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Abstract

Bilevel optimization has been recently used in many machine learning problems
such as hyperparameter optimization, policy optimization, and meta learning. Al-
though many bilevel optimization methods have been proposed, they still suffer
from the high computational complexities and do not consider the more general
bilevel problems with nonsmooth regularization. In the paper, thus, we propose a
class of enhanced bilevel optimization methods with using Bregman distance to
solve bilevel optimization problems, where the outer subproblem is nonconvex and
possibly nonsmooth, and the inner subproblem is strongly convex. Specifically,
we propose a bilevel optimization method based on Bregman distance (BiO-BreD)
to solve deterministic bilevel problems, which achieves a lower computational
complexity than the best known results. Meanwhile, we also propose a stochastic
bilevel optimization method (SBiO-BreD) to solve stochastic bilevel problems
based on stochastic approximated gradients and Bregman distance. Moreover, we
further propose an accelerated version of SBiO-BreD method (ASBiO-BreD) using
the variance-reduced technique, which can achieve a lower computational com-
plexity than the best known computational complexities with respect to condition
number κ and target accuracy ϵ for finding an ϵ-stationary point. We conduct data
hyper-cleaning task and hyper-representation learning task to demonstrate that our
new algorithms outperform related bilevel optimization approaches.

1 Introduction
Bilevel optimization can effectively solve the problems with a hierarchical structure, thus it recently
has been widely used in many machine learning tasks such as hyper-parameter optimization [37, 20,
9, 38], meta learning [9, 31, 22], neural network architecture search [30], reinforcement learning
[15], and image processing [31]. In the paper, we consider solving the following nonconvex-strongly-
convex bilevel optimization problem:

min
x∈X⊆Rd1

f(x, y∗(x)) + h(x), (Outer) (1)

s.t. y∗(x) ∈ arg min
y∈Rd2

g(x, y), (Inner)

where function F (x) = f(x, y∗(x)) : X → R is smooth and possibly nonconvex, and function
h(x) is convex and possibly nonsmooth, and function g(x, y) : X × Rd2 → R is µ-strongly convex
in y ∈ Rd2 . The constraint set X ⊆ Rd1 is compact and convex. Problem (1) covers a rich
class of nonconvex objective functions with nonsmooth regularization, and is more general than
the existing nonconvex bilevel optimization formulation in [11, 22] that does not consider any
nonsmooth regularization. Here the function h(x) can be the nonsmooth regularization term such as
h(x) = λ∥x∥1.
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Table 1: Comparisons of the representative bilevel optimization algorithms for finding an ϵ-stationary
point of the deterministic nonconvex-strongly-convex Problem (1) with h(x) or without h(x), i.e.,
∥∇F (x)∥2 ≤ ϵ or its equivalent variants. Gc(f, ϵ) and Gc(g, ϵ) denote the number of gradient
evaluations w.r.t. f(x, y) and g(x, y); JV (g, ϵ) denotes the number of Jacobian-vector products;
HV (g, ϵ) is the number of Hessian-vector products; κ = L/µ is the conditional number.

√
means

that the algorithms solve both the smooth and nonsmooth bilevel optimizations.
Algorithm Reference Gc(f, ϵ) Gc(g, ϵ) JV (g, ϵ) HV (g, ϵ) Nonsmooth
AID-BiO [11] O(κ4ϵ−1) O(κ5ϵ−5/4) O(κ4ϵ−1) O(κ4.5ϵ−1)
AID-BiO [22] O(κ3ϵ−1) O(κ4ϵ−1) O(κ3ϵ−1) O(κ3.5ϵ−1)

ITD-BiO [22] O(κ3ϵ−1) Õ(κ4ϵ−1) Õ(κ4ϵ−1) Õ(κ4ϵ−1)

BiO-BreD Ours O(κ2ϵ−1) Õ(κ3ϵ−1) Õ(κ3ϵ−1) Õ(κ3ϵ−1)
√

Table 2: Comparisons of the representative bilevel optimization algorithms for finding an ϵ-stationary
point of the stochastic nonconvex-strongly-convex problem (2) with h(x) or without h(x), i.e.,
E∥∇F (x)∥2 ≤ ϵ or its equivalent variants. Since some algorithms do not provide the explicit
dependence on κ, we use p(κ).

Algorithm Reference Gc(f, ϵ) Gc(g, ϵ) JV (g, ϵ) HV (g, ϵ) Nonsmooth
TTSA [15] O(p(κ)ϵ−2.5) O(p(κ)ϵ−2.5) O(p(κ)ϵ−2.5) O(p(κ)ϵ−2.5)

STABLE [5] O(p(κ)ϵ−2) O(p(κ)ϵ−2) O(p(κ)ϵ−2) O(p(κ)ϵ−2)
SMB [13] O(p(κ)ϵ−2) O(p(κ)ϵ−2) O(p(κ)ϵ−2) O(p(κ)ϵ−2)

VRBO [41] O(p(κ)ϵ−1.5) O(p(κ)ϵ−1.5) O(p(κ)ϵ−1.5) O(p(κ)ϵ−1.5)
SUSTAIN [23] O(p(κ)ϵ−1.5) O(p(κ)ϵ−1.5) O(p(κ)ϵ−1.5) O(p(κ)ϵ−1.5)

VR-saBiAdam [18] O(p(κ)ϵ−1.5) O(p(κ)ϵ−1.5) O(p(κ)ϵ−1.5) O(p(κ)ϵ−1.5)

BSA [11] O(κ6ϵ−2) O(κ9ϵ−3) O(κ6ϵ−2) Õ(κ6ϵ−2)

stocBiO [22] O(κ5ϵ−2) O(κ9ϵ−2) O(κ5ϵ−2) Õ(κ6ϵ−2)

SBiO-BreD Ours O(κ5ϵ−2) O(κ5ϵ−2) O(κ5ϵ−2) Õ(κ6ϵ−2)
√

ASBiO-BreD Ours O(κ5ϵ−1.5) O(κ5ϵ−1.5) O(κ5ϵ−1.5) Õ(κ6ϵ−1.5)
√

Many recent machine learning research problems utilize the stochastic loss functions. Thus, we also
consider the following stochastic bilevel optimization problem:

min
x∈X⊆Rd1

Eξ∼D
[
f(x, y∗(x); ξ)

]
+ h(x), (Outer) (2)

s.t. y∗(x) ∈ arg min
y∈Rd2

Eζ∼D′
[
g(x, y; ζ)

]
, (Inner)

where function F (x) = Eξ
[
F (x; ξ)

]
= Eξ

[
f(x, y∗(x); ξ)

]
is smooth and possibly nonconvex, and

function h(x) is convex and possibly nonsmooth, and function g(x, y) = Eζ
[
g(x, y; ζ)

]
: X×Rd2 →

R is µ-strongly convex in y ∈ Rd2 . ξ and ζ are random variables following unknown distributions D
and D′, respectively. Both Problem (1) and Problem (2) have been used in many machine learning
tasks with a hierarchical structure, such as hyper-parameter meta-learning [9, 22] and neural network
architecture search [30].

Many bilevel optimization methods recently have been developed to solve these problems. For
example, [11, 22] introduced a class of effective methods to solve the above deterministic Problem (1)
and stochastic Problem (2) with h(x) = 0. However, these methods suffer from high computational
complexity issue. More recently, multiple accelerated methods were designed for stochastic Problem
(2) with h(x) = 0. Specifically, [5, 23, 14, 41] proposed accelerated bilevel optimization algorithms
via using the variance reduced techniques of SARAH/SPIDER/SNVRG [36, 8, 40, 43] and STORM
[6]. However, these accelerated methods obtain a lower computational complexity without considering
the condition number, which also accounts for an important part of the computational complexity
(please see Tables 1 and 2). Meanwhile, these accelerated methods only focus on the special case of
the stochastic bilevel optimization Problem (2) with h(x) = 0.

To fill in the gaps, in the paper, we propose a class of efficient bilevel optimization methods with
lower computational complexity to solve the bilevel optimization Problems (1) and (2), where the
outer subproblem is nonconvex and possibly nonsmooth, and the inner subproblem is strongly convex.
Specifically, we use the mirror decent iteration to update the variable x based on the Bregman distance.
Our main contributions are summarized as follows:

(i) We propose a class of enhanced bilevel optimization methods based on Bregman distance to
solve the nonconvex-strongly-convex bilevel optimization problems. Moreover, we provide
a comprehensive convergence analysis framework for our proposed methods.

2



(ii) An efficient bilevel optimization method based on Bregman distances (BiO-BreD) is pro-
posed to solve the deterministic bilevel Problem (1). We prove that our BiO-BreD achieves
a lower sample complexity than the best known results (please see Table 1).

(iii) We introduce an efficient bilevel optimization method based on adaptive Bregman distances
(SBiO-BreD) to solve the stochastic bilevel Problem (2). Moreover, we design an accelerated
version of SBiO-BreD algorithm (ASBiO-BreD) via using the variance reduced technique,
which achieves a lower sample complexity than the best known results (please see Table 2).

Note that our methods can solve the constrained bilevel optimization with nonsmooth regularization
but not rely on any form of constraint set and nonsmooth regularization. In the other words, our
methods can solve the unconstrained bilevel optimization without nonsmooth regularization studied
in [11, 22]. Naturally, our convergence analysis can be applied to both the constrained bilevel
optimization with nonsmooth regularization and the unconstrained bilevel optimization without
nonsmooth regularization.

2 Related Works
In this section, we will revisit the existing bilevel optimization algorithms and Bregman distance
based methods.

2.1 Bilevel Optimization Methods
Bilevel optimization recently has attracted increasing interest in many machine learning applications
such as model-agnostic meta-learning, neural network architecture search, and policy optimization.
Thus, recently many algorithms [9, 11, 15, 34, 35, 22, 28] have been proposed to solve the bilevel
optimization problems. Specifically, [11] proposed a class of approximation methods for bilevel
optimization and studied convergence properties of the proposed methods under convexity assumption.
[34, 35] developed the gradient-based descent aggregation methods for convex bilevel optimization.
[37] presented a nonlinear primal–dual algorithm for nonsmooth convex bilevel optimization in
parameter learning problems.

In parallel, [15] introduced a two-timescale stochastic algorithm framework for nonconvex stochastic
bilevel optimization in reinforcement learning. Multiple accelerated bilevel approximation methods
were developed later. Specifically, [22] proposed faster bilevel optimization methods based on
the approximated implicit differentiation (AID) and iterative differentiation (ITD), respectively.
[5, 23, 14, 41] presented several accelerated bilevel methods for the stochastic bilevel problems using
variance-reduced techniques. More recently, [18] proposed a class of efficient adaptive methods for
nonconvex-strongly-convex bilevel optimization problems. At the same time, the lower bound of
bilevel optimization methods has been studied in [21] for these nonconvex-strongly-convex bilevel
optimization problems. In addition, [34, 27, 32, 33] designed a class of value-function-based and
gradient-based bilevel methods for nonconvex bilevel optimization problems and studied asymptotic
convergence properties of these methods. [38] analyzed a class of special nonconvex nonsmooth
bilevel optimization methods for selecting the best hyperparameter value for the nonsmooth ℓp
regularization with 0 < p ≤ 1.

2.2 Bregman Distance-Based Methods
Bregman distance-based method (a.k.a, mirror descent method) [4, 1] is a powerful optimization tool
because it uses the Bregman distance to fit the geometry of optimization problems. Bregman distance
was first proposed in [2], and later extended in [3]. [4] introduced the first proximal minimization al-
gorithm with Bregman function. [1] studied the mirror descent for convex optimization. [7] presented
an effective variant of mirror descent, i.e. composite objective mirror descent, for regularized convex
optimization. Subsequently, [42] studied the convergence properties of mirror descent algorithm
for solving nonsmooth nonconvex problems. [26] integrated the variance reduced technique to
the mirror descent algorithm for stochastic convex optimization. The variance-reduced adaptive
stochastic mirror descent algorithm [29] was proposed to solve the nonsmooth nonconvex finite-sum
optimization. More recently, [16] studied Bregman gradient methods for policy optimization.

3 Preliminaries
3.1 Notations
Let Id denote a d-dimensional identity matrix. U{1, 2, · · · ,K} denotes a uniform distribution over
a discrete set {1, 2, · · · ,K}. ∥ · ∥ denotes the ℓ2-norm for vectors and spectral norm for matrices,
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respectively. For two vectors x and y, ⟨x, y⟩ denotes their inner product. ∇xf(x, y) and ∇yf(x, y)
are the partial derivatives w.r.t. variables x and y. Given the mini-batch samples B = {ξi}bi=1, we
define ∇f(x;B) = 1

b

∑b
i=1 ∇f(x; ξi). For two sequences {an, bn}ni=1, an = O(bn) denotes that

an ≤ Cbn for some constant C > 0. The notation Õ(·) hides logarithmic terms. Given a convex
closed set X , we define a projection operation PX (x0) = argminx∈X ∥x − x0∥2. ∂h(x) is the
subgradient set of function h(x).

3.2 Some Mild Assumptions
Assumption 1. Function F (x) = f(x, y∗(x)) is possibly nonconvex w.r.t. x, and function g(x, y)
is µ-strongly convex w.r.t. y. For stochastic case, the same assumptions hold for f(x, y∗(x); ξ) and
g(x, y; ζ), respectively.
Assumption 2. Functions f(x, y) and g(x, y) satisfy

1) ∥∇yf(x, y)∥ ≤ Cfy and ∥∇2
xyg(x, y)∥ ≤ Cgxy for any x ∈ X and y ∈ Rd2 ;

2) The partial derivatives ∇xf(x, y), ∇yf(x, y), ∇xg(x, y) and ∇yg(x, y) are L-Lipschitz,
e.g., for x, x1, x2 ∈ X and y, y1, y2 ∈ Rd2 ,

∥∇xf(x1, y)−∇xf(x2, y)∥ ≤ L∥x1 − x2∥, ∥∇xf(x, y1)−∇xf(x, y2)∥ ≤ L∥y1 − y2∥.

For stochastic case, the same assumptions hold for f(x, y; ξ) and g(x, y; ζ) for any ξ and ζ.
Assumption 3. The partial derivatives ∇2

xyg(x, y) and ∇2
yyg(x, y) are Lgxy-Lipschitz and Lgyy-

Lipschitz, e.g., for all x, x1, x2 ∈ X and y, y1, y2 ∈ Rd2

∥∇2
xyg(x1, y)−∇2

xyg(x2, y)∥ ≤ Lgxy∥x1 − x2∥, ∥∇2
xyg(x, y1)−∇2

xyg(x, y2)∥ ≤ Lgxy∥y1 − y2∥.

For stochastic case, the same assumptions hold for ∇2
xyg(x, y; ζ) and ∇2

yg(x, y; ζ) for any ζ.

Assumption 4. Function h(x) for any x ∈ X is convex but possibly nonsmooth.
Assumption 5. Function Φ(x) = F (x) + h(x) is bounded below, i.e., Φ∗ = infx∈X Φ(x) > −∞.

Assumptions 1-3 are commonly used in bilevel optimization methods [11, 22, 23]. According to
Assumption 1, ∥f(x, y1) − f(x, y2)∥ = ∥∇yf(x, yτ )(y1 − y2)∥ ≤ ∥∇yf(x, yτ )∥∥y1 − y2∥ ≤
Cfy∥y1 − y2∥, where yτ = τy1 + (1 − τ)y2 and τ ∈ [0, 1]. Thus ∥∇yf(x, y)∥ ≤ Cfy is similar
to the assumption that the function f is M -Lipschitz in [22]. From the proofs in [22], we can find
that they still use the norm bounded partial derivative ∥∇yf(x, y)∥ ≤ M . Similarly, according
to Assumption 1, we have ∥∇yg(x1, y) − ∇yg(x2, y)∥ ≤ L∥x1 − x2∥. Since ∥∇yg(x1, y) −
∇yg(x2, y)∥ = ∥∇2

xyg(xτ ′ , y)(x1 − x2)∥ ≤ ∥∇2
xyg(xτ ′ , y)∥∥x1 − x2∥ ≤ Cgxy∥x1 − x2∥, where

xτ ′ = τ ′x1 + (1− τ ′)x2 and τ ′ ∈ [0, 1], we can let Cgxy = L as in [22]. From the proofs in [22],
we can find that they still use the norm bounded partial derivative ∥∇2

xyg(x, y)∥ ≤ L for all x, y.
Throughout the paper, we let Cgxy = L. Assumption 4 is generally used for regularization such as
h(x) = ∥x∥1. Assumption 5 ensures the feasibility of Problems (1) and (2).

When we use the first-order methods to solve the above bilevel optimization Problems (1) and (2), we
can easily obtain the partial (stochastic) derivative ∇yg(x, y) or ∇yg(x, y; ζ) to update variable y.
However, it is hard to get the (stochastic) gradient ∇F (x) = ∂f(x,y∗(x))

∂x or ∇F (x; ξ) = ∂f(x,y∗(x);ξ)
∂x ,

when there is no closed form solution for the inner problem of Problems (1) and (2). Thus, a key
point of solving the Problems (1) and (2) is to estimate the gradient ∇F (x). The following lemma
provides one gradient estimator of ∇F (x).
Lemma 1. (Lemma 2.1 in [11]) Under the above Assumptions (1, 2, 3), we have, for any x ∈ X

∇F (x) = ∇xf(x, y
∗(x)) +∇y∗(x)T∇yf(x, y

∗(x))

= ∇xf(x, y
∗(x))−∇2

xyg(x, y
∗(x))[∇2

yyg(x, y
∗(x))]−1∇yf(x, y

∗(x)). (3)

Lemma 1 provides a natural estimator of ∇F (x), defined as, for all x ∈ X , y ∈ Rd2

∇̄f(x, y) = ∇xf(x, y)−∇2
xyg(x, y)

(
∇2
yyg(x, y)

)−1∇yf(x, y). (4)

Next, we show some properties of ∇F (x), y∗(x) and ∇̄f(x, y) in the following lemma:
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Algorithm 1 Deterministic BiO-BreD Algorithm
1: Input: T , K ≥ 1, learning rates γ > 0, λ > 0;
2: initialize: x0 ∈ X and yK−1 = y0 ∈ Rd2 ;
3: for t = 0, 1, · · · , T − 1 do
4: Let y0t = yKt−1;
5: for k = 1, · · · ,K do
6: Update ykt = yk−1

t − λ∇yg(xt, y
k−1
t );

7: end for
8: Compute partial derivative wt =

∂f(xt,y
K
t )

∂x via backpropagation w.r.t. xt;
9: Given a ρ-strongly convex mirror function ψt;

10: Update xt+1 = argminx∈X
{
⟨wt, x⟩+ h(x) + 1

γDψt(x, xt)
}

;
11: end for
12: Output: Uniformly and randomly choose from {xt, yt}Tt=1.

Lemma 2. (Lemma 2.2 in [11]) Under the Assumptions (1, 2, 3), for all x, x1, x2 ∈ X and y ∈ Rd2 ,
we have ∥∇̄f(x, y)−∇F (x)∥ ≤ Ly∥y∗(x)− y∥

∥y∗(x1)− y∗(x2)∥ ≤ κ∥x1 − x2∥, ∥∇F (x1)−∇F (x2)∥ ≤ LF ∥x1 − x2∥,

where Ly = L + L2

µ +
CfyLgxy

µ +
LgyyCfyL

µ2 , κ = L
µ , and LF = L +

2L2+LgxyC
2
fy

µ +
LgyyCfyL+L

3+LgxyCfyL
µ2 +

LgyyCfyL
2

µ3 .

4 Bilevel Optimization via Bregman Distance Methods
In this section, we propose a class of enhanced bilevel optimization methods based on Bregman
distance to solve the deterministic Problem (1) and the stochastic Problem (2), respectively.

4.1 Deterministic BiO-BreD Algorithm
In this subsection, we propose an efficient deterministic bilevel optimization method via Bregman
distances (BiO-BreD) to solve the deterministic Problem (1). Algorithm 1 summarizes the algorithmic
framework of our BiO-BreD method.

Given a ρ-strongly convex and continuously-differentiable function ψ(x), i.e., ⟨x1 − x2,∇ψ(x1)−
∇ψ(x2)⟩ ≥ ρ∥x1 − x2∥2, we define a Bregman distance [3, 4] for any x1, x2 ∈ X :

Dψ(x1, x2) = ψ(x1)− ψ(x2)− ⟨∇ψ(x2), x1 − x2⟩.

In Algorithm 1, we use the mirror descent iteration to update the variable x at t+ 1-th step:

xt+1 = argmin
x∈X

{
⟨wt, x⟩+ h(x) +

1

γ
Dψt

(x, xt)
}
, (5)

where γ > 0 is stepsize, and wt is an estimator of ∇F (xt). Here the mirror function ψt can be
dynamic as the algorithm is running. Let ψt(x) = 1

2∥x∥
2, we have Dψt(x, xt) = 1

2∥x − xt∥2.
When X = Rd1 , the above subproblem (5) is equivalent to the proximal gradient descent. When
X ⊆ Rd1 and h(x) = 0, the above subproblem (5) is equivalent to the projection gradient descent.
Let ψt(x) = 1

2x
THtx, we have Dψt

(x, xt) =
1
2 (x−xt)

THt(x−xt). When Ht is an approximated
Hessian matrix, the above subproblem (5) is equivalent to the proximal quasi-Newton decent. When
Ht is an adaptive matrix as used in [19], the above subproblem (5) is equivalent to the proximal
adaptive gradient decent.

In Algorithm 1, we use gradient estimator wt =
∂f(xt,y

K
t )

∂x to estimate ∇F (xt), where the partial

derivative wt =
∂f(xt,y

K
t )

∂x is obtained by the backpropagation w.r.t. xt.

4.2 SBiO-BreD Algorithm
In this subsection, we introduce an efficient stochastic bilevel optimization method via Bregman
distance (SBiO-BreD) to solve the stochastic bilevel optimization Problem (2). Algorithm 2 describes
the algorithmic framework of our SBiO-BreD method.
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Algorithm 2 Stochastic BiO-BreD (SBiO-BreD) Algorithm
1: Input: T,K ≥ 1, stepsizes γ > 0, λ > 0, {ηt}Tt=1;
2: initialize: x0 ∈ X and y0 ∈ Rd2 ;
3: for t = 0, 1, · · · , T − 1 do
4: Draw randomly b independent samples Bt = {ζit}bi=1, and compute stochastic partial deriva-

tives vt = ∇yg(xt, yt;Bt);
5: Update yt+1 = yt − ληtvt;
6: Draw randomly b(K + 1) independent samples B̄t = {ξt,i, ζ0t,i · · · , ζ

K−1
t,i }bi=1, and compute

stochastic partial derivatives wt = ∇̄f(xt, yt; B̄t);
7: Given a ρ-strongly convex mirror function ψt;
8: Update xt+1 = argminx∈X

{
⟨wt, x⟩+ h(x) + 1

γDψt
(x, xt)

}
;

9: end for
10: Output: Uniformly and randomly choose from {xt, yt}Tt=1.

Given K ≥ 1 and draw K + 1 independent samples ξ̄ = {ξ, ζ0, · · · , ζK−1}, as in [15, 23], we
definite a stochastic gradient estimator:

∇̄f(x, y, ξ̄) = ∇xf(x, y; ξ)−∇2
xyg(x, y; ζ

0)

[
K

L

k∏
i=1

(
Id2−

1

L
∇2
yyg(x, y; ζ

i)
)]
∇yf(x, y; ξ), (6)

where k ∼ U{0, 1, · · · ,K−1} is a uniform random variable independent on ξ̄. It is easy to verify that
∇̄f(x, y, ξ̄) is a biased estimator of ∇̄f(x, y), i.e. Eξ̄

[
∇̄f(x, y; ξ̄)

]
̸= ∇̄f(x, y). For the gradient

estimator (6), thus we define a bias R(x, y) = ∇̄f(x, y)− Eξ̄
[
∇̄f(x, y; ξ̄)

]
: X × Rd2 → R.

Lemma 3. ( Lemma 2.1 in [23] ) Under the about Assumptions (1, 2, 3), for any K ≥ 1, the gradient
estimator in (6) satisfies

∥R(x, y)∥ ≤ LCfy
µ

(
1− µ

L

)K
.

Lemma 5 shows that the bias R(x, y) decays exponentially fast with number K, and with choosing
K = L

µ log(LCfyT/µ), we have ∥R(x, y)∥ ≤ 1
T . Let LCfy

µ

(
1− µ

L

)K ≤ 1
T , we haveK log(1− µ

L ) ≤
log( µ

LCfyT
). Due to µ < L, we have K ≥ log(

CfyLT
µ )/ log( L

L−µ ). Further due to µ
L ≤ log( L

L−µ ),

let K = L
µ log(LCfyT/µ), we have ∥R(x, y)∥ ≤ 1

T . Note that here we use Cgxy = L.

To simplify notations, let ξ̄it = {ξt,i, ζ0t,i · · · , ζ
K−1
t,i }. In Algorithm 2, we use mini-batch stochastic

gradient estimator wt = ∇̄f(xt, yt; B̄t) = 1
b

∑b
i=1 ∇̄f(xt, yt; ξ̄it), where ∇̄f(xt, yt; ξ̄it)

= ∇xf(xt, yt; ξt,i)−∇2
xyg(xt, yt; ζ

0
t,i)

[
K

L

k∏
j=1

(
Id2 −

1

L
∇2
yyg(xt, yt; ζ

j
t,i)

)]
∇yf(xt, yt; ξt,i),

with k ∼ U{0, 1, · · · ,K − 1}. Let R(xt, yt) = wt − ∇̄f(xt, yt) = ∇̄f(xt, yt; B̄t) − ∇̄f(xt, yt),
we have E[∇̄f(xt, yt; B̄t)] = R(xt, yt) + ∇̄f(xt, yt). According to the above Lemma 5, it is easy to
verify that ∥R(xt, yt)∥ ≤ LCfy

µ

(
1− µ

L

)K
.

4.3 ASBiO-BreD Algorithm
In this subsection, we propose an accelerated version of SBiO-BreD method (ASBiO-BreD) to
solve the stochastic bilevel optimization Problem (2) via using variance reduced technique of
SARAH/SPIDER/SNVRG [36, 8, 40, 43]. Algorithm 3 shows the algorithmic framework of the
ASBiO-BreD method.

In Algorithm 3, we use the variance reduced technique of SPIDER to accelerate SBiO-BreD algorithm.
When mod (t, q) = 0, we draw a relative large batch samples Bt = {ζit}bi=1 and B̄t = {ξ̄it}bi=1
to estimate our stochastic partial derivatives vt and wt, respectively. When mod (t, q) ̸= 0,
we draw a mini-batch samples It = {ξit}

b1
i=1 and Īt = {ξ̄it}

b1
i=1 (b > b1) to estimate vt and

wt, respectively. Let R(xt, yt) = ∇̄f(xt, yt; Īt) − ∇̄f(xt, yt) when mod (t, q) ̸= 0, we have
E[∇̄f(xt, yt; Īt)] = R(xt, yt) + ∇̄f(xt, yt) and ∥R(xt, yt)∥ ≤ LCfy

µ

(
1− µ

L

)K
.
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Algorithm 3 Accelerated Stochastic BiO-BreD (ASBiO-BreD) Algorithm
1: Input: T,K ≥ 1, q, stepsizes γ > 0, λ > 0, {ηt}Tt=1, mini-batch sizes b and b1;
2: initialize: x0 ∈ X and y0 ∈ Rd2 ;
3: for t = 0, 1, · · · , T − 1 do
4: if mod (t, q) = 0 then
5: Draw randomly b independent samples Bt = {ζit}bi=1, and compute stochastic partial

derivative vt = ∇yg(xt, yt;Bt);
6: Draw randomly b(K+1) independent samples B̄t = {ξt,i, ζ0t,i · · · , ζ

K−1
t,i }bi=1, and compute

stochastic partial derivative wt = ∇̄f(xt, yt; B̄t);
7: else
8: Generate randomly b1 independent samples It = {ζit}

b1
i=1, and compute stochastic partial

derivative vt = ∇yg(xt, yt; It)−∇yg(xt−1, yt−1; It) + vt−1;
9: Generate randomly b1(K + 1) independent samples Īt = {ξt,i, ζ0t,i · · · , ζ

K−1
t,i }b1i=1, and

compute stochastic partial derivative wt = ∇̄f(xt, yt; Īt)− ∇̄f(xt−1, yt−1; Īt) + wt−1;
10: end if
11: Update yt+1 = yt − ληtvt;
12: Given a ρ-strongly convex mirror function ψt;
13: Update xt+1 = argminx∈X

{
⟨wt, x⟩+ h(x) + 1

γDψt
(x, xt)

}
;

14: end for
15: Output: Uniformly and randomly choose from {xt, yt}Tt=1.

5 Convergence Analysis
In this section, we study the convergence properties of our new algorithms (i.e., BiO-BreD, SBiO-
BreD, and ASBiO-BreD) under mild conditions. All proofs are provided in the Appendix B.

We begin with introducing a useful convergence metric ∥Gt∥2 or E∥Gt∥2 to measure convergence
properties of our algorithms. Given the generated parameter vector xt at the t-th iteration in our
algorithms, as in [10, 29], we define the generalized gradient at the t-th iteration as:

Gt =
1

γ
(xt − x+t+1), x+t+1 = argmin

x∈X

{
⟨∇F (xt), x⟩+ h(x) +

1

γ
Dψt

(x, xt)
}
,

where F (x) = f(x, y∗(x)) or F (x) = Eξ[f(x, y∗(x); ξ)]. When ψt(x) = 1
2∥x∥

2, X = Rd1 and
h(x) = c is a constant, we have ∥Gt∥2 = ∥∇F (xt)∥2, which is a common convergence metric used
in [11, 22]. When ψ(x) = 1

2∥x∥
2, X ⊆ Rd1 and h(x) = c is a constant, our convergence metric is

∥Gt∥2 = ∥ 1
γ (xt − PX (xt − γ∇F (xt))∥2, which was also used in [15].

Next, we provide some useful lemmas and some mild assumptions.
Lemma 4. (Lemma 3.1 in [23]) Under the above Assumptions (1, 2, 3), stochastic gradient estimator
∇̄f(x, y; ξ̄) is LK-Lipschitz continuous, e.g., for x1, x2 ∈ X and y ∈ Rd2 ,

Eξ̄∥∇̄f(x1, y; ξ̄)− ∇̄f(x2, y; ξ̄)∥2 ≤ L2
K∥x1 − x2∥2,

where L2
K = 2L2 + 6L4 K

2µL−µ2 + 6C2
fyL

2
gxy

K
2µL−µ2 + 6L4 K3L2

gyy

(L−µ)2(2µL−µ2) .

Lemma 5. Suppose the sequence {xt, yt}Tt=1 be generated from Algorithms 2 and 3. Under the
above assumptions, given 0 < ηt ≤ 1 for all t ≥ 1 and 0 < λ ≤ 1

6L , we have

∥yt+1 − y∗(xt+1)∥2 ≤ (1− ηtµλ

4
)∥yt − y∗(xt)∥2 −

3ηtλ
2

4
∥vt∥2

+
25ηtλ

6µ
∥∇yg(xt, yt)− vt∥2 +

25κ2

6ηtµλ
∥xt+1 − xt∥2.

The above lemma 5 basically follows the Lemma 28 of [17] used for minimax optimization.
Assumption 6. The stochastic partial derivative ∇yg(x, y; ζ) satisfies E[∇yg(x, y; ζ)] = ∇yg(x, y)
and E∥∇yg(x, y; ζ) −∇yg(x, y)∥2 ≤ σ2. The estimated stochastic partial derivative ∇̄f(x, y; ξ̄)
defined in (6) satisfies Eξ̄

[
∇̄f(x, y; ξ̄)

]
= ∇̄f(x, y) + R(x, y) and Eξ̄∥∇̄f(x, y; ξ̄) − ∇̄f(x, y) −

R(x, y)∥2 ≤ σ2.
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Assumption 7. The mirror functions {ψt(x)}Tt=0 are ρ-strongly convex, where ρ > 0.

Assumption 6 is commonly used in stochastic bilevel optimization methods [15, 23]. Assumption
7 shows that the constant ρ can be seen as a lower bound of the strong convexity of all the mirror
functions ψt(x) for all t ≥ 0, which is widely used in mirror descent algorithms [29] and adaptive
gradient algorithms [19].

5.1 Convergence Analysis of BiO-BreD Algorithm
In this subsection, we provide the convergence properties of our BiO-BreD algorithm.

Theorem 1. Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 1. Let 0 < γ ≤ 3ρ
4LF

,
0 < λ < 1

L , K = log(T )/ log( 1
1−λµ ) + 1 and ∥y0t − y∗(xt)∥2 ≤ ∆ for all t ≥ 0, we have

1

T

T−1∑
t=0

∥Gt∥2 ≤
16
(
Φ(x0)− Φ∗)
3Tγρ

+
22∆L2

1

ρ2T
+

22∆L2
2

ρ2T
+

22L2
3

ρ2T 2
, (7)

where κ = L
µ , L1 = L(L+µ)

µ , L2 =
2Cfy(µLgxy+LLgyy)

µ2 and L3 =
LCfy

µ .

Remark 1. Without loss of generality, let L ≥ 1
µ , λ = 1

2L , γ = 3ρ
4LF

and ρ = O(L). It is easy

to verify that our BiO-BreD algorithm has a convergence rate of O
(
κ2

T

)
. Let κ2

T = ϵ, we have
T = κ2ϵ−1. Due to K = log(T )/ log( 1

1−λµ ) + 1, we choose K = O(κ log( 1ϵ )) for finding ϵ-
stationary point of the problem (1), we need the gradient complexity: Gc(f, ϵ) = 2T = O(κ2ϵ−1)

and Gc(g, ϵ) = KT = Õ(κ3ϵ−1), and the Jacobian-vector and Hessian-vector product complexities:
JV (g, ϵ) = KT = Õ(κ3ϵ−1) and HV (g, ϵ) = KT = Õ(κ3ϵ−1).

5.2 Convergence Analysis of SBiO-BreD Algorithm
In this subsection, we provide the convergence properties of our SBiO-BreD algorithm.
Theorem 2. Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 2. Let ∆ = ∥y0 −
y∗(x0)∥2, K = L

µ log(
LCfyT
µ ), 0 < η = ηt ≤ 1, 0 < γ ≤ min

(
3ρ

4LF
, 9ηρµλ800κ2 ,

ηµρλ
47L2

y

)
and 0 < λ ≤

1
6L , we have

1

T

T∑
t=1

E∥Gt∥2 ≤ 32(Φ(x0)− Φ∗)

3Tγρ
+

32∆

3Tγρ
+

752σ2

3ρ2b
+

400ηλσ2

9γρµb
+

752

3ρ2T 2
. (8)

Remark 2. Without loss of generality, let L ≥ 1
µ , λ = 1

6L , γ = min
(

3ρ
4LF

, 9ηρµλ800κ2 ,
ηµρλ
47L2

y

)
and

ρ = O(L), we have γρ = O( 1
κ3 ) It is easily verified that our SBiO-BreD algorithm has a convergence

rate of O
(
κ3

T + κ2

b

)
. Let κ

3

T = ϵ
2 and κ2

b = ϵ
2 , we have T = 2κ3ϵ−1 and b = 2κ2ϵ−1. Due to K =

L
µ log(

LCfyT
µ ), we have K = O(κ log(κ

4

ϵ )) = Õ(κ). For finding ϵ-stationary point of the problem
(2), we need the gradient complexity: Gc(f, ϵ) = 2bT = κ5ϵ−2 and Gc(g, ϵ) = bT = O(κ5ϵ−2),
and the Jacobian-vector and Hessian-vector product complexities: JV (g, ϵ) = bT = O(κ5ϵ−2) and
HV (g, ϵ) = KbT = Õ(κ6ϵ−2).

5.3 Convergence Analysis of ASBiO-BreD Algorithm
In this subsection, we provide the convergence properties of our ASBiO-BreD algorithm.
Theorem 3. Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 3. Let ∆ =

∥y0 − y∗(x0)∥2, b1 = q, K = L
µ log(

LCfyT
µ ), 0 < η = ηt ≤ 1, 0 < γ ≤

min
(

3ρ
38L2

Kη
, 3ρ
4LF

, 2ρηµλ19L2
y
, ρη8 ,

9ρηµλ
400κ2

)
and 0 < λ ≤ min

(
1
6L ,

9µ
100η2L2

)
, we have

1

T

T−1∑
t=0

E∥Gt∥2 ≤ 32(Φ(x0)− Φ∗)

3Tγρ
+

32∆

3Tγρ
+

152

3T 2ρ2
+

4

ηργ

( 1

L2
+

1

L2
K

)σ2

b
. (9)

Remark 3. Without loss of generality, let L ≥ 1
µ , λ = min

(
1
6L ,

9µ
100η2L2

)
, γ =

min
(

3ρ
38L2

Kη
, 3ρ
4LF

, 2ρηµλ19L2
y
, ρη8 ,

9ρηµλ
400κ2

)
and ρ = O(L), we have γρ = O( 1

κ4 ). It is easily verified that

our ASBiO-BreD algorithm has a convergence rate ofO
(
κ4

T + κ2

b

)
. Let κ

4

T = ϵ
2 and κ2

b = ϵ
2 , we have
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T = 2κ4ϵ−1 and b = 2κ2ϵ−1. Due to K = L
µ log(

LCfyT
µ ), we have K = O(κ log(κ

4

ϵ )) = Õ(κ).
Let b1 = q = κϵ−0.5. For finding ϵ-stationary point of the problem (2), we need the gradient complex-
ity: Gc(f, ϵ) = 2( bTq + 2b1T ) = O(κ5ϵ−1.5) and Gc(g, ϵ) = bT

q + 2b1T = O(κ5ϵ−1.5), and the
Jacobian-vector and Hessian-vector product complexities: JV (g, ϵ) = bT

q + 2b1T = O(κ5ϵ−1.5)

and HV (g, ϵ) = K( bTq + 2b1T ) = Õ(κ6ϵ−1.5).

Figure 1: Validation Loss vs. Running Time for different methods. We compare our BiO-BreD with
deterministic baselines (the first column), SBiO-BreD with stochastic baselines (the second column);
ASBiO-BreD with momentum-based or SPIDER/SARAH based baselines (the last column). We test
two values of ϱ: large noise setting ϱ = 0.8 (top row) and small noise setting ϱ = 0.4 (bottom row).

6 Numerical Experiments
In this section, we perform two tasks to demonstrate the efficiency of our algorithms: 1) data hyper-
cleaning task [39] over the MNIST dataset [25]; 2) hyper-representation learning task [9] over the
Omniglot dataset [24]. In the experiment, we compare our algorithms (i.e., BiO-BreD, SBiO-BreD,
and ASBiO-BreD) with the following bilevel optimization algorithms: reverse [9]/AID-BiO [11, 22],
AID-CG [12], AID-FP [12], stocBiO [22]), MRBO [21], VRBO [21], FSLA [28], SUSTAIN [23],
and VR-saBiAdam [18]. All experiments are averaged over 5 runs and we use a server with AMD
EPYC 7763 64-Core CPU and 1 NVIDIA RTX A5000.

We use Bregman function ψt(x) = 1
2x

THtx to generate the Bregman distance in our algorithms,
where Ht is the adaptive matrix as used in [19], i.e. the exponential moving average of the square of
the gradient and we use coefficient 0.99 in all experiments.

6.1 Data Hyper-cleaning
In this subsection, we perform data hyper-cleaning over the MNIST dataset [25]. The formulation of
this problem is as follows:

min
λ

lval
(
λ,w∗(λ)

)
:=

1

|DV |
∑

(xi,yi)∈DV

l
(
xTi w

∗(λ), yi
)

s.t. w∗(λ) = argmin
w

ltr(λ,w) :=
1

|DT |
∑

(xi,yi)∈DT

σ(λi)l(x
T
i w, yi) + C∥w∥2,

where l(·) denotes the cross entropy loss,DT andDV are training and validation datasets, respectively.
Here λ = {λi}i∈DT are hyper-parameters and C ≥ 0 is a tuning parameter, σ(·) denotes the sigmoid
function. In experiment, we set C = 0.001. The dataset includes a training set and a validation set
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Table 3: Validation accuracy vs. Running Time (5-way-1-shot) for different methods (with L1

regularization)
Time AID_BiO ITD_BiO MRBO FSLA VRBO VR-saBiAdam ASBiO-BreD
20s 0.6509 0.6411 0.6103 0.6539 0.5951 0.6812 0.6653
40s 0.7365 0.7210 0.6971 0.7399 0.6805 0.7141 0.7403
60s 0.7762 0.7721 0.7519 0.7661 0.7429 0.7523 0.7830

Table 4: Validation accuracy vs. Running Time (5-way-5-shot) for different methods (with L1

regularization)
Time AID_BiO ITD_BiO MRBO FSLA VRBO VR-saBiAdam ASBiO-BreD
20s 0.8316 0.8131 0.8174 0.7993 0.7730 0.7753 0.8529
40s 0.8779 0.8621 0.8634 0.8485 0.8305 0.8188 0.8967
60s 0.9032 0.8968 0.8819 0.8824 0.8745 0.8640 0.9313

where each contains 5000 images. A portion of the training data are corrupted by randomly changing
their labels, and we denote the portion of corrupted images as ϱ.

The detailed experimental setup is described in the Appendix A.1. For hyper-parameters, we perform
grid search for our algorithms and other baselines to choose the best setting. The experimental results
are summarized in Figure 1. As shown by the figure, BiO-BreD outperforms the reverse algorithm;
SBiO-BreD outperforms AID-FP/stocBiO and AID-CG methods, and ASBiO-BreD outperforms the
other SPIDER based algorithm MRBO and several momentum-based variance reduction methods:
MRBO, SUSTAIN, FSLA, and VR-saBiAdam.

6.2 Hyper-representation Learning
In this subsection, we perform the hyper-representation learning task over the Omniglot dataset [24].
The formulation of this problem is as follows:

min
λ

lval
(
λ,w∗(λ)

)
:= Eξ

[ 1

|DV,ξ|
∑

(xi,yi)∈DV,ξ

l
(
w∗
ξ (λ)

Tϕ(xi;λ), yi

)
; ξ
]
+ α∥λ∥1

s.t. w∗
ξ (λ) = argmin

w
ltr(λ,w; ξ) :=

1

|DT ,ξ|
∑

(xi,yi)∈DT ,ξ

l
(
wTϕ(xi;λ), yi

)
+ C∥w∥2,

where l(·) denotes the cross entropy loss, DT ,ξ and DV,ξ are training and validation datasets for
randomly sampled meta task ξ. Here ϕ(·, ·) is a four-layers convolutional neural network with max-
pooling and 32 filters per layer [9], which denotes a representation mapping. λ denotes the parameter
vector of the representation mapping ϕ(·, ·), and C ≥ 0 is a tuning parameter to guarantee the inner
problem to be strongly convex. The term α∥λ∥1 imposes the sparsity of hyper-representations. In the
experiment, we set α = 0.001 and C = 0.01.

The detailed experimental setup is described in the Appendix A.2. The results of validation accuracy
(test accuracy) are summarized in Table 3 and 4. From these results, our ASBiO-BreD algorithm
outperforms other baselines in the non-smooth case. We also consider the smooth case, where the
upper level problem is not added the L1 regularization. The results without L1 regularization are
given in the Appendix A.2.

7 Conclusions
In the paper, we proposed a class of enhanced bilevel optimization methods based on the Bregman
distance to solve the nonconvex-strongly-convex bilevel optimization problems possibly with nons-
mooth regularization. Moreover, we provided a comprehensive theoretical analysis framework to
analyze our methods. The theoretical results show that our methods outperform the best known
computational complexities with respect to the condition number κ and the target accuracy ϵ for
finding an ϵ-stationary point.
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