
A Supplementary material

The appendix includes a detailed description of the soft-argmax used in encoder E in Sec. A.1, the
sampling strategy for prototypes and pseudo-code for prototype training in Sec. A.2, model general-
ization on CLEVR10 in Sec. A.3, architecture details in Sec. A.4, a table of all the hyperparameters
for the different datasets in Sec. A.5, more qualitative results on occlusion modelling in Sec. A.6,
a summary of the computational resources used to train the models in Sec. A.7, dataset licenses in
Sec. A.8, and a discussion on potential societal impact in Sec. A.9.

A.1 Detailed Description of the Soft-Argmax in Encoder E

In the encoder E , we first generate a scoremap S the same shape as input image I with a U-Net-style
network, followed by a sigmoid activation, whose output is in [0, 1]. Then, we apply NMS on the
scoremap S and select top K keypoints T from it. However, this top-k selection is non-differentiable—
specifically, the gradients only flow back through the K locations on the H ⇥W scoremap S. To
avoid sparsity in the gradient, we construct a kernel of size B ⇥B centered at each keypoint location
and use a soft-argmax [63] function to compute the final keypoint location as a weighted sum of
the region around the center of the kernel. By using these weighted centers, the gradient flows back
through B ⇥ B locations for each keypoint, rather than just one. As a by-product, we also obtain
sub-pixel accuracy on the keypoints.

Li =

P
c2kernel{Ti} c · exp (S[cx, cy]/⌧)
P

c2kernel{Ti} exp (S[c
x, cy]/⌧)

(5)

where kernel{Ti} are the points within a kernel of size B ⇥B centered at point Ti, and ⌧ is a hyper
parameter to control the hardness of the softmax operation.

A.2 Prototype Learning

A.2.1 Sampling for Sliced Wasserstein Loss

In order to apply the sliced Wasserstein loss to match the distribution of the prototypes to the
distribution of the descriptors, we require an equal number of prototypes and descriptors. Thus, we
model the descriptors as a Gaussian Mixture Model (GMM) with a small predefined variance ⌃ (a
hyperparameter), since we would ideally want the descriptors to form very sharp modes around the
Gaussian centers. Thus, denoting the sampled descriptors from the prototype GMM as D̃ we sample
B ⇥K samples from

p(D̃i) =
X

j2[1,M ]

⇡jN (D̃i|Pj ,⌃), (6)

where ⇡j are the mixture weights of the GMM for the j-th prototype. For the mixture weight ⇡j , note
that each prototype may have a different number of descriptors associated with it. We thus define
it according to the ratio of descriptors that are associated with each prototype—we associate via
finding the nearest prototype with the `2 norm—but with a term that encourages exploration when the
compactness of the prototypes is not equal. For example, when a certain prototype dominates but is
widely spread, we would ideally want to explore using not just this single prototype. Mathematically,
denoting the ratio of descriptors associated with prototype m as rm, and the variance of the descriptors
associated with the prototype as �m, we write

↵m = rm + Var({�i, i 2 [1,M ]}), (7)
and

⇡m =
↵mP

m2[1,M ] ↵m

. (8)

For prototypes without any descriptors assigned, we simply set �m = 1.

A.2.2 Pseudo-code for the prototype learning algorithm

As stated in Sec. 3.3, within each training iteration, we first optimize encoder and decoder with fixed
prototypes. We then optimize the prototypes with a fixed encoder/decoder. Here we provide a detailed
pseudo-code version of the algorithm we use for prototype optimization with a sliced Wasserstein
loss, shown in Tab. 7.
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Table 7: Prototype Training: Pseudo code for prototype training.

Requirement: D: descriptors, M : number of descriptors, P: prototypes,
N : number of prototypes.

Function TrainPrototype (D,P)
1. Calculate mixing ratio ⇡m

• Dm  divide D into M subsets where each subset is associated to a member in P

in terms of smallest `2 norm
• rm  calculate the ratio of Dm in D

• �m  calculate variance of Dm

• � calculate variance of �m

• ↵m  rm +�
• ⇡m  ↵m /

P
↵m

2. Sample from GMM
• P̃ initiate empty list
• for pm in P :
• append ⇡m ⇥N samples from a Gaussian centered at pm with a predefined

variance to P̃

3. Calculate sliced Wasserstein distance
• d SWdistance (P̃,D)

4. Train prototypes
• Optimize P by minimizing d

Table 8: Quantitative results for CLEVR6 and CLEVR10. We train the model on CLEVR6, and
evaluate on both CLEVR6 and CLEVR10.

ARI Classification accuracy

Shape Color Size

CLEVR6 98.6 53.5 91.0 95.8
CLEVR10 97.6 52.5 90.7 97.9

A.3 Generalization to CLEVR10

We demonstrate that our approach generalizes to a larger number of instances without any retraining
in Tab. 8, where we follow [36] to evaluate our CLEVR6 -trained model on CLEVR10 (which
contains up to 10 objects). Our model can deal with a larger number of instances and generalizes
very well, with only a very small drop in performance. We do not report numbers for the baselines as
they are not available.

A.4 Architecture Detail

We summarize all the main components in our pipeline in Tab. 9.

A.5 Hyperparameter Table

We report the hyperparameters we use for each dataset/task in Tab. 10. The number of prototypes and
keypoints are set according to the dataset characteristics. The softmax kernel size was also adjusted to
match the dataset image size and the rough size of the object of interest. Batch sizes were determined
according to the memory limit of our GPU. Except for CelebA, all settings are similar

.
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Table 9: Architecture Detail. A list of all the main components in our pipeline.
General Architecture Architecture for Object Discovery task

Encoder E
I 2 [0, 1]H⇥W⇥3

UNet(I)! H 2 RH⇥W
,F 2 RH⇥W⇥32

Sigmoid(H)! S 2 [0, 1]H⇥W

Keypoints Sampling

NMS(S)! S̃ 2 [0, 1]H⇥W

Top-K(S̃)! P 2 NK⇥2

Soft-Argmax(P)! L 2 RK⇥2

Bilinear Sampling(F,L)! D 2 RK⇥32

Sparse Reconstruction
Gaussian Conv.(L,D)! R 2 RK⇥H⇥W⇥32

Summation(R)! F̃ 2 RH⇥W⇥32 -

Decoder D

UNet(F̃)! Ĩ 2 [0, 1]H⇥W⇥3 UNet(R)! A 2 [0, 1]H⇥W⇥4

- Alpha-Blending(A)! Ĩ 2 [0, 1]H⇥W⇥3

Table 10: List of Hyper Parameters.

MNIST CLEVR6 Tetrominoes CelebA H36M

# Keypoints 9 6 3 4 16
# Prototypes 10 48 114 32 32

Softmax Kernel Size 13 21 27 21 11
⌃ in GMM 4e-4 (all)

Recon. Loss Type MSE MSE MSE Perceptual MSE
Coef. Recon. Loss 1 (all)
Coef. Cluster Loss 0.01 (all)

Coef. Eqv. Heatmap Loss 0.01 0.01 0.01 0.05 0.01
Coef. Eqv. Featuremap Loss 100 100 100 500 100

Encoder & Decoder Learning Rate 0.001 (all)
Prototype Learning Rate 0.1 (all)

Batch Size 40 64 76 32 32

A.6 Additional results on CLEVR dataset with occluded

In Fig. 4 we mentioned that our model can embed the occlusion information in the alpha channel.
Unfortunately, the CLEVR dataset does not provide any annotation that can be used to evaluate
occlusion quantitatively. Instead, we include more qualitative results in Fig. 9.

A.7 Computation Resources

We train all our models on NVIDIA V100 GPUs with 32GB of RAM. Training on MNIST converges
within 12 hours on a single GPU. For the other four datasets, we use two GPUs, which allows for
larger batch size, for about 24 hours.
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Detections Recon. Mask Kp 1 Kp 2 Kp 3 Kp 4 Kp 5 Kp 6 Alpha 1 Alpha 2 Alpha 3 Alpha 4 Alpha 5 Alpha 6

Figure 9: More qualitative results on modelling occlusion. Occluded regions are marked with red
bounding boxes.

A.8 Dataset Licenses

A.8.1 MNIST http://yann.lecun.com/exdb/mnist/

The MNIST-Hard dataset is derived from the MNIST dataset. Below is the license for the original
MNIST dataset:

Yann LeCun and Corinna Cortes hold the copyright of MNIST dataset, which is a derivative work
from the original NIST datasets. The MNIST dataset is made available under the terms of the Creative
Commons Attribution-Share Alike 3.0 license.

A.8.2 CLEVR[27] https://github.com/deepmind/multi_object_datasets

Apache-2.0 license.

A.8.3 Tetrominoes[27] https://github.com/deepmind/multi_object_datasets

Apache-2.0 license.

A.8.4 CelebA[35] http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
1. CelebA dataset is available for non-commercial research purposes only.
2. All images of the CelebA dataset are obtained from the Internet which are not property of

MMLAB, The Chinese University of Hong Kong. The MMLAB is not responsible for the
content nor the meaning of these images.

3. You agree not to reproduce, duplicate, copy, sell, trade, resell or exploit for any commercial
purposes, any portion of the images and any portion of derived data.

4. You agree not to further copy, publish or distribute any portion of the CelebA dataset. Except,
for internal use at a single site within the same organization it is allowed to make copies of
the dataset.
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5. The MMLAB reserves the right to terminate your access to the CelebA dataset at any time.
6. The face identities are released upon request for research purposes only. Please contact us

for details.

A.8.5 H36M[22] http://vision.imar.ro/human3.6m/description.php
1. GRANT OF LICENSE FREE OF CHARGE FOR ACADEMIC USE ONLY Licenses free

of charge are limited to academic use only. Provided you send the request from an academic
address, you are granted a limited, non-exclusive, non-assignable and non-transferable
license to use this dataset subject to the terms below. This license is not a sale of any or all
of the owner’s rights. This product may only be used by you, and you may not rent, lease,
lend, sub-license or transfer the dataset or any of your rights under this agreement to anyone
else.

2. NO WARRANTIES The authors do not warrant the quality, accuracy, or completeness of
any information, data or software provided. Such data and software is provided "AS IS"
without warranty or condition of any nature. The authors disclaim all other warranties,
expressed or implied, including but not limited to implied warranties of merchantability and
fitness for a particular purpose, with respect to the data and any accompanying materials.

3. RESTRICTION AND LIMITATION OF LIABILITY In no event shall the authors be liable
for any other damages whatsoever arising out of the use of, or inability to use this dataset
and its associated software, even if the authors have been advised of the possibility of such
damages.

4. RESPONSIBLE USE It is YOUR RESPONSIBILITY to ensure that your use of this product
complies with these terms and to seek prior written permission from the authors and pay any
additional fees or royalties, as may be required, for any uses not permitted or not specified
in this agreement.

5. ACCEPTANCE OF THIS AGREEMENT Any use whatsoever of this dataset and its associ-
ated software shall constitute your acceptance of the terms of this agreement. By using the
dataset and its associated software, you agree to cite the papers of the authors, in any of your
publications by you and your collaborators that make any use of the dataset, in the following
format (NOTICE THAT CITING THE DATASET URL INSTEAD OF THE PUBLICA-
TIONS, WOULD NOT BE COMPLIANT WITH THIS LICENSE AGREEMENT):

A.8.6 Multi-face images

All multi-face images are in the public domain.

A.9 Societal Impact

Our method would be a front-end for a typical computer vision pipeline and thus is not immediately
linked to any particular application with significant societal impact. Nonetheless, our method would
facilitate unsupervised learning from images which could have significant impact down the road.
Unsupervised learning would significantly reduce the need for human effort within any automated
workflow, which would bring both convenience and a certain amount of change—the latter may
require careful consideration when adopting these technologies more widely.
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