
Appendices For DeepTOP: Deep Threshold-Optimal Policy for MDPs and
RMABs

A Threshold Optimal Policy Gradient Theorem Proof for RMABs

Proof. Let ρ̄λt (si) be the distribution that the state at time t is si when the initial state is chosen
uniformly at random. We have ρ̄λt (si) =

∑∞
t=1 γ

t−1ρ̄t,λ(si). Given φi, we number all states in Si such
that µφi

i (s1
i) > µ

φi
i (s2

i) > Let M0 = +M, Mn = µ
φi
i (sn

i), for all 1 ≤ n ≤ |Si|, and M|Si |+1 = −M.
Also, let Sn

i be the subset of states {si|µ
φi
i (si) > Mn} = {s1

i , s
2
i , . . . , s

n−1
i }. Now, consider the interval

(Mn+1,Mn) for some n. For all λ ∈ (Mn+1,Mn), 1(µφi
i (si) > λ) = 1 if and only if si ∈ S

n+1
i . In other

words, the threshold policy takes the same action under all λ ∈ (Mn+1,Mn), and we use πn+1(si) to
denote this policy. We then have

∇φi Ki(µ
φi
i) = ∇φi

∫ λ=+M

λ=−M

∑
si∈Si

Qi,λ(si,1(µφi
i (si) > λ))dλ =

∑
si∈Si

∇φi

∫ λ=+M

λ=−M
Qi,λ(si,1(µφi

i (si) > λ))dλ

=
∑
si∈Si

|Si |∑
n=0

∇φi

∫ λ=Mn

λ=Mn+1
Qi,λ(si, π

n+1(si))dλ

=
∑
si∈Si

|Si |∑
n=0

(
Qi,Mn (si, π

n+1(si))∇φiM
n − Qi,Mn+1 (si, π

n+1(si))∇φiM
n+1 +

∫ λ=Mn

λ=Mn+1
∇φi Qi,λ(si, π

n+1(si))dλ
)
,

(15)

where the summation-integration swap in the first equation follows the Fubini-Tonelli theorem and
the last step follows the Leibniz integral rule. We simplify the first two terms in the last step by∑

si∈Si

|Si |∑
n=0

(
Qi,Mn (si, π

n+1(si))∇φiM
n − Qi,Mn+1 (si, π

n+1(si))∇φiM
n+1

)
=

∑
si∈Si

|Si |∑
n=1

(
Qi,µφi

i (si)
(si,1(si ∈ S

n+1
i)) − Qi,µφi

i (si)
(si, si ∈ S

n
i)
)
∇φiµ

φi
i (si)

= |Si|
∑
si∈Si

ρ̄1,µφi
i (si)

(si)
(
Qi,µφi

i (si)
(
si, 1

)
− Qi,µφi

i (si)
(
si, 0)

)
∇φiµ

φi
i (si). (16)

Next, we expand the last term in (15). Note that Qi,λ(si, ai) = r̄(si, ai) +

γ
∫ λ′=+M
λ′=−M

∑
s′i

p(s′i |si, ai)Qi,λ′(s′i ,1(µφi
i (s′i) > λ′))dλ′, where p(·|·) is the transition probability.

Hence, ∇φi Qi,λ(si,1(µφi
i (si) > λ)) = ∇φiγ

∫ λ′=+M
λ′=−M

∑
s′i

p(s′i |si, ai)Qi,λ′(s′i ,1(µφi
i (s′i) > λ′))dλ′. Using

the same techniques in (15) and (16), we have

∑
si∈Si

|Si |∑
n=0

∫ λ=Mn

λ=Mn+1
∇φi Qi,λ(si, π

n+1(si))dλ =
∑
si∈Si

∫ λ=+M

λ=−M
∇φi Qi,λ(si,1(µφi

i (si) > λ))dλ

= γ
∑
si∈Si

∫ λ=+M

λ=−M

(
∇φi

∫ λ′=+M

λ′=−M

∑
s′i∈Si

p(s′i |si,1(µφi
i (si) > λ))Qi,λ′ (s′i ,1(µφi

i (s′i) > λ
′))dλ′

)
dλ

= |Si|
∑
si∈Si

γρ̄2,µφi
i (si)

(si)
(
Qi,µφi

i (si)
(
si, 1

)
− Qi,µφi

i (si)
(
si, 0)

)
∇φiµ

φi
i (si)

+ γ
∑
si∈Si

∫ λ=+M

λ=−M

(∑
s′i∈Si

∫ λ′=+M

λ′=−M
∇φi

(
p(s′i |si,1(µφi

i (s′i) > λ
′))Qi,λ′ (s′i ,1(µφi

i (s′i) > λ
′))

)
dλ′

)
dλ.

In the above equation, expanding the last term in time establishes (11). �

14

B DeepTOP-RMAB Algorithm Pseudocode

Algorithm 2 Deep Threshold Optimal Policy Training for RMABs (DeepTOP-RMAB)

for arm i = 1, 2, . . . ,N do
Randomly select initial parameters for the actor network φi and critic network θi.
Set target critic network θ′i ← θi, and initialize replay memoryMi.

end for
for timestep t = 1, 2, 3, . . . do

for arm i = 1, 2, . . . ,N do
Receive state si,t from arm environment Ei, and calculate the state value µφi

i (si,t).
end for
With probability 1 − εt, activate the V largest-valued arms and keep the remaining arms passive.
Otherwise, randomly activate V arms with the remaining arms left passive.
for arm i = 1, 2, . . . ,N do

Observe reward ri,t and next state si,t+1.
Store transition {si,t, ai,t, ri,t, si,t+1} in memoryMi.
Sample a minibatch of B transitions {si,tk , ai,tk , ri,tk , si,tk+1}, for 1 ≤ k ≤ B from memoryMi.
Randomly select B values [λi,1, λi,2, . . . , λi,B], for 1 ≤ k ≤ B from the range [−M,+M].
Update arm i’s critic network using the estimated gradient in Equation (13).
Update arm i’s actor network using the estimated gradient in Equation (14).
Soft update target critic θ′i network parameters: θ′i ← τθi + (1 − τ)θ′i .

end for
end for

C MDP Problems’ Description

EV charging. The vector state vt = (Ct,Dt) consists of the charging requirement Ct, and the time
remaining until the vehicle departs the station Dt at time t. In the simulations, we upper-bound the
state elements with C ≤ 8 and D ≤ 12. The scalar state λt is sampled from an Ornstein-Uhlenbeck
process with noise parameter 0.15, noise mean 0.0, and noise standard deviation 0.2.

If the agent chooses to charge the vehicle by selecting action at = 1, the agent then obtains a reward
of 1 − λ, and the MDP transitions to the next state vt+1 = (Ct − 1,Dt − 1). Otherwise for at = 0, the
reward is zero and the MDP transitions to next state vt+1 = (Ct,Dt − 1).

If the charging spot is empty at the next timestep (i.e. vt+1 = (0, 0)), the environment randomly picks
the charge requirement Ct+1 and time until deadline Dt+1 of the next EV vehicle. For the vehicle
occupying the charging station, if it’s charge requirement is not met by the deadline, the agent incurs
a penalty of F(Ct) = 0.2(Ct)2 that is subtracted from reward rt. The net reward is then rt − F(Ct).

Inventory management. The warehouse can store a maximum of 1000 items, and is able to
purchase new stock in bulks of 500 items. The selling price of a single item is set to 20. The
vector state vt is the current market shopping season at time t. The scalar state λt is the current
warehouse inventory count at time t. We set 10 different shopping seasons indexed by b that model
the customers’ current demand rate. The corresponding demand rates for the seasons are 10 different
Poisson distributions with parameters sin(bπ/10) · 300 for 0 ≤ b ≤ 9.

If the agent orders items (i.e. at = 1), it receives a reward equal to the total items’ selling price minus
the minimum of remaining inventory count and current demand rate. The next state vt+1 is then the
next market season index vt+1 = b + 1 mod 10. Otherwise for at = 0, the agent holds off on buying
new items, and incurs a holding cost from the remaining unsold items. The next state is vt+1 = b + 1
mod 10.

Make-to-stock production. The environment models a queueing system with m servers serving at
rate 1/µ and a finite buffer with size S . There are W customer classes each with Poisson mean arrival
rate β. The state at timestep t is (λt, vt), with the scalar state λt ∈ {0, 1, . . . ,m + S } and the vector state
vt ∈ {1, 2, . . . ,W}. If the agent picks the passive action at = 0, then the reward is equal to the holding

15

Table 1: Θ values for the recovering bandits’ case.

Class θ0 Value θ1 Value

A 10 0.2
B 8.5 0.4
C 7 0.6
D 5.5 0.8

cost h(λt) = −0.1(λt)2. For action at = 1, the agent receives total net reward of Rv − h(λt) if the scalar
state λt = m + S . Otherwise, the reward is the holding cost −h(λt).

In the simulations, we set the number of servers m = 50, buffer size S = 50, number of customer
classes W = 50, µ = 4, and arrival rate β = 1 for all customer classes. The reward Rv is chosen to be
evenly spaced between 200 and 10 depending on the number of customer classes W.

D Experiments’ Details

For all Deep RL algorithms, we used PyTorch [22] to implement them, with Adam [18] as the
optimizer. We used 10−4 as the learning rate for the actor networks, and a learning rate of 10−3 for the
critic networks. We also set the initial learning rate of action-value function to 0.1 for tabular LPQL
and tabular WIBQL. Tabular WIBQL initial learning rate for updating indices is 0.2. The warmup
period has 1000 timesteps used for filling the memoryM with transitions from random actions. We
use a constant εt = 0.05 through all timesteps. A discount factor of γ = 0.99 was selected. All
neural network layers were initialized using PyTorch’s default method. We update parameters using a
minibatch size of 64 transitions, with policy updates made at every timestep after the warmup period
ends. The neural networks used for results in Section 6 have two hidden layers with sizes [128, 128],
with the input layer dimension depending on the state size. Output layer has a dimension of one.

The used code for TD3, tabular LPQL, and tabular WIBQL are licensed under the MIT license. The
DDPG code we used is licensed under the Apache license 2.0. All Deep RL algorithms were trained
using a computing cluster with 9632 computing cores distributed over 320 nodes. All algorithms
were trained using CPU cores.

E Additional MDP Simulation Results Using Different Neural Network
Architectures

We provide results here for the considered MDP problems for different neural network architectures.
All other hyperparameters were kept the same as described in Appendix D.

0 4000 8000 12000

−0.2−0.2

−0.1

0.0

0.10.1

0.2

0.3

0.4

Av
er
ag
e
Re

w
ar
d

0 4000 8000 12000
Timesteps

1920

2150

2380

2610

2840

3070

3300

0 4000 8000 12000
20

30

40

50

60

70

80

90

100
DeepTOP DDPG TD3 Deadline Index SALMUT

(a) EV charging. (b) Inventory management. (c) Make-to-stock production.

Figure 5: Hidden layers’ size: [64, 128, 64]. Average reward results for the MDP problems.

16

0 4000 8000 12000
−0.1−0.1

0.0

0.10.1

0.2

0.30.3

0.4

Av
er
ag
e
Re

w
ar
d

0 4000 8000 12000
Timesteps

1730

1960

2190

2410

2640

2870

3090

0 4000 8000 12000
10
20
30
40
50
60
70
80
90
100

DeepTOP DDPG TD3 Deadline Index SALMUT

(a) EV charging. (b) Inventory management. (c) Make-to-stock production.

Figure 6: Hidden layers’ size: [32, 64, 64, 64, 64, 32]. Average reward results for the MDP problems.

0 4000 8000 12000
−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

Av
er
ag
e
Re

w
ar
d

0 4000 8000 12000
Timesteps

1830

2040

2260

2470

2690

2900

3120

0 4000 8000 12000
10
20
30
40
50
60
70
80
90
100

DeepTOP DDPG TD3 Deadline Index SALMUT

(a) EV charging. (b) Inventory management. (c) Make-to-stock production.

Figure 7: Hidden layers’ size: [64, 64, 64, 64, 64]. Average reward results for the MDP problems.

F Recovering Bandits’ Description

The state si,t is the waiting time since the arm i was last activated, with the maximum waiting time
zmax set to 100. If the agent chooses to activate the arm, the arm’s state is reset to 1. The arm’s reward
is provided by the recovering function f (si,t), where if the arm is activated, the reward is the function
value at si,t. Otherwise a reward of zero is given if the arm is left passive. The recovering reward
function is generated from

f (si,t) = θ0(1 − e−θ1·si,t). (17)

We use the same Θ = [θ0, θ1] hyperparameters for setting the arms’ reward classes as used in [20]
and provide them in Table 1.

G Additional One-Dimensional Bandits’ Simulation Results Using Different
Neural Network Architectures

We provide results here for the considered RMAB problem for different neural network architectures.
All other hyperparameters were kept the same as described in Appendix D.

17

0 3000 6000 9000 12000

0

1

2

3

4

5
Av

er
ag
e
Re
w
ar
d

DeepTOP Neural LPQL Neural WIBQL Tabular LPQL Tabular WIBQL NeurWIN

0 3000 6000 9000 12000Timesteps

0
1
22
3
4
5
6
7
8

0 3000 6000 9000 12000
0
1
2
3
4
5
6
7
8
9

(a) N = 10. V = 3. (b) N = 20. V = 5. (c) N = 30. V = 6.

Figure 8: Hidden layers’ size per arm: [64, 128, 64]. Average reward results for the one-dimensional
bandits.

0 3000 6000 9000 12000

0

1

2

3

4

5

Av
er
ag
e
Re
w
ar
d

DeepTOP Neural LPQL Neural WIBQL Tabular LPQL Tabular WIBQL NeurWIN

0 3000 6000 9000 12000Timesteps

0

11

2

3

4

5

6

77

0 3000 6000 9000 12000
0
1
2
3
4
5
6
7
8
9

(a) N = 10. V = 3. (b) N = 20. V = 5. (c) N = 30. V = 6.

Figure 9: Hidden layers’ size per arm: [32, 64, 64, 64, 64, 32]. Average reward results for the
one-dimensional bandits.

0 3000 6000 9000 12000

0

1

2

3

4

5

Av
er
ag
e
Re
w
ar
d

DeepTOP Neural LPQL Neural WIBQL Tabular LPQL Tabular WIBQL NeurWIN

0 3000 6000 9000 12000Timesteps

0

11

2

3

4

55

6

7

0 3000 6000 9000 12000
0
1
2
3
4
55
6
7
8

(a) N = 10. V = 3. (b) N = 20. V = 5. (c) N = 30. V = 6.

Figure 10: Hidden layers’ size per arm: [64, 64, 64, 64, 64]. Average reward results for the one-
dimensional bandits.

18

H Additional Recovering Bandits’ Simulation Results Using Different
Neural Network Architectures

0 3000 6000 9000 12000
8

10

12

14

16

18

Av
er
ag
e
Re
w
ar
d

DeepTOP Neural LPQL Neural WIBQL Tabular LPQL Tabular WIBQL NeurWIN

0 3000 6000 9000 12000Timesteps

13
15
17
19
21
23
25
27
29
31

0 3000 6000 9000 12000
17
19

22

25
27

30

33
35

38

41

(a) N = 10. V = 3. (b) N = 20. V = 5. (c) N = 30. V = 6.

Figure 11: Hidden layers’ size per arm: [64, 128, 64]. Average reward results for the recovering
bandits.

0 3000 6000 9000 12000
8

10

12

14

16

18

Av
er
ag
e
Re
w
ar
d

DeepTOP Neural LPQL Neural WIBQL Tabular LPQL Tabular WIBQL NeurWIN

0 3000 6000 9000 12000Timesteps
14
16
18
20
22
24
26
28
30
32

0 3000 6000 9000 12000
17
19

22

25

28
30

33

36
38

41

(a) N = 10. V = 3. (b) N = 20. V = 5. (c) N = 30. V = 6.

Figure 12: Hidden layers’ size per arm: [32, 64, 64, 64, 64, 32]. Average reward results for the
recovering bandits.

0 3000 6000 9000 12000
8

10

12

14

16

18

Av
er
ag
e
Re
w
ar
d

DeepTOP Neural LPQL Neural WIBQL Tabular LPQL Tabular WIBQL NeurWIN

0 3000 6000 9000 12000Timesteps
14
16
18
20
22
24
26
28
29
31

0 3000 6000 9000 12000
17
19

22

25
27

30

33
35

38

41

(a) N = 10. V = 3. (b) N = 20. V = 5. (c) N = 30. V = 6.

Figure 13: Hidden layers’ size per arm: [64, 64, 64, 64, 64]. Average reward results for the recovering
bandits.

19

