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Abstract

Graphical models such as Gaussian graphical models have been widely applied for
direct interaction inference in many different areas. In many modern applications,
such as single-cell RNA sequencing (scRNA-seq) studies, the observed data are
counts and often contain many small counts. Traditional graphical models for
continuous data are inappropriate for network inference of count data. We consider
the Poisson log-normal (PLN) graphical model for count data and the precision
matrix of the latent normal distribution represents the network. We propose a two-
step method PLNet to estimate the precision matrix. PLNet first estimates the latent
covariance matrix using the maximum marginal likelihood estimator (MMLE) and
then estimates the precision matrix by minimizing the lasso-penalized D-trace
loss function. We establish the convergence rate of the MMLE of the covariance
matrix and further establish the convergence rate and the sign consistency of the
proposed PLNet estimator of the precision matrix in the high dimensional setting.
Importantly, although the PLN model is not sub-Gaussian, we show that the PLNet
estimator is consistent even if the model dimension goes to infinity exponentially
as the sample size increases. The performance of PLNet is evaluated and compared
with available methods using simulation and gene regulatory network analysis of
real scRNA-seq data.

1 Introduction

Gaussian graphical model (GGM) [15, 28] is widely used for understanding the complex interactions
of the observed variables in various fields [26, 14, 23]. GGM assumes that each sample is drawn
from a multivariate Gaussian distribution, in which the precision matrix (i.e., the inverse of the
covariance matrix) represents the network. In GGM, two nodes are connected if the corresponding
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element in the precision matrix is non-zero. Based on the sparsity assumption of the precision
matrix, researchers have proposed many methods for estimating the precision matrix of the GGM
and established consistency theories, such as methods by maximizing the penalized log-likelihood
[28, 7], by solving an equivalent regression problem with the lasso penalty [15, 18] or by minimizing
a smooth convex loss function (called D-trace loss) with the lasso penalty [30]. Due to its high
interpretability, well-established theoretical properties, and computational advantages, GGM has
been adopted in many applications.

This paper is motivated by the gene regulatory network analysis based on the single-cell RNA
sequencing (scRNA-seq) data. The recent breakthrough of scRNA-seq technologies has provided
tremendous opportunities for understanding transcriptional states and activities and for uncovering
gene regulatory networks at single cell level. However, gene expressions from scRNA-seq are count
data and the Gaussian assumption is inappropriate. In particular, for the recent unique molecular
identifier (UMI) based scRNA-seq data [6, 32], the expression counts contain many zeros. Trans-
formations such as taking logarithms cannot make the Gaussian model a good approximation to the
distribution of scRNA-seq expression data and may distort the correlation structure when there are
many zeros in scRNA-seq data.

Poisson distribution is a natural choice for modeling count data. Researchers have generalized the
univariate Poisson distribution to multivariate distributions for network analysis [9]. Some such
models are the Poisson graphical model [2] and its variants generalized Poisson graphical models [25].
But these generalized Poisson graphical models can not handle the over-dispersion often observed
in real data. Negative binomial distributions are often used to account for the over-dispersion [19],
but it is more difficult to generalize negative binomial distributions to describe the network structure
in the multivariate count data. Here, we use the multivariate Poisson log-normal (PLN) distribution
for graphical modeling of count data. The PLN distribution is a hierarchical model of Poisson
and multivariate log-normal distributions [1]. A random vector Y = (Y1, . . . , Yp)

T is from a PLN
distribution, if conditional on a latent vector X = (X1, . . . , Xp)

T with (log(X1), . . . , log(Xp))
T ∼

N(µ,Σ), elements of Y are independent Poisson random variables with mean parametersX1, . . . , Xp.

The major advantage of the PLN model is that, similar to the GGM, the precision matrix Θ =
Σ−1 can represent the network. Network recovery can be achieved by estimating Θ. In addition,
PLN distributions allow over-dispersion and hence are suitable for modeling count data with over-
dispersion. In gene regulatory network analysis of scRNA-seq data, the PLN graphical model has
a clear biological explanation. Previous experimental researches showed that gene expressions of
single cells follow log-normal distributions [4]. The latent variables X1, . . . , Xp, representing the
true expressions of p genes in a single cell, can be reasonably assumed to be jointly log-normally
distributed. The precision matrix of the log-normal distribution represents gene-gene interactions
in single cells. The observed variables Y are measurements of the underlying true expressions X.
Largely speaking, the log-normal layer of the PLN model captures the biological fluctuation of gene
expressions and the Poisson layer accounts for the technical and measurement noises. Only the
biological fluctuation reflects gene-gene interactions and the regulatory network is the precision
matrix of the latent log-normal model.

A few algorithms have been developed for estimating the precision matrix of the PLN model in high-
dimensional settings. Compared with GGM, the likelihood of the PLN model is more complicated
since it involves a high-dimensional integration and does not have a closed form. Maximizing the
penalized log-likelihood of the PLN model is very difficult. Wu et al. [24] used Monte Carlo methods
to approximate the log-likelihood and estimate the precision matrix by maximizing the penalized
approximated log-likelihood of the PLN model. Chiquet et al. [5] developed a computationally more
appealing method based on the variational approximation. However, these methods are all based on
approximations of the log-likelihood and the accuracies of these approximations need to be further
elaborated. More importantly, no convergence theory has been developed for these precision matrix
estimators.

In this article, we propose a two-step approach named PLNet that first estimates the covariance
matrix of the latent log-normal variables in the PLN model using the maximum marginal likeli-
hood estimator (MMLE) and then estimates the sparse precision matrix by minimizing the lasso
penalized D-trace loss [30]. One advantage of this two-step approach is that it avoids computing
high-dimensional numerical integration that is involved in the log-likelihood of the multivariate PLN
model. Minimizing the penalized D-trace loss is computationally cost-effective. Thus, this estimator
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is generally computationally more efficient. Furthermore, we show that, under mild conditions,
the estimator given by PLNet is a consistent estimator of the precision matrix in high dimensional
settings. Comprehensive simulation studies show that PLNet provides more accurate estimates and
is computationally more efficient than available methods. We also demonstrate the application of
PLNet to scRNA-seq data.

2 Methods

2.1 Notation

For a column vector a with the i-th entry ai, ‖a‖2 = (aTa)1/2 and ‖a‖1 =
∑
i |ai|. For a matrix A

with the (i, j)-th entry Aij , ‖A‖∞ = maxi,j |Aij | be the element-wise l∞-norm, ‖A‖1 =
∑
i,j |Aij |

be the l1-norm, ‖A‖1,∞ = maxi(
∑
j |Aij |) be the l1,∞-norm, ‖A‖F =

(∑
i,j |Aij |

2
)1/2

be the
Frobenius norm, ‖A‖2 = max‖v‖2=1‖Av‖2 be the operator norm, ‖A‖1,off =

∑
i 6=j |Aij |, ‖A‖0 =∑

i,j 1{Aij 6=0} be the number of nonzero entries where 1{·} is the indicator function, tr (A) =
∑
iAii

be the trace, and A � 0 means A is positive semi-definite.

2.2 The PLN graphical model

Let Y = [Yij ]1≤i≤n,1≤j≤p be the observed count matrix, Yi = (Yi1, . . . , Yip)
T be the observed

count data of the ith sample, and Xi = (Xi1, . . . , Xip)
T be the latent random vector. In scRNA-seq

data, Yij and Xij are the observed expression and the underlying "true" expression of the jth gene
in the ith cell, respectively. We assume that conditional on Xi, elements of Yi are independent
Poisson random variables with mean SiXij (1 ≤ j ≤ p), where Si is a scaling factor sampled from
one distribution g(S) and we define S = (S1, ..., Sn)T as the scaling vector. In scRNA-seq data,
Si corresponds to the library size of the ith cell. The library size is related to the total sequencing
reads and can be estimated by the sum of counts within each cell or other methods [12, 13, 21]. The
log(Xi) = (log(Xi1), . . . , log(Xip))

T follows a multivariate normal random vector with mean µ∗

and covariance Σ∗. The precision matrix Θ∗ = (Σ∗)−1 represents the network. In summary, we have
the following graphical model for count data, for 1 ≤ i ≤ n,

Yi|Xi ∼
p∏
j=1

Poisson(SiXij),

log(Xi) ∼ N
(
µ∗, (Θ∗)−1

)
.

(1)

We denote this PLN distribution by Yi ∼ PLN(Si;µ
∗,Σ∗). The above PLN model is a little

different from the classical form [1], in which Si = 1 for 1 ≤ i ≤ n. We assume that the network Θ∗

is sparse and therefore we could maximize the penalized log-likelihood to estimate Θ∗. However,
the likelihood function in the PLN model involves a p-dimensional integration and is difficult to be
computed, especially when p is large. Chiquet et al. developed a variational algorithm called VPLN to
maximize the penalized log-likelihood [5]. Although the variational method is computationally more
feasible than directly maximizing the penalized log-likelihood, the estimator’s theoretical properties
are difficult to be obtained.

We develop a two-step estimator called PLNet that is computationally efficient and has good theoreti-
cal properties. We first use the MMLE method to derive an estimator Σ̂ for Σ∗. Then, we apply the
D-trace method [30] with the covariance estimator Σ̂ to estimate the sparse precision matrix Θ∗. We
show that the derived estimator Θ̂ is a consistent estimator of Θ∗ even when the model dimension
goes to infinity exponentially as the sample size increases.

2.3 The maximum marginal likelihood estimator

We estimate µ∗ = [µ∗j ]1≤j≤p and Σ∗ = [σ∗jk]1≤j,k≤p by maximizing the marginal log-likelihood
to avoid high dimensional integrations. Let Y·j be the jth column of Y . For 1 ≤ j ≤ p, we
estimate µ∗j and σ∗jj by maximizing the marginal log-likelihood of Y·j and denote the estimator
as µ̃j and σ̃jj , and we estimate σ∗jk by maximizing the marginal log-likelihood of (Y·j ,Y·k) and
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denote the estimator as σ̃jk. The specific forms of these marginal log-likelihoods and optimization
problems are shown in the Supplemental Material (S2.1). Further, we define the MMLE for µ∗, Σ∗

as µ̃ = [µ̃j ]1≤j≤p, Σ̃ = [σ̃jk]1≤j,k≤p. We apply the Newton-Raphson algorithm to maximize the

marginal log-likelihood with the initial values taken as the moment estimator µ̃m and Σ̃m in the
Supplemental Material (S1.1). The explicit forms of the first and second-order partial derivatives of
the marginal log-likelihood function are shown in the Supplemental Material (S2.1). The integrations
involved in optimizations can be well approximated by the method described in [1, 17].

The above MMLE Σ̃ may be not positive semi-definite. However, the D-trace method requires the
input covariance matrix estimator to be positive semi-definite to guarantee the convexity of the loss
function. We project Σ̃ to the space of positive semi-definite matrices and identify Σ̌ that is closest to
Σ̃ in the space, i.e.,

Σ̌ = arg min
A�0

∥∥∥A− Σ̃
∥∥∥
∞
. (2)

Then we add a small positive definite matrix to Σ̌ and get a positive-definite estimator Σ̂ of Σ∗,

Σ̂ = Σ̌ +
∥∥∥Σ̌− Σ̃

∥∥∥
∞
I, (3)

where I is the identity matrix. The optimization problem (2) for Σ̌ can be solved by a splitting conic
solver [8].

With the covariance matrix estimator Σ̂, we apply the D-trace method to estimate the precision matrix,

Θ̂ = arg min
Θ�0

1

2
tr
(

Σ̂Θ2
)
− tr (Θ) + λn ‖Θ‖1,off . (4)

The above optimization problem (4) can be solved by an alternating direction method of multipliers
[30]. In this paper, we use a more efficient algorithm developed in [22] to calculate Θ̂. We can also
incorporate the prior information about the gene regulatory relationship to improve the performance
of network inference. Let E be the set of gene pairs that cannot have direct interactions from the prior
information, we can incorporate the prior information E by considering the following constrained
optimization problem,

Θ̂ = arg min
Θ�0

{
1

2
tr
(

Σ̂Θ2
)
− tr (Θ) + λn ‖Θ‖1,off : Θij = 0 for (i, j) ∈ E

}
.

The tuning parameter λn is selected by minimizing the following approximate Bayesian information
criterion (BIC) [31], ∥∥∥∥1

2
(Θ̂Σ̂ + Σ̂Θ̂)− I

∥∥∥∥
F

+
(
‖Θ̂‖0 log n

)
/n. (5)

3 Theoretical properties

In this section, we establish the theoretical properties in the high dimensional setting. We first
prove that Σ̂ is a consistent estimator of Σ∗. The convergence rate for Σ̂ is similar to that of the
sample covariance matrix for random variables with sub-Gaussian distribution. Then, under the same
irrepresentability condition of the D-trace method in [30], we derive the edge recovery property and
consistency for the PLNet estimator Θ̂.

3.1 Notation

Let G = {(i, j)|Θ∗ij 6= 0} be positions of non-zero elements in Θ∗, Gc be the complement set of
G, d be the maximum node degree in Θ∗, s = ‖Θ∗‖0, and θmin = min(i,j)∈G

∣∣Θ∗ij∣∣ be the minimal
absolute value of nonzero elements of Θ∗. Let λmax(A) and λmin(A) be the largest and smallest
eigenvalues of a symmetric matrix A. We define Γ∗ = Γ(Σ∗) = (Σ∗ ⊗ I + I ⊗ Σ∗) /2, Γ̂ = Γ

(
Σ̂
)

,
where A ⊗ B is the Kronecker product. For a p × p matrix A, the row (i − 1)p + j and column
(k − 1)p+ l of Γ (A) is Γ (A)(i,j),(k,l) =

(
Aik1{j=l} +Ajl1{i=k}

)
/2. For two subsets T1 and T2
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of {(i, j) |1 ≤ i, j ≤ p}, we define Γ (A)T1,T2
be the submatrix of Γ (A) whose rows and columns

indexed by T1 and T2, respectively. Other notations are as follows,

γ = 1− max
(i,j)∈Gc

∥∥∥Γ∗(i,j),G(Γ∗G,G)−1
∥∥∥

1
,

kΓ =
∥∥(Γ∗G,G)−1

∥∥
1,∞ , kΣ = ‖Σ∗‖1,∞ .

3.2 The irrepresentability condition and rate of convergence

We first present the necessary irrepresentability condition for establishing the rate of convergence for
the estimator in PLNet. This irrepresentability condition is from the D-trace method in [30].

Condition 1 (Irrepresentability condition) There exists 0 < α < 1, such that

max
(i,j)∈Gc

∥∥∥Γ∗(i,j),G(Γ∗G,G)−1
∥∥∥

1
≤ 1− α.

The irrepresentability condition 1 is equivalent to γ ≥ α > 0. We also need a boundedness condition
in the PLN model (1).

Condition 2 (Boundedness condition) There exist positive constants M1,M2,M3,M4, and M5,
such that the distribution of Si has bounded support [M1,M2], max1≤j,k≤p

{∣∣µ∗j ∣∣ , ∣∣∣σ∗jk∣∣∣} ≤ M3

and M4 ≤ λmin(Σ∗) ≤ λmax(Σ∗) ≤M5.

Based on the boundedness condition 2, we can establish the convergence rate for the covariance
matrix estimator Σ̂.

Theorem 1 (Rate of convergence for Σ̂) Under Condition 2, there exist positive constants A,B,
such that for any ε > 0,

pr
(∥∥∥Σ̂− Σ∗

∥∥∥
∞
≥ ε
)
≤ p2A exp(−Bnε2).

After plugging Σ̂ into the lasso penalized D-trace loss, we get a consistent estimator Θ̂ that converges
to Θ∗ in several matrix norms.

Theorem 2 (Rate of convergence for Θ̂) Under the irrepresentability condition 1 and the bounded-
ness condition 2, there exist constants A,B, such that for some η > 2, if

n > B−1(η log p+ logA)max

[
12dkΓ, 12γ−1(kΣk

2
Γ + kΓ),

{
12γ−1

(
kΣk

3
Γ + k2

Γ

)
+ 5dk2

Γ

}
θ−1

min,

min
{
s1/2, d+ 1

}{
12γ−1

(
kΣk

3
Γ + k2

Γ

)
+ 5dk2

Γ

}
λ−1

min(Θ∗)

]2

,

and
λn = 12γ−1

(
kΣk

2
Γ + kΓ

)
B−1/2(η log p+ logA)1/2n−1/2,

then with probability 1− p2−η ,∥∥∥Θ̂−Θ∗
∥∥∥
∞
≤
(
12γ−1

(
kΣk

3
Γ + k2

Γ

)
+ 5dk2

Γ

)
B−1/2(η log p+ logA)1/2n−1/2,∥∥∥Θ̂−Θ∗

∥∥∥
F
≤ s1/2

(
12γ−1

(
kΣk

3
Γ + k2

Γ

)
+ 5dk2

Γ

)
B−1/2(η log p+ logA)1/2n−1/2,∥∥∥Θ̂−Θ∗

∥∥∥
2
≤ min

{
s1/2, d+ 1

}(
12γ−1

(
kΣk

3
Γ + k2

Γ

)
+ 5dk2

Γ

)
B−1/2(η log p+ logA)1/2n−1/2.

Meanwhile, with a high probability, the sign of the sparse precision matrix Θ∗ can be recovered by
Θ̂. We have the following theorem about the sign consistency of Θ̂.
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Theorem 3 (Sign consistency for Θ̂) Under the conditions in Theorem 2, for some η > 2, choosing
the same n and λn in Theorem 2, then with probability 1− p2−η , Θ̂ recovers all zeros and nonzeros
in Θ∗.

The rate-of-convergence and sign consistency results in Theorem 2 and 3 are closely related to the
tail probability of the MMLE estimator Σ̂ in Theorem 1. The boundedness condition 2 is assumed to
guarantee the convergence of the MMLE. Ignoring the complicated constants in theorems, for any
η > 2, if we have n > Cη log p, or in other words, if p tends to infinity not faster than exponential
of the sample size n, Θ̂ is a consistent estimator of Θ∗. Especially, the rate of convergence for Θ̂ is
O
(

[η(log p)/n]
1/2
)

under l∞-norm.

4 Simulation studies

4.1 Simulation settings

We conduct simulations to evaluate the performance of PLNet and compare it with the available
network inference methods including VPLN [5], glasso [7], and an estimator called PLNet-MOM by
plugging the moment estimator Σ̂m into D-trace loss (See Supplemental Material (S1.1)). Both PLNet
and VPLN are designed to estimate the precision matrix for count data in the PLN model. The glasso
algorithm is a classical approach for continuous data in GGM and we apply glasso to the logarithmic
transformation of the normalized data, which is defined as Ỹij = (Yij + 1)/Ŝi, 1 ≤ i ≤ n, where Ŝi
is the estimated library size of ith cell. In all simulations, we estimate the library size by the total
sum scaling (i.e. Ŝi =

∑p
j=1 Yij), which is a classical normalization method for scRNA-seq and is

defined as the sum of counts within each cell.

We consider 48 different simulation scenarios, which are 2 sample size setups (n = 500, 2000) × 3
dimension setups (p = 100, 300, 500) × 2 dropout levels (low and high) × 4 graph structures and
simulate count data from the PLN model, where the dropout level represents the proportion of zeros
in the count matrix. Details of the simulation settings are shown in the Supplementary Material (S3.1).
In each scenario, we independently repeat simulations 100 times. The four graph structures are as
follows.

1. Banded Graph: Pairs (i, j) of nodes are connected if |i− j| ≤ 2, i 6= j. All nonzero edges
are set as 0.3.

2. Random Graph: Pairs of nodes are connected with probability 0.1. The nonzero edges are
set as 0.3 with probability 0.8 and as −0.3 with probability 0.2.

3. Scale-free Graph: The Barabasi-Albert model [3] is used to generate a scale-free graph with
power 1. The nonzero edges are set as 0.3.

4. Blocked Graph: The nodes are divided into 5 blocks of equal sizes. Pairs of nodes in the
same block are connected with probability 0.1 and the nonzero edges are set as 0.3. Different
blocks have no edge connection.

The diagonal elements of precision matrices are set as 1 plus a positive number to guarantee positive
definiteness.

4.2 Performance comparison

Table 1 and Table 2 show the area under the precision and recall curve (AUPR) of each estimator.
AUPRs are calculated by varying the tuning parameters (i.e. the penalty parameters of the four
estimators). As expected, the AUPR decreases as the number of genes increases. AUPRs in the
high-dropout cases are generally smaller than that in the low-dropout cases. PLNet is the most
robust estimation among these four estimators and outperforms PLNet-MOM, VPLN, and glasso in
most simulation settings in AUPR, especially for the settings with high dropouts. For example, for
n = 2000, p = 100, PLNet achieves an AUPR of 0.88 for the random graph under the scenario of
the high dropout rate, while PLNet-MOM, VPLN, and glasso only have AUPRs of 0.82, 0.69, and
0.18, respectively. Furthermore, PLNet-MOM outperforms glasso in most settings and outperforms
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Table 1: Comparisons of PLNet, VPLN, glasso, and PLNet-MOM in terms of the area under precision
and recall curve (AUPR) on simulation results for n = 500. The results are averages over 100
replicates with standard deviations in brackets.

Sample size n = 500 n = 500 n = 500
Dimension p = 100 p = 300 p = 500

Dropout Low High Low High Low High
Banded graph

PLNet 0.79 (0.03) 0.51 (0.04) 0.6 (0.06) 0.31 (0.04) 0.44 (0.08) 0.22 (0.03)
PLNet-MOM 0.62 (0.03) 0.43 (0.03) 0.33 (0.02) 0.21 (0.01) 0.21 (0.02) 0.13 (0.01)

VPLN 0.68 (0.06) 0.44 (0.04) 0.6 (0.02) 0.27 (0.02) 0.54 (0.01) 0.21 (0.02)
glasso 0.34 (0.04) 0.05 (0.01) 0.44 (0.03) 0.04 (0.01) 0.44 (0.02) 0.04 (0.01)

Random graph
PLNet 0.73 (0.07) 0.49 (0.07) 0.6 (0.07) 0.25 (0.05) 0.53 (0.09) 0.16 (0.04)

PLNet-MOM 0.6 (0.07) 0.44 (0.07) 0.44 (0.04) 0.22 (0.04) 0.36 (0.04) 0.14 (0.03)
VPLN 0.59 (0.07) 0.44 (0.08) 0.53 (0.09) 0.26 (0.05) 0.51 (0.06) 0.18 (0.05)
glasso 0.41 (0.05) 0.14 (0.02) 0.48 (0.05) 0.11 (0.02) 0.48 (0.05) 0.09 (0.02)

Scale-free Graph
PLNet 0.73 (0.12) 0.55 (0.08) 0.67 (0.04) 0.44 (0.05) 0.59 (0.04) 0.35 (0.06)

PLNet-MOM 0.63 (0.08) 0.51 (0.06) 0.48 (0.03) 0.34 (0.03) 0.39 (0.01) 0.27 (0.03)
VPLN 0.67 (0.05) 0.53 (0.09) 0.61 (0.03) 0.43 (0.04) 0.57 (0.07) 0.38 (0.05)
glasso 0.56 (0.06) 0.34 (0.05) 0.59 (0.02) 0.32 (0.03) 0.58 (0.02) 0.3 (0.04)

Blocked graph
PLNet 0.68 (0.05) 0.47 (0.08) 0.59 (0.08) 0.24 (0.07) 0.45 (0.1) 0.17 (0.04)

PLNet-MOM 0.58 (0.04) 0.43 (0.08) 0.43 (0.06) 0.2 (0.05) 0.32 (0.05) 0.15 (0.03)
VPLN 0.59 (0.04) 0.45 (0.07) 0.52 (0.07) 0.24 (0.06) 0.44 (0.08) 0.17 (0.04)
glasso 0.37 (0.03) 0.16 (0.03) 0.44 (0.06) 0.11 (0.03) 0.4 (0.06) 0.09 (0.02)

Table 2: Comparisons of PLNet, VPLN, glasso, and PLNet-MOM in terms of the area under precision
and recall curve (AUPR) on simulation results for n = 2000. The results are averages over 100
replicates with standard deviations in brackets.

Sample size n = 2000 n = 2000 n = 2000
Dimension p = 100 p = 300 p = 500

Dropout Low High Low High Low High
Banded graph

PLNet 0.99 (0.01) 0.96 (0.01) 0.99 (0.01) 0.94 (0.02) 0.98 (0.01) 0.89 (0.08)
PLNet-MOM 0.97 (0.01) 0.92 (0.01) 0.91 (0.01) 0.83 (0.02) 0.83 (0.02) 0.75 (0.01)

VPLN 0.95 (0.01) 0.89 (0.03) 0.94 (0.01) 0.79 (0.15) 0.94 (0.01) 0.81 (0.01)
glasso 0.62 (0.03) 0.04 (0.01) 0.82 (0.01) 0.07 (0.01) 0.85 (0.01) 0.15 (0.02)

Random graph
PLNet 0.98 (0.01) 0.88 (0.04) 0.98 (0.03) 0.85 (0.05) 0.99 (0.01) 0.83 (0.04)

PLNet-MOM 0.94 (0.02) 0.82 (0.06) 0.94 (0.01) 0.77 (0.05) 0.93 (0.01) 0.74 (0.05)
VPLN 0.78 (0.08) 0.69 (0.07) 0.88 (0.03) 0.67 (0.1) 0.86 (0.11) 0.67 (0.11)
glasso 0.55 (0.06) 0.18 (0.03) 0.8 (0.03) 0.24 (0.04) 0.84 (0.02) 0.26 (0.04)

Scale-free Graph
PLNet 0.89 (0.17) 0.85 (0.11) 0.97 (0.02) 0.85 (0.03) 0.96 (0.03) 0.83 (0.02)

PLNet-MOM 0.85 (0.11) 0.81 (0.08) 0.86 (0.01) 0.75 (0.02) 0.83 (0.01) 0.71 (0.01)
VPLN 0.74 (0.16) 0.67 (0.15) 0.79 (0.04) 0.68 (0.11) 0.8 (0.05) 0.66 (0.13)
glasso 0.59 (0.14) 0.45 (0.06) 0.78 (0.02) 0.5 (0.03) 0.81 (0.02) 0.53 (0.02)

Blocked graph
PLNet 0.94 (0.02) 0.83 (0.07) 0.97 (0.01) 0.81 (0.08) 0.97 (0.01) 0.77 (0.05)

PLNet-MOM 0.88 (0.04) 0.75 (0.08) 0.91 (0.02) 0.72 (0.08) 0.89 (0.02) 0.68 (0.05)
VPLN 0.73 (0.03) 0.66 (0.07) 0.78 (0.04) 0.62 (0.07) 0.8 (0.06) 0.59 (0.11)
glasso 0.47 (0.05) 0.2 (0.03) 0.7 (0.04) 0.21 (0.04) 0.75 (0.03) 0.21 (0.04)
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VPLN under the scenario of large sample sizes. The results of the area under the receiver operating
characteristic curve (AUC) are similar and shown in Supplementary Table S1-S2.

To further demonstrate the performance of PLNet, we visualize the mean networks predicted by the
four methods tuned by BIC criterion for the banded graph with n = 2000, p = 100 over the 100
simulations (Figure 1). More specifically, we calculate the relative frequency Fij that an algorithm
reports edges over the 100 simulations. For positions (i, j) with Θij 6= 0, Fij is the proportion
that an algorithm correctly recovers the edge in the 100 simulations, while for positions (i, j) with
Θij = 0, Fij is the proportion that an algorithm falsely predicts edges between nodes i and j in the
100 simulations. We plot the relative frequency matrices of the four methods in Figure 1. We clearly
see that PLNet is able to detect more true positives while having fewer false positives than other
methods, especially for the high dropout case. The results of mean predicted networks for the other
three graphs with n = 2000, p = 100 are similar and shown in Supplementary Figure S1-S3.

Figure 1: The mean networks predicted by PLNet, VPLN, glasso, and PLNet-MOM for the banded
graph with 100 nodes and n = 2000. False edges are colored in red and true edges are in blue. The
left panel is the true network matrix for reference.

Supplementary Table S3-S4 show the computational time of the four methods. PLNet is computa-
tionally more efficient than VPLN in most simulation settings. Also, the computational efficiency of
PLNet is roughly the same for different sample sizes, while the computational complexity of VPLN
maintains a linear relationship with sample size. The detailed comparisons between the computational
efficiency of the four methods are shown in the Supplementary Material (S3.2.2).

5 Application to a scRNA-seq dataset

We apply PLNet and VPLN to infer the gene regulatory network of CD14+ Monocytes profiled
in Kang et al. [10]. The single cells are profiled in two different conditions, IFN-β-treated and
controlled. IFN-β is a cytokine in the interferon family that influences the transcriptional profiles for
many genes, especially those in the JAK/STAT pathway [16]. We focus on the IFN-β-treated cells
(2147 cells) and use the top 200 highly variable genes that are used in [20] for network analysis.

We compare networks of PLNet and VPLN with parameters tuned such that the network densities are
around 5%. Gene Ontology (GO) analysis [11] shows that the 200 genes mainly involve in 4 biological
processes, including "Cytokine-mediated signaling pathway" (Module M1), "Neutrophil-mediated
immunity" (Module M2), "Cellular protein metabolic process" (Module M3), and "Proteolysis"
(Module M4). Figure 2 shows the predicted networks of the genes in the 4 modules by PLNet and
VPLN, where the colors represent the partial correlations between genes. The partial correlation
given by PLNet between genes i and j is defined as −Θ̂ij/(Θ̂iiΘ̂ij)

1/2. The partial correlation
given by VPLN is defined similarly. We clearly see that the network given by PLNet tends to
have more connections within the modules than VPLN. To see this more clearly, for each module
Mk, we calculate the ratio between within-module and between-module connections R(Mk) =
Σi,j∈Mk

Wij/Σi∈Mk, j /∈Mk
Wij , where the weights Wij are set as the absolute partial correlation

between genes i and j (weighted within-between connection ratio) or are set as 1 and 0 depending
on whether genes i and j are connected (unweighted within-between connection ratio). The within-
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(a) PLNet (b) VPLN

Figure 2: Heat maps of partial correlations between genes in the 4 GO modules given by PLNet
(a) and VPLN (b). Red: Cytokine-mediated signaling pathway (Module M1); Orange: Neutrophil-
mediated immunity (Module M2); Green: Cellular protein metabolic process (Module M3); Blue:
Proteolysis (Module M4).

between connection ratios of PLNet are much larger than that of VPLN in most cases (Table 3).
Similar results also hold for networks of other different densities that are shown in the Supplementary
Material (S4.1).

Table 3: The within-between connection ratios of the 4 modules in the networks estimated by PLNet
and VPLN tuned such that the network densities are around 5%.

Type Method Module M1 Module M2 Module M3 Module M4
Weighted PLNet 0.681 0.231 0.582 0.387

VPLN 0.621 0.381 0.459 0.259
Unweighted PLNet 0.533 0.129 0.419 0.383

VPLN 0.515 0.200 0.170 0.213

To further compare the performance of PLNet and VPLN on the real scRNA-seq data analysis, we
construct a silver standard based on an available regulatory network database obtained from ChIP-seq
experiments (the hTFtarget database [29]). The silver standard consists of edges between the 200
highly variable genes and 36 transcription factors (TF) from the top 500 highly variable genes. We
consider 26 additional TFs from the top 500 highly variable genes because the top 200 highly variable
genes only contain 10 TFs and the silver standard constructed only using these genes is too sparse
to be a reliable silver standard. We compare networks estimated by PLNet and VPLN with their
parameters tuned such that the network densities are at the same levels (1% to 10%). Table 4 shows
the number of true edges in the silver standard detected by PLNet and VPLN at different network
densities. Clearly, we see that PLNet detects more true edges at the same density levels than VPLN,
suggesting that PLNet has a higher true discovery rate than VPLN.

Table 4: The number of true edges estimated by two methods with different density levels.

Density 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
PLNet 8 16 23 35 41 44 62 73 81 92
VPLN 2 5 7 12 20 27 36 48 62 62

6 Discussion

In this paper, we consider the PLN graphical model for count data. This model has an intuitive
explanation for single-cell gene regulatory network analysis. The Poisson layer is to capture the
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technical noises and the log-normal layer is to model the biological fluctuations in single cells. Gene
regulatory network is represented by the precision matrix of the latent log-normal model. To estimate
the precision matrix, we propose a two-step estimator PLNet, using the MMLE to estimate the
covariance matrix and then minimizing the penalized D-trace loss to estimate the precision matrix.
The simplicity of this estimation procedure allows us to establish the consistency theory for the
proposed PLNet estimator for the high dimensional setting. The numerical analysis also shows that
the PLNet method outperforms available methods.

The proposed method can be generalized in several ways. First, we may consider the zero-inflated
PLN (ZIPLN) model to account for the excessed number of zeros that cannot be modeled by PLN
models. We could also use the MMLE method to estimate the covariance matrix of the ZIPLN model,
but the convergence theory is more difficult to develop. Secondly, a straightforward generalization
is the differential network analysis. We could use the same method to estimate covariance matrices
in two different conditions and use the D-trace loss developed in earlier work [27] for differential
network analysis in single cells. Thirdly, the mean parameters of the latent log-normal random
variable can depend on covariates. In such model, we could first use regression to estimate the
mean parameters and derive the corresponding moment estimator of the covariance matrix. Another
generalization is gene regulatory network analysis of mixtures of cell populations. Different cell
populations may have different gene regulatory networks and we could jointly model the mixture
and infer the gene regulatory networks for all cell populations. Finally, the current method is based
on parametric inference. If the model is mis-specified, network inference could be misleading.
To mitigate this problem, we can consider a semi-parametric model by replacing the latent log-
normal model with a Gaussian copula graphical model, but how to do network inference with this
semi-parametric model is still a challenge that needs to be overcome in the future.
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