
Supplementary Materials for
“Learning Active Camera for Multi-Object Navigation”

In the supplementary, we provide more implementation details and more experimental results of our
EXPO camera policy. We organize the supplementary as follows.

• In Section A, we provide the differences of active cameras from panoramic cameras.
• In Section B, we provide more discussion on how to coordinate two types of policies.
• In Section C, we provide more architecture details on our EXPO camera policy.
• In Section D, we provide more details on updating the top-down map.
• In Section E, we provide more experimental details, including training settings, environment details,

and evaluation metrics.
• In Section F, we provide experimental results on multi-object navigation with different number of

goal objects.
• In Section G, we provide experimental results to explain the choice of step budget for evaluation.
• In Section H, we provide more discussions on oracle information used in experiments.
• In Section I, we provide analysis on failure cases.
• In Section J, we discuss potential future researches and social impact.

A Differences of active cameras from panoramic cameras

In this paper, we propose an active camera to coordinate camera and navigation actions for perceiving
a novel environment more efficiently. An alternative is to use panoramic cameras for capturing
panoramic images. However, panoramic images are often in a very large size and contain a lot of
redundant information, requiring a huge amount of resources to analyze. It may not be practical to
equip panoramic cameras on mobile platforms. In this case, designing an active camera would be a
more practical way to capture necessary environmental information required for navigation at a much
cheaper cost.

An agent with multiple fixed pinhole cameras could make for an interesting comparison with our
active-camera agent. To compare our active-camera agent with the multi-fixed-camera agent, we
equip an agent with four fixed pinhole cameras facing different directions ( i.e., front, left, right, and
back). Specifically, we concatenate the features of these four images and feed them to an end-to-end
navigation baseline ( i.e., MultiON). We train this baseline for 30 million frames, which is the
same as our active-camera agent. In Table A, the multi-fixed-camera agent performs better than the
single-fixed-camera agent but still worse than our single-active-camera agent. We speculate this is
because the end-to-end learned neural network is hard to map this larger amount of information (four
RGBD images) to correct actions. We note that the multi-fixed-camera results in Table A are different
from the results reported in Openreview during the rebuttal phase. This is because we train the agent
using different numbers of parallel threads. We found that using less threads for training significantly
decreases performance. The possible reason is that the model may be unstable during training if
capturing training data from only a few environments. In Table A, all variants use the same number
of parallel threads for training (i.e., 36).

Table A: Comparisons of different camera types based on an end-to-end agent (i.e., MultiON).

MatterPort3D
Camera Types SPL PPL Success Progress

Single-Fixed-Camera (MultiON) 33.0 43.8 44.1 60.5
Multi-Fixed-Camera 37.75 48.3 49.1 65.6
Single-Active-Camera (Ours) 38.7 49.5 51.1 67.3

We also have conducted multi-fixed-camera experiments on the SLAM-based method. The infor-
mation captured by multiple cameras helps agents build a map efficiently. This map provides more
information for path-planning. The results are shown in Table B. The multi-fixed-camera agent
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outperforms our active camera agent. Because the SLAM-based multi-fixed-camera agent does not
need to learn a neural network to map RBGD observation to navigation action, it will not suffer from
learning difficulty problems as in e2e-based agents. It is worth noting that although using a single
camera, our active camera policy helps the agent achieve comparative performance compared with an
agent with four fixed cameras.

Table B: Comparisons of different camera types based on slam-based agents.

MatterPort3D
Camera Types SPL PPL Success Progress

Single-Fixed-Camera (OccAnt) 53.0 57.7 72.0 80.2
Multi-Fixed-Camera 68.3 72.2 79.4 85.3
Single-Active-Camera (Ours) 57.9 62.1 75.6 82.6

B More discussion on the coordination between two types of policies

When incorporating camera policy with an end-to-end navigation policy, we use one policy network
(i.e., Navigation-Camera Joint Policy) to jointly predict both camera and navigation actions, as
described in Section 3.4 in the main paper. The paradigm is shown in Figure A. We feed this policy
network both camera policy inputs (i.e., map and heuristic direction) and navigation policy inputs
(i.e., RGB-D images, target, and previous action). In this way, the policy network better coordinates
two types of actions. We have tried a variant that uses two separate policy networks to predict camera
and navigation actions, respectively, which is similar to the paradigm in Figure 2 in the main paper.
In Table C, this separated variant performs worse than our joint policy and even worse than the
baseline without an active camera. We suspect this is because the navigation policy can not control
camera direction to perceive desired observations for deciding navigation action. As a result, an agent
performs poorly in navigation. These observations are consistent with the experimental results in
Table 3 in the main paper. In Table 3, the agent performs worse when using rule-based camera actions
because these camera actions are uncontrollable by the navigation policy either.

Table C: Comparisons between separated and joint navigation-camera policies when incorporating a
camera policy with an end-to-end navigation policy.

MatterPort3D
Method SPL PPL Success Progress

MultiON 33.0 43.8 44.1 60.5
+ Active Camera (Separated) 29.1 40.4 37.3 54.1
+ Active Camera (Joint) 38.7 49.5 51.1 67.3
DD-PPO 16.7 29.2 22.2 40.9
+ Active Camera (Separated) 12.2 27.1 13.6 32.7
+ Active Camera (Joint) 19.1 34.0 24.0 43.9

When incorporating a camera policy with a SLAM-based navigation policy, two types of policies
decide actions separately as shown in Figure 2 in the paper. Although the agent does not decide
two types of actions jointly, two types of policies cooperate with each other from the following
two aspects. 1) The camera policy cooperates with navigation action by taking it as input when
deciding camera action. 2) The navigation policy cooperates with camera action by an off-the-shelf
path-planning algorithm (e.g., if the agent finds a better path toward goal objects after executing a
camera action, the navigation policy will change the navigation action accordingly).

C More architecture details on camera policy

The general scheme of our active-camera agents, i.e., , incorporating a camera policy with a modular
SLAM-based [4, 9] navigation policy or an end-to-end learning-based [6, 7] navigation policy, are
shown in Figure 2 and Figure A, respectively. We feed map features, heuristic direction features and
navigation features to a policy network to predict camera action. These features are extracted from
three encoders, respectively. Next, we describe the architecture details of these encoders and the
policy network.
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Figure A: General scheme of an active-camera agent when incorporating camera policy with an
end-to-end navigation policy.

The map encoder consists of three convolution layers followed by a fully connected layer. We use
ReLU as an activation function after each layer. The setting of three convolution layers (kernel
size, stride) are p4 ˆ 4, 2q, p3 ˆ 3, 2q and p2 ˆ 2, 1q, respectively. The fully connected layer outputs
512-dimension map features vm. The heuristic direction encoder is a learned embedding layer,
transforming the input heuristic action into 32-dimension features vh. As for navigation encoder,
its architecture depends on what kind of navigation policy we incorporate the camera policy with.
If we use a SLAM-based navigation policy that output an navigation action, the navigation encoder
is a learned embedding layer which transforms the action into 32-dimension features vn. If we
use an end-to-end navigation policy, the encoder of this navigation policy [6, 7] would become our
navigation encoder, transforming navigation input (typically RGB-D images) to latent features. With
the features from these three encoders, we concatenate them to build the input v “ rvm,vh,vns for
the policy network. The policy network consist of a one-layer gate recurrent unit (GRU), followed by
two individual fully connected layers corresponding for predicting camera action and values of the
agent’s current state, respectively.

D Updating top-down map by a registration function Rp¨q

As described in Section 3.2 in the paper, we use a registration function Rp¨q to update the global
top-down occupancy map Mg, i.e., Mg “ RpMl,Mg, qq, where Ml is a local map and q is the
relative pose change of the agent from the first time step. After that, we crop an egocentric map from
the global as camera policy input. We describe the details of this registration function below.

All these three types of maps are with the same resolution. Each pixel in a map represents 0.08 ˆ

0.08m2 area in the real world. The size of local map, global map and egocentric map are 61 ˆ 61,
3000 ˆ 3000, and 125 ˆ 125, respectively. These maps represent 4.88 ˆ 4.88m2 area in front of
the agent, 240 ˆ 240m2 area in the real-world, and 10 ˆ 10m2 area around the agent, respectively.
The global map is with a larger size and covers the whole environment. In contrast, the local map
represents only a small area, which is projected from the visual observation within a 79 ˝ field-of-view
in front of an agent. To merge these two maps, we initialize a blank map with the same size as the
global map. We put the local map in the center. Then, we use affine transformation [3] on this map
based on the pose q. This affine transformation transforms the local to its location on the global map.
After that, we aggregate the transformed map with the global map by a max-pooling operation.

E More experimental details

More implementation details. We use PyTorch to implement our active-camera agent. We train it
using 36 parallel threads on 3 Nvidia Titan X GPUs. Each thread contains one of the scenes from the
training set. The agent is trained using PPO with 4 mini-batches and 2 epochs in each PPO update.
We use Adam optimizer with a learning rate of 2.5e-4, a discount factor of γ “ 0.99, an entropy
coefficient of 0.001, a value loss coefficient of 0.5. We train the proposed camera policy together
with the SLAM-based and learning-based methods for 2 and 30 million frames, respectively.
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More details on environments. We use Habitat simulator1 [5] along with two large-scale pho-
torealistic 3D indoor environments (i.e., Matterport3D [1] and Gibson [8]). Both environments
consist various of scenes such as house, church, and factory. For Matterport3D, we use the dataset
proposed in MultiON [6] for the multi-object navigation task. In this dataset, 79 scenes are divided
into two disjoint parts, 61 scenes for training and 18 scenes for testing. For Gibson, we evaluate
the transferability of our camera policy. As the MultiON paper does not provide a corresponding
multi-object dataset, we use the test scene split provided by Active Neural SLAM[2] and follow the
episode generation rule in MultiON (i.e., the geodesic distance between two successive goals is in the
range of 2m and 20m) to generate 861 multi-object episodes within 14 different scenes for testing.
For each episode, we ensure that all objects and start positions are on the same floor.

More details on metrics. We follow MultiON [6] to evaluate multi-object navigation in terms of
success rate and navigation efficiency. A good agent should successfully navigate to all goal objects
through the shortest path. The details are described below.

• Success: ratio of successfully navigating to all goal objects and calling FOUND in a correct
order within an allowed time step budget.

• Progress: the fraction of goal objects being successfully found.

• SPL: Success weighted by Path Length. Concretely, SPL “ s ˆ d{maxpd, d̄q, where s
indicates the value of Success metric, d is the shortest geodesic distance from the starting
point to all objects in order, d̄ indicates the geodesic distance traveled by the agent.

• PPL: Progress weighted by Path Length. This is an extended version of SPL based on
progress. Concretely, PPL “ p ˆ d1{maxpd1, d̄1q, where p indicates the value of Progress
metric, d1 and d̄1 is similar to d and d̄ in SPL metric but only account for the path through
all founded objects.

F More results on 1-ON, 2-ON and 3-ON episodes

In order to evaluate the efficiency of our camera policy for the navigation tasks with different
difficulties, except for 3-ON episodes (i.e., navigating to 3 different objects in an environment), we
follow MultiON [6] to evaluate on 2-ON and 1-ON episodes on both Matterport3D and Gibson
datasets.

Performance on Matterport3D dataset. In Table D our camera policy consistently improves the
navigation performance based on different baselines. These results suggest that actively moving
camera following our camera policy helps agents explore the environment and locate objects more
efficiently. These abilities benefit both the single object navigation task and the multi-object navigation
task.

Table D: Object navigation results (%) on 1-ON, 2-ON and 3-ON episodes on Matterport3D dataset.

Method
SPL PPL Success Progress

1-ON 2-ON 3-ON 1-ON 2-ON 3-ON 1-ON 2-ON 3-ON 1-ON 2-ON 3-ON

OccAnt 60.9 55.2 53.0 60.9 58.3 57.7 89.2 79.4 72.0 89.2 84.3 80.2
+Naive Camera Policy 58.6 52.2 48.7 58.6 55.4 53.1 85.7 75.5 69.1 85.7 80.6 76.8
+Our Camera Policy 66.9 61.4 57.9 66.9 64.1 62.1 90.3 81.8 75.6 90.3 86.0 82.6
Mapping+FBE 49.1 44.0 40.1 49.1 46.9 45.4 82.6 72.6 62.3 82.6 77.6 72.5
+Naive Camera Policy 45.5 38.7 35.2 45.5 42.5 41.2 79.3 65.4 55.3 79.3 72.3 66.9
+Our Camera Policy 55.0 47.2 44.6 55.0 51.1 49.8 84.7 71.8 64.2 84.7 78.2 74.1
MultiON 55.9 43.6 33.0 55.9 49.3 43.8 77.9 59.9 44.1 77.9 68.9 60.5
+Naive Camera Policy 59.6 44.6 32.4 59.6 52.0 45.1 80.2 59.2 41.9 80.2 69.9 60.2
+Our Camera Policy 62.1 50.8 38.7 62.1 56.4 49.5 84.2 67.5 51.1 84.2 75.9 67.3
DD-PPO 43.5 27.5 16.7 43.5 35.5 29.2 62.3 38.0 22.2 62.3 50.2 40.9
+Naive Camera Policy 47.5 27.7 16.7 47.5 37.7 30.4 61.1 35.2 20.8 61.1 48.4 39.2
+Ours Camera Policy 51.2 31.8 19.1 51.2 41.2 34.0 66.3 41.5 24.0 66.3 53.8 43.9

1https://aihabitat.org/
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Transferability results to Gibson dataset. In Table E, we show the Transferability results to the
Gibson dataset. Most of the results share the same trend as the results on the Matterport3D dataset, i.e.,
our EXPO camera policy improves the object navigation performance in terms of Success, Progress,
SPL, and PPL based on different baselines. These results demonstrate that our method can generalize
well to different domains. This allows us to train the agent on the collected photorealistic datasets
and then easily deploy it in the real-world environment.

Table E: Transferability results (%) to Gibson dataset on 1-ON, 2-ON and 3-ON episodes.

Method
SPL PPL Success Progress

1-ON 2-ON 3-ON 1-ON 2-ON 3-ON 1-ON 2-ON 3-ON 1-ON 2-ON 3-ON

OccAnt 79.6 77.8 76.1 79.6 78.7 77.8 94.5 92.0 89.0 94.5 93.2 91.8
+Naive Camera Policy 73.9 72.0 69.9 73.9 72.9 71.9 91.7 88.4 84.8 91.7 90.0 88.3
+Ours Camera Policy 82.4 80.8 78.9 82.4 81.6 80.7 94.7 92.7 89.9 94.7 93.7 92.4
Mapping+FBE 67.7 65.0 62.1 67.7 66.3 64.9 91.5 86.3 80.9 91.5 88.9 86.2
+Naive Camera Policy 61.2 58.5 55.8 61.2 59.9 58.5 88.7 83.0 77.5 88.7 85.9 83.1
+Ours Camera Policy 73.8 71.2 68.7 73.8 72.5 71.2 93.6 88.7 84.4 93.6 91.1 88.9
MultiON 68.1 62.1 56.5 68.1 65.1 62.2 86.2 77.2 68.4 86.2 81.7 77.3
+Naive Camera Policy 69.2 61.2 54.1 69.2 65.2 61.6 86.0 74.5 64.5 86.0 80.0 75.2
+Ours Camera Policy 73.1 66.7 59.6 73.1 69.9 66.8 88.9 79.3 69.1 88.9 84.1 79.0
DD-PPO 53.6 39.8 30.1 53.6 46.8 41.2 72.1 52.6 39.4 72.1 62.6 54.8
+Naive Camera Policy 56.9 42.3 31.3 56.9 49.6 43.4 71.7 52.4 38.8 71.7 62.1 54.5
+Ours Camera Policy 57.7 44.9 33.9 57.7 51.3 45.3 71.9 54.6 40.5 71.9 63.3 55.3

G Selection of time step budget for evaluation
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Figure B: Success rate of multi-object navigation
task for an oracle agent. The success rate reaches
97% at 500 time steps and then remains the same.

Exploring the environment and locating ob-
jects efficiently are important abilities for multi-
object navigation. We propose EXPO camera
policy to help agents coordinate their camera
and navigation actions for exploring the envi-
ronment more efficiently. To better evaluate the
efficiency, we evaluate the navigation success
rate given a limited time step budget. If given
an infinite time step budget for an agent, it is
trivial for the agent to transverse the entire en-
vironment and then go to goal objects.

To determine the value of time step budget, we
consider an oracle agent with a ground-truth
occupancy and object map. In other words, the
oracle agent knows the position of objects and
thus it does not need to explore the environment
and find them. We evaluate how many time
steps the oracle agent need for finishing the multi-object navigation task. In Figure B, the oracle
agent successfully finishes more than 97% episodes using 500 time steps and the success rate remains
the same when the time step is greater than 500. According to these results, we select 500 as the time
step budget for evaluation because 500 time steps are sufficient for an oracle agent to navigate to all
goal objects. We hope our EXPO camera policy helps the agents without map knowledge narrow the
performance gap to the oracle agent.

H More discussions on oracle information used in experiments

In our experiments, to indicate whether an agent has reached goal objects, we use an oracle FOUND
action (i.e., automatically execute FOUND action once the agent reaches goal objects). We argue that
this simplification is reasonable because the agent can easily judge whether a goal object appears near
it with the help of a well-trained semantic segmentation model and a depth image. After simplifying
this problem by using the oracle FOUND action, we are allowed to focus more on evaluating the
exploration ability of active-camera agents.
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I Failure cases analysis

We analyze failure cases where our active-camera agent takes more time for reaching goal objects
compared with baselines. We observe that most of these cases are because our agent selects the
wrong way for exploration. This is inevitable for all agents because goal objects are placed randomly
in our experiments. We believe this problem can be solved if we have more information about the
object’s location (e.g., finding a specific object like food, which is likely located in the kitchen). We
can involve some constraints to guide our agent to explore relevant areas actively. We leave this in
future works. Even so, as seen in Figure 3 in the paper, given the same time step, our agent explores
more areas and finds all objects more quickly, which demonstrates its superior exploration ability.
We strongly recommend readers watch the supplementary video for more examples.

J Potential future researches and social impact

In this paper, we present an active-camera agent. This agent can explore the environment and finish
multi-object navigation task more efficiently by dynamically moving RGB-D camera sensors. In
the real world, we may equip robots with different sensors, such as microphones and cameras. How
to coordinate the movement of these sensors is worth exploring. Besides, we have assumed perfect
camera pose localization in our experiments. However, there exist actuation and sensor noise in the
real world. Leveraging a neural network [2] to solve this problem is an interesting research direction.
Besides, even though we have evaluated the transferability of camera policy among different datasets
(transferring from MatterPort3D to Gibson) in our paper, evaluating the robustness of the camera
policy among different robot types and different embodied tasks is also a valuable research direction.

In the future, these agents may be able to help people deliver parcels and even take care of patients.
On the other hand, an imperfect robotic agent may cause accidents such as breaking some things and
hitting pedestrians. A possible way to avoid these accidents is to first develop such a robotic agent in
a simulator environment and then deploy it into a controlled real environment for evaluation.
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