalla

C1 C2 C3 All D C1 C2 C3 All D C1 C2 C3 All D

TrialAttack 0.0163 0.0013 0.0024 0.0095 2.91 0.0090 0.0191 0.0063 0.0135 6.26 0.0182 0.0391 0.0127 0.0201 6.17
TNA 0.0013 0.0002 0.0073 0.0023 2.83 0.0036 0.0119 0.0045 0.0081 5.32 0.0099 0.0359 0.0142 0.0181 5.28

RevAdv 0.1389 0.0013 0.0073 0.0758 2.32 0.0139 0.0410 0.0151 0.0282 5.59 0.0163 0.0609 0.0328 0.0353 5.97
PAPU 0.1138 0.0026 0.0066 0.0626 2.39 0.0223 0.0451 0.0165 0.0327 6.78 0.0216 0.0909 0.0375 0.0459 5.06

DADA-DIV 0.1966 0.0751 0.0267 0.1294 4.18 0.0577 0.0766 0.0336 0.0616 8.51 0.0405 0.1191 0.0704 0.0745 7.09

4ĤR(Cj) =
4HR(Cj)Pnc

k=1 4HR(Ck)
. Then, the diversity brought by fake user behaviors can be measured

based on the standard variance of normalized HR improvements as:

D(Rf) =
1rPnc

j=1 (4ĤR(Cj)�4ĤRmean)2

nc

where 4HRmean =
Pnc

k=1 4ĤR(Ck)
nc

is the mean of the HR improvement of communities. A smaller
diversity value indicates that the standard variance of normalized HR improvements of communities
are higher, implying that fake user behaviors are dominated by larger communities.

To more comprehensively demonstrate the diversity-deficit issue, we compute the diversity value of
existing attackers on three datasets. Specifically, we follow the same experiment setting in Sec. 3.2.1.
We randomly select one item as the target item and separate real users into three communities by
K-means based on the learned user representations. We use HR@50 as evaluate metric, and report
the hit ratio improvement 4HR on community 1, 2, 3, and all users, and the diversity value of
each attacker. As shown in Tab. 10, under the same dataset, our proposed diversity-aware objective
DADA-DIV outperforms baselines on each community and has the largest diversity value. It is
because the diversity-aware objective more emphasizes the less affected users in each community
when optimizing attackers. Thus, the generated fake user behaviors can manipulate the target RecSys
to promote the target item to more users diversely, alleviating the diversity-deficit issue.

B.8 Parameter Sensitivity

In this subsection, we evaluate DADA under different parameters. As shown in Tab 2 and Tab. 3,
the results of DADA and baselines on different target RecSys and hit ratios have similar trends. For
clarification, we use WRMF and HR@50 for evaluation.

Extreme Limited Fake User Budget. To better mimic the real-world applications, we set the user
budget ratio �1 as 0.001 and 0.0001. We take WRMF as the target RecSys and use the largest Gowalla
dataset for evaluation. As illustrated in Tab. 11, our attacker outperforms these effective baselines
under a limited budget, demonstrating its effectiveness. Besides, even under a fake user budget
of 0.0001, our attacker DADA can achieve satisfactory performance, showing its practicability in
real-world applications.

Parameter Sensitivity on Hyperparamter �. We evaluate the effect of the trade-off parame-
ter � between the difficulty-aware and the diversity-aware attack objective in Eq. (6). We vary
� 2 {0, 10, 20, · · · , 90, 100}, where higher � emphasizes more on diversity-aware attack objective.
Overall, HR@50 on three datasets is quite robust to different � as shown in Fig. 7. More specifically,
as � increases, the performance first increases, and then decreases. Furthermore, larger � will reduce
the performance slightly. The reason is that larger � will force the attacker to concentrate more on
improving each real user’s latent tendency toward the target items. It implies that the attacker will
treat real users as the same, and is unable to put more efforts on easy users who is simple to be
affected, thereby reducing the attacker’s effectiveness.

B.9 Analysis on HR Improvement on the Target RecSys

In this subsection, we analyze the hit ratio (HR) improvement on different target RecSys. For
more generality, we add a widely used RecSys ItemCF [35] as the target RecSys to evaluate our

22

Table 11: Evaluation on extreme limited fake user budget on the Gowalla dataset.

Attacker |Uf
| = 0.001 · |Ur

| |Uf
| = 0.0001 · |Ur

|

HR@10 HR@50 HR@100 HR@10 HR@50 HR@100

Clean 0.0007 0.0052 0.0142 0.0007 0.0052 0.0142

TrialAttack 0.0007 0.0056 0.0147 0.0007 0.0055 0.0146
TNA 0.0007 0.0057 0.0146 0.0007 0.0052 0.0144

RevAdv 0.0008 0.0056 0.0149 0.0008 0.0056 0.0148
PAPU 0.0008 0.0061 0.0152 0.0008 0.0055 0.0149

DADA 0.0013 0.0072 0.0169 0.0009 0.0060 0.0154

(a) ML-100K dataset. (b) ML-1M dataset. (c) Gowalla dataset.

Figure 7: Evaluation on the trade-off hyperparamter �.

attacker. Formally, given the target RecSys M✓, we use HRM✓ and ĤRM✓ to denote the hit ratio
of target items on clean data and the data after injecting fake user behaviors, respectively. Under
the target RecSys M✓, the HR improvement brought by fake user behaviors can be computed by
ĤRM✓ �HRM✓ . Specifically, we use HR@50 as evaluation metric and plot the HR improvement
over the result in the clean data under different target RecSys.

As shown in Fig. 8, we can observe that if the hit ratio of a target RecSys on clean data is larger, the
hit ratio improvement tends to be more significant, which is reasonable. It is because the higher hit
ratio on clean data indicates that the target RecSys is willing to promote the target item to the top-N
recommendation list of users. Thus, it is simpler to manipulate this target RecSys to promote the
target item to more users. Consequently, the hit ratio improvement on the target RecSys is higher.

B.10 Visualization

Gradient Visualization. Corresponding to Sec. 3.1.1, we show DADA’s gradients and hit ratio on
real users with different difficulties toward the target item. We follow the same experiment setting in
Sec. 3.1.1. We visualize the gradients and HR@50 of the easy, medium, and difficult group. As shown
in Fig. 9 (a), unlike existing attackers, such as RevAdv, which allow more difficult users to provide
more gradients, our attacker allows easier users to contribute more gradients. Specifically, easy group
contributes the most gradients, and medium group contributes more gradients than difficult group. It
indicates our attacker put more effort into easier users. Correspondingly, as shown in Fig. 9 (b), the
HR@50 of easy and medium groups increases significantly.

Fake User Visualization. Corresponding to Sec. 3.2.1, we visualize real and fake users based on the
learned user representations and evaluate the hit ratio improvement in each community. Specifically,
we follow the same experiment setting in Sec. 3.2.1. As shown in Fig. 10 (a), fake users are distributed
diversely. Furthermore, the results on three datasets in Fig. 10 (b) (c) and (d) demonstrate that, unlike
state-of-the-art attackers, such as PAPU and RevAdv, our attacker improves the HR@50 on three
communities significantly. It is because our attacker allows unaffected real users from various
communities to provide more gradients to the attacker’s parameter optimization, avoiding large
communities dominating the generated fake user behaviors.

23

(a) ML-100K dataset. (b) ML-1M dataset. (c) Gowalla dataset.

Figure 8: Evaluation on HR improvement.

(a) Average gradient on each user group. (b) HR@50 on each user group.

Figure 9: Visualization on gradients on ML-100K dataset.

B.11 Future Directions

In this subsection, we introduce several future directions from the perspective of dynamic scenario,
side information, and automated graph neural network.

• Dynamic Scenario. In real-world applications, the collected training user behaviors and the fake
user budget may be changed. Thus, one promising future direction is how to efficiently create new
fake behaviors based on the previous generation process instead of from scratch. One warm-up
strategy is to fine tune the new fake behaviors based on the previously generated fake behaviors
and new arriving real user behaviors. Besides, we can store the intermediate gradients of real users
on optimizing the previous fake behaviors and then reuse them with the cache technique [13, 21]
to accelerate new fake behaviors generation process.

• Side Information. Most existing injective attackers only employ real user behaviors to learn user
and item representations, and then generate fake user behaviors accordingly. However, the fake
user behaviors are sparse and only contain the user-item interactions, which hinders learning more
expressive user and item representations. Thus, one promising direction is to incorporate side
information to enhance the user behaviors, such as user social relationships [2] and numerous item
information in knowledge bases [9, 25, 26, 37].

• Automated Graph Neural Network. As discussed before, graph neural networks (GNNs) have
demonstrated their effectiveness in RecSys [48, 50]. More recently, automated GNNs [42, 43,
54, 55] propose to automatically design the best GNN architecture for any given data, which
achieve SOTA performance on many graph-related tasks. However, there are few studies on the
performance of those performance-driven GNNs under attack. It may be a more practical topic
since the automated way may be deployed for recommendation purposes in real industries.

B.12 Discussion on Defending Injective Attacks

In this paper, we first revisit the attack patterns of existing injective attackers and then propose a more
effective difficulty-aware and diversity-aware attacker. In this subsection, we will discuss how the
platforms effectively defend against injective attacks based on our observations.

24

(a) Fake user distribution
on ML_100k.

(b) HR@50 of each com-
munity ML_100k.

(c) HR@50 of each com-
munity on ML_1M.

(d) HR@50 of each com-
munity on Gowalla.

Figure 10: Visualization on community.

First, inspired by current noise reduction work [22, 23, 46], we can develop a fake user detector to
identify fake users Uf among all users U in the platforms. Then, we can remove these potential fake
users from the training data and only use behaviors of reliable users U \Uf to train the target RecSys
M✓. The process can be formulated as follows:

✓⇤ = argmin
✓

Ltra(M✓(R[U \ Uf]),R[U \ Uf]),

Here we introduce two directions to develop a powerful fake user detector. (1) Current studies [7]
have demonstrated that the item rating distributions of fake users are different from those of normal
users. Thus, we can compute the rating derivation of each user from the mean value of all users.
Then, users whose rating distribution significantly deviates from the mean distribution of all users
can be considered to be fake users. (2) As shown in Fig. 1 (c) and Fig. 4 (a) and (c), the fake users
generated by attackers tend to form a cluster. Thus, if we can identify some fake users in advance, we
are able to identify the remaining fake users by examining users in the same cluster as the identified
fake users. By these two ways, we can detect fake users and alleviate the negative impact of attacks
on the target RecSys of platforms.

Second, adversarial training [53] is a popular and effective method for training a robust RecSys
to resist attacks. The basic idea is to generate adversarial fake user behaviors by increasing the
recommendation error of RecSys, and then use these adversarial user behaviors together with real
user behaviors to optimize the RecSys parameters by minimizing the training loss. The critical part of
such adversarial training is to create effective fake user behaviors to affect RecSys. In this paper, we
have demonstrated that our proposed difficulty-aware and diversity-aware attacker DADA is capable
of generating fake user behaviors that effectively affect the RecSys. Thus, our attacker DADA can be
used to generate fake user behaviors to train the target RecSys in the adversarial manner. Specifically,
given the target item set It that attackers want to promote, we can generate fake user behaviors
Rf with fake user budget � by maximizing the attack objective Oatk(·) in Eq. (6). Then, the target
RecSys takes both fake user behaviors and real user behaviors as inputs to predict the tendency
score for real users, i.e., M✓([Rr,Rf])[Ur] 2 R|U

r
|⇥|I|. The target RecSys can be optimized by

minimizing the distance between predicted scores M✓([Rr,Rf])[Ur] and real user behaviors Rr.
This process can be formulated as follows:

✓⇤ = argmin
✓

Ltra(M✓(R
r),Rr) + �adv · Ltra(M✓([R

r,Rf])[Ur],Rr),

s.t. Rf = argmax
Rf

X

t2It

Oatk(M✓⇤(Rr);Ur, t), |Uf
| �,

where �atk is a trade-off hyperparameter between normal training loss and adversarial loss. In future,
we will utilize our proposed DADA to train a robust RecSys in the adversarial training manner.

25

