
Appendix for Back Razor: Memory-Efficient Transfer
Learning by Self-Sparsified Backpropagation

Ziyu Jiang†∗, Xuxi Chen‡ ∗, Xueqin Huang†, Xianzhi Du§, Denny Zhou§, Zhangyang Wang‡
†Texas A&M University ‡University of Texas at Austin §Google
{jiangziyu,xueq13}@tamu.edu,{xxchen,atlaswang}@utexas.edu

{xianzhi,dennyzhou}@google.com

A Theory

A.1 Assumptions

We provide grounds for assumptions in this section. Assumption 1 is a fine-grained version of the
standard Lipschitz smoothness, i.e.,

|L(y)− [L(x) + g(x)⊤(y − x)]| ≤ ∥β∥∞
2

∑
j

(y − x)2j .

We follow [1] to make this assumption.

Assumption 2 combines the assumption of the unbiased gradient and bounded variance, which is
also standard in literature. The standard variance bound on the gradient can be recovered by defining
σ2 =

∑
j σ

2
j and we can see that E[(g̃t − gt)

2] ≤ σ2.

Assumption 3 defines a lower bound for the objective value, which is necessary for convergence to
stationary points.

A.2 Proof of Theorem 1

Let Lk be training objective at step k, i.e., Lk = L(θk). Let m be the pruning mask for activation
z̃k, then we have z̃′

k = diag(m)z̃k.

Proof. The difference between the two objectives Lk+1 − Lk is bounded by:

Lk+1 − Lk ≤ gk(θk+1 − θk)
⊤ +

∑
j

βj

2
(θk+1 − θk)

2
j (Assumption 1)

≤ gk(θk+1 − θk)
⊤ +

∥β∥∞
2

∥θk+1 − θk∥22

= −αkgkg̃
′⊤
k + α2

k

β

2
∥g̃′

k∥22,

which is based on the SGD update rule (θk+1 − θk = −αkg̃
′
k) where g̃k represents the pruned

stochastic gradient.

For the first term, we have

−gkg̃
′⊤
k = −gkg̃

′⊤
k + gk(g̃k − g̃′

k)
⊤,

∗Equal contribution

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

and

gk(g̃k − g̃′
k)

⊤ = gkÃk(z̃k − z̃′
k)

⊤

= gkÃk(I − diag(m))z̃⊤
k

=
〈
gk, Ãk(I − diag(m))z̃⊤

k

〉
≤ 1

2
(∥gk∥22 + ∥Ãk(I − diag(m))z̃⊤

k ∥22)

=
1

2
(∥gk∥22 + z̃k(I − diag(m))Ã

⊤
k Ãk(I − diag(m))z̃⊤

k)

Assume Ãk has positive singular values, we have

z̃k(I − diag(m))Ã
⊤
k Ãk(I − diag(m))z̃⊤

k =
z̃k(I − diag(m))Ã

⊤
k Ãk(I − diag(m))z̃⊤

k

z̃kÃ
⊤
k Ãkz̃

⊤
k

z̃kÃ
⊤
k Ãkz̃

⊤
k

≤ z̃k(I − diag(m))Ã
⊤
k Ãk(I − diag(m))z̃⊤

k

∥z̃k(I − diag(m))∥22
∥z̃k(I − diag(m))∥22

∥z̃k∥22
∥z̃k∥22

z̃kÃ
⊤
k Ãkz̃

⊤
k

z̃kÃ
⊤
k Ãkz̃

⊤
k

≤ n−K

n

maxλ2(Ãk)

minλ2(Ãk)
z̃kÃ

⊤
k Ãkz̃

⊤
k

= pKaz̃kÃ
⊤
k Ãkz̃

⊤
k

= pKa∥g̃k∥2

where p := n−K
n is the pruning ratio and Ka := maxλ2(Ãk)

minλ2(Ãk)
is the squared condition number of Ãk.

This is because

1.
z̃k(I − diag(m))Ã

⊤
k Ãk(I − diag(m))z̃⊤

k

∥z̃k(I − diag(m))∥22
≤ maxλ2(Ãk)

2.
∥z̃k(I − diag(m))∥22

∥z̃k∥22
≤ n−K

n

since m is generated by the TopK operation.

3.
∥z̃k∥22

z̃kÃ
⊤
k Ãkz̃

⊤
k

≤ 1

minλ2(Ãk)

The second term can be bounded by

∥g̃′
k∥22 = (z̃kdiag(m)Ã

⊤
k)(z̃kdiag(m)Ã

⊤
k)

⊤

= z̃kdiag(m)Ã
⊤
k Ãkdiag(m)z̃⊤

k

=
z̃kdiag(m)Ã

⊤
k Ãkdiag(m)z̃⊤

k

z̃kÃ
⊤
k Ãkz̃

⊤
k

z̃kÃ
⊤
k Ãkz̃

⊤
k

=
z̃kdiag(m)Ã

⊤
k Ãkdiag(m)z̃⊤

k

∥z̃kdiag(m)∥22
∥z̃kdiag(m)∥22

∥z̃k∥22
∥z̃k∥22

z̃kÃ
⊤
k Ãkz̃

⊤
k

z̃kÃ
⊤
k Ãkz̃

⊤
k

≤ Ka∥g̃k∥22.

2

Table 1: The comparison between Back Razor with the previous methods on CUB200 and Flowers
with ViT-L/16. All the reported results are the top1 accuracy (%). The memory footprint of the
training at a batch size of 128 (compute in CIFAR100) is reported in the second column.

Method Train Memory CUB200 Flowers

FT-Full 51257.0MB 86.6 99.6
Back Razor@90% (ours) 12270.4MB 86.9 99.5

Table 2: The comparison between Back Razor and ActNN [2] on CUB200 and Flowers with
ProxylessNAS-Mobile. All the reported results are the top1 accuracy (%). The memory footprint of
the training at the batch size of 8 (compute in CIFAR100) is reported in the second column.

Method Train Memory CUB200 Flowers

ActNN [2] 60MB 81.0 96.9
Back Razor@90% (ours) 42MB 81.0 96.9

Combining these two items together:

Lk+1 − Lk ≤ αk(−g⊤
k g̃k +

1

2
∥gk∥22 +

1

2
pKa∥g̃k∥2) +

α2
kβ

2
Ka∥g̃k∥22

Next we find the expected improvement at time k + 1:

E[Lk+1 − Lk|θk] ≤ −αk
1

2
∥gk∥22 + αk

1

2
pKa(∥gk∥22 + σ2) +

α2
kβ

2
Ka(∥gk∥22 + σ2),

and by extending the expectation over the trajectory and summing over T iterations we finish the
proof.

B More Experiment Results

B.1 Back Razor on Larger Pre-trained Models

We test Back Razor on larger pre-trained model ViT-L/16. As shown in Table 1, Back Razor can
achieve comparable performance with FT-Full for both CUB200 and Flowers datasets. Remarkably,
it can even surpass CUB200 while being more memory efficient.

B.2 Compared with ActNN

We further compare Back Razor with the ActNN [2], which conducts the backpropagation quantization
for CNN. As shown in Table 2, though the ActNN yields similar performance with Back Razor, Back
Razor requires less memory footprint.

B.3 Small Batch Size

We further study if Back Razor works on extreme small batch size of 1. As shown in Table 3, Back
Razor can achieve higher performance with less memory usage compared to TinyTL under a batch
size of 1.

Table 5: The on-device memory comparison between Back Razor and fully fine-tuning (test at a
batch size of 8 in CIFAR100).

Batch size Baseline Back Razor@90%

8 1655MB 1637MB
128 7393MB 6634MB

3

Table 3: The comparison between Back Razor and TinyTL on Flowers with batch size of 1. The
model is ProxylessNAS.

Method Train Memory Flowers

FT-Full 34MB 96.4
TinyTL 18MB 96.1
Back Razor@80% (ours) 15MB 96.4

Table 4: The comparison between Back Razor and fully fine-tuning on Flowers with SGD. The model
is ProxylessNAS.

Method Train Memory Flowers

FT-Full 366MB 97.1
Back Razor@80% (ours) 42MB 96.7

B.4 Different Optimizer

We further study if Back Razor works with SGD optimizer for ProxylessNAS. As shown in Table 4,
Back Razor can achieve comparable performance with less memory usage compared to fully fine-
tuning with SGD optimizer.

B.5 On-device Memory Usage in the Case of the CNN Architecture

The on-device (GPU) memory usage of ProxylessNAS-Mobile is illustrated in the Table 5. With
a batch size of 8, the memory of Back Razor@90% is comparable with the baseline. For a larger
batch size of 128, Back Razor@90% can save 759MB of memory compared to baseline. There is
still space for optimizing the implementation as it does not achieve the theoretical performance.

References
[1] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:

Compressed optimisation for non-convex problems. In International Conference on Machine Learning,
pages 560–569. PMLR, 2018.

[2] Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Stoica, Michael Mahoney, and Joseph
Gonzalez. Actnn: Reducing training memory footprint via 2-bit activation compressed training. In
International Conference on Machine Learning, pages 1803–1813. PMLR, 2021.

4

	Theory
	Assumptions
	Proof of Theorem 1

	More Experiment Results
	Back Razor on Larger Pre-trained Models
	Compared with ActNN
	Small Batch Size
	Different Optimizer
	On-device Memory Usage in the Case of the CNN Architecture

