
Appendix

A Comparisons with Existing NAS and KD Methods

A.1 Training Cost Comparisons with Traditional Task-agnostic KD Methods

Different hardwares (e.g., FPGA, CPU, GPU) have different resource constraints. AutoDistil gen-
erates a gallery of fully trained compressed student models with variable resource constraints (e.g.,
FLOPs, parameters) using NAS. One can simply choose a model from the trained pool given the
resource constraint and only fine-tune on the downstream task. In contrast, traditional task-agnostic
knowledge distillation (KD) methods (e.g., MiniLM) target specific compression rate and needs
to be trained repeatedly for different student configurations (corresponding to different resource
constraints). Therefore, AutoDistil has a much reduced amortized computation cost even considering
traditional KD methods. Further, traditional methods require several trial and errors to come up with
a viable candidate architecture given a constraint before running the KD algorithm.

In practice, additional or continued training of the optimal student architecture has demonstrated
increased task performance with increased computational cost as in AutoTinyBERT (cost comparison
in Table 4). The major advantage of AutoDistil is a single stage training scheme without additional
training. We perform an ablation in Table 5 where we continue training the searched model with
self-attention distillation for additional steps referred as ‘KDatt+Cont.’ (similar to MiniLM). But we
did not observe any significant gains on a subset of the tasks.

A.2 Comparisons between AutoDistil and Few-shot CV NAS [16]

Fully task-agnostic SuperNet training. AutoDistil training is fully task-agnostic in contrast to [16]
that uses task-specific NAS. Task-agnostic NAS is challenging since we do not have access to task
labels during training and we want to show generalization on evaluating diverse downstream NLU
tasks in the GLUE benchmark. AutoDistil leverages self-attention distillation that is an unsupervised
training objective. Incorporating self-attention loss for training and distillation in NAS is non-trivial
as it requires aligning attention states of diverse student subnetworks and the large teacher model. We
develop an extraction and alignment strategy (Section 3.2) to address this challenge.

NLP vs. CV domain. AutoDistil works on the NLP domain with the Transformer architecture
(see Figure 2 under the pre-training and fine-tuning paradigm, while reference [16] works on the
CV domain with a CNN architecture with different design and search spaces. Different from CV
domain, NLP tasks have different objectives and evaluation metrics for classification (e.g., MNLI),
regression (e.g., STS-B) and correlation (e.g., CoLA). Overall, the search space design (Section
3.1), SuperNet training with distillation and sub-network extraction strategy (Section 3.2) and search
strategy (Section 3.3) are all quite different.

A.3 Comparisons between AutoDistil and DynaBERT [12]

Compared with DynaBERT, (i) AutoDistil search space is more fine-grained. For instance, we
independently search for width, depth, heads, MLP ratio etc. as opposed to searching for a constant
depth (md) or width multiplier (mw) in DynaBERT which only considers 12 possible combinations
of md and mw; (ii) our training objective does not require labels and is fully task-agnostic with
subnetwork attention state alignment for self-attention relation distillation; (iii) further, AutoDistil
uses few-shot NAS (Table 1) to mitigate gradient conflicts in SuperNet training, while DynaBERT
applies one-shot NAS; (iv) DynaBERT uses additional tricks like data augmentation and teacher
assistant also specific to each task, whereas AutoDistil uses a single-stage task-agnostic training
resulting in reduced computational cost.

A.4 Additional Quantitative Comparisons with Existing NAS and KD Methods

We compare different AutoDistil compressed models against state-of-the-art KD and NAS models
distilled from the same teacher BERTBASE. We present the relative performance improvement of
AutoDistil over several baselines in Table 8 with respect to the following measures: savings in
computational cost in the form of (i) FLOPs and (ii) parameter reduction, along with (iii) improvement
in the average task performance aggregated over all the GLUE tasks.

15



Table 8: Performance comparison between models distilled by AutoDistil against several task-
agnostic students (6 layer, 768 hidden size, 12 heads) distilled from BERTBASE. We report the
relative reduction in computational cost (#FLOPs and #Parameters) and improvement in average
task performance on GLUE (dev) over all baselines. AutoDistilAgnostic is obtained by task-
agnostic search. AutoDistilProxyB and AutoDistilProxyS are obtained by task-proxy search
from SuperLMbase and SuperLMsmall respectively.

Model AutoDistilAgnostic AutoDistilProxyB AutoDistilProxyS

�FLOPs �Para �Avg. �FLOPs �Para �Avg. �FLOPs �Para �Avg.

BERTBASE [1] (teacher) 81.1% 75.5% -2.6 60.9% 54.3% -0.5 82.0% 76.2% -2.3
BERTSMALL [40] 62.4% 59.7% -0.3 22.3% 24.7% +1.8 64.3% 60.8% -0.02
Truncated BERT [29] 62.4% 59.7% +2.5 22.3% 24.7% +4.6 64.3% 60.8% +2.8
DistilBERT[5] 62.4% 59.7% +1.1 22.3% 24.7% +3.2 64.3% 60.8% +1.4
TinyBERT [6] 62.4% 59.7% -0.3 22.3% 24.7% +1.8 64.3% 60.8% +0.0
MINILM [29] 62.4% 59.7% -1.4 22.3% 24.7% +0.7 64.3% 60.8% -1.1

Figure 4: Comparison between AutoDistil and state-of-the-art distilled models.

We also compare AutoDistil with state-of-the-art distilled models in terms of the trade-off
between model size (#Para) and performance (accuracy). The results are shown in Figure 4.
AutoDistil uses few-shot task-agnostic Neural Architecture Search to distill several compressed
students with variable #Para (x-axis) from K=3 SuperLMs (corresponding to each point cloud)
trained on K sub-spaces of Transformer search space. Each student extracted from the SuperLM is
fine-tuned on MNLI with y-axis showing accuracy. The best student from each SuperLM is marked
in red. Given any state-of-the-art distilled model, AutoDistil generates a better candidate with
less #Para and improved task performance from corresponding search space.

B Layer Selection Strategies

Table 9: Effects of layer selection strategies.

Strategy MRPC RTE

Alternate_Dropping 91.2 71.8
Top_Dropping 90.6 68.5
Alternate_Top_Dropping 85.7 62.7

16



We study different strategies to construct subnetwork layers by selecting layers from the superLM
model. Alternate_Dropping is the strategy adopted in AutoDistil such that we drop alternating
odd layers from the superLM model to construct subnetwork layers. Top_Dropping means that we
drop top layers of superLM to construct subnetwork layers. Alternate_Top_Dropping means that
we first perform Alternate_Dropping in superLM training stage and then perform Top_Dropping in
fine-tuning stage (please refer to [47] for more details of different layer selection strategies). For all
strategies, we perform knowledge distillation between the last layer of the teacher model and the
last layer of the subnetworks. We evaluate the subnetworks with the same architecture (#layer=6,
#hid=768, R=4, #heads=12) after superLM is trained. We report accuracy and f1 for RTE and MRPC,
respectively.

We report the results in Table 9. We observe that the strategy of Alternate_Dropping achieves
the best performance on both MRPC and RTE tasks, which demonstrates the effectiveness of the
layer selection strategy used in AutoDistil . Alternate_Top_Dropping performs the worst due to
interference when different layer selection strategies are used in the superLM training stage and the
fine-tuning stage of compressed models. This indicates that the knowledge contained in the superLM
model and the compressed model is structured and that it is non-trivial to select layers from superLM
to extract subnetwork layers.

C Scaling of Training Data

Table 10: Scaling of training data.

Strategy MNLI ParaNMT Wiki Wiki+Book
(393k) (5M) (29M) (40M)

MRPC 88.3 88.2 89.4 91.2
RTE 65.4 67.2 68.6 71.8

We investigate the effects of data sets of different sizes used for superLM training. In particular, we
compare MNLI [29], ParaNMT [48] (we sampled 5 million samples from the original 50 million
data), Wiki, and Wiki+Book [49]. We report the size of each data set and the performance of
AutoDistil with each training data set in Table 10. We observe that AutoDistil performs the
best with Wiki+Book data set, and the larger the data set, the better the performance. Moreover, we
observe similar performance for MNLI and ParaNMT data sets, especially on MRPC task. This is
because MNLI is correlated to other GLUE tasks. In addition, we observe that an increase in the
amount of data does not guarantee to bring an equivalent increase in performance. For example, Wiki
data set is more than five times larger than ParaNMT data set, but our method performs only about
1% better With Wiki data set than with ParaNMT. These observations illustrate that while using a
larger data set does improve the performance of the method, the improvement could be quite limited.

D Search Space Design

In general, we partition the whole Transformer search space into K = 3 sub-spaces such that
each sub-space covers different sizes of student models (by number of parameters) depicting Tiny,
Small and Base model sizes. Given a BERT-sized teacher model (109M params), we roughly set
the partition thresholds for Tiny, Small and Base sizes at 10M , 40M and 80M params. From
Table 2 (#Params row), we observe that each partition contains compressed models from prior work –
allowing us to fairly compare the models in each partition on accuracy vs. params/FLOPs.

For our search space, each partition still contains thousands of candidate subnetworks not all of which
are useful. Now, we leverage two primary heuristics: (i) we constrain all layers in a sampled student
subnetwork to be homogeneous i.e., the same number of attention heads, hidden dimension, etc. This
not only reduces the search space, it is also more friendly to hardware and software frameworks [13].
(ii) Motivated by previous work [26, 27] showing that thinner and deeper neural networks have better
representation capabilities and perform better than wider and shallower neural networks, we designed
sub-spaces with deeper layers (e.g., 4 � 7 for Tiny, 9 � 12 for Small and Base) and compute the
range of hidden dimensions to meet the overall model parameter budget in each partition. Additional

17



constraints arise from Transformer design principles, for instance, hidden size is always a multiple of
the number of attention heads. While the above steps require enumeration of different subnetwork
architectures, this is typically fast given an algebraic expression to compute model parameters as a
function of layers, heads, hidden size, etc. (included in source code), does not require any training,
and a one-time process depending only on the teacher model architecture.

The impact of network depth on model performance has been observed with both convolution
architectures [26] and Transformers [27]. Figure 2(b) in [27] shows the impact of Transformer depth
on MNLI accuracy given similar overall model parameters.

E Transferability of Optimal Architectures

The transferability of optimal architectures has been studied with regards to model pruning in the
lottery ticket hypothesis work [41] for BERT. They observe that transferability seems to correlate
with the number of training examples available for the source task. This is particularly beneficial
with MNLI containing a large number of training examples as compared to other low-resource tasks
in the GLUE benchmark. Similar to [41], we also observe MNLI to transfer well to other tasks in
the GLUE benchmark with AutoDistil-proxy even outperforming task-specific NAS method like
DynaBERT (Table 3) on both parameters (26.1M vs. 37.7M ) and average accuracy (79.9 vs. 77.4).

In general, a better teacher model leads to a better student model [50, 4] during distillation. We adopted
BERT as teacher for a fair comparison with existing works with the same teacher. We also compare
with different training objectives like self-attention distillation and masked language modeling
(Table 5) and demonstrate the former to work better for our SuperNet training. We demonstrate
transferability by training the AutoDistil students in a task-agnostic manner and evaluating on different
downstream tasks (Table 3). Note that these tasks are quite diverse ranging from classification (e.g.,
MNLI), regression (e.g., STS-B) and correlation (e.g., CoLA). We also demonstrate this to work
better or comparable to task-specific NAS methods (e.g., DynaBERT, AutoTinyBERT) with further
reduction of computational cost.

F Application of Few-shot Task-agnostic NAS Method to Other Domains

Most NAS works in computer vision (CV) (e.g., Once-for-all, One-Shot NAS) leverage hard class
labels from a given task (e.g., image classification). They often use similar training recipes for
SuperNets as in ImageNet-trained models (e.g., MobileNet, RegNet) for task-specific optimization
with accuracy as an evaluation metric. In contrast, the few-shot task-agnostic NAS strategy used in
AutoDistil training is fully task-agnostic and does not access task labels during SuperNet training.

A potential method to adopt this strategy for CV domain is to consider a self-supervised learning
framework like SimCLR [51] that leverages data augmentation for consistency learning. This
requires both a self-supervised teacher like SimCLR and a self-supervised training objective (e.g.,
self-attention relation distillation for Transformers or architecture-agnostic consistency learning).
This forms an interesting direction for future work.

G Quantifying "Best Trade-off" between Task Performance (e.g., Accuracy)
and Computational Cost (e.g., #FLOPs)

We describe how to search for the optimal sub-network in Section 3.3 and Section 4.1. The "best
trade-off" for optimal student selection is given by the sub-network with the least validation loss
subject to the resource constraint as described in Eqn (6). For instance, we set a constraint in Eqn. (6)
such that the #FLOPs of the optimal Base-sized task-agnostic compressed model is atleast 50% less
than the teacher model. Since the SuperNet training is task-agnostic, the obtained student models
have to be fine-tuned on downstream tasks to report the final task performance (similar to pre-train
and fine-tune paradigm of BERT-like language models).

18



H Why Are the Selected Models (Red in Figure 1) Not Always the Best
Performing Models?

Note that our objective is to minimize the #FLOPs and maximize the accuracy (e.g., on MNLI) with
the trade-off determined by the resource constraint for different partitions (Base, Small, Tiny). Given
a gallery of compressed models from AutoDistil with variable FLOPs and performance, we use
strategy from Section G for optimal model selection.

Another potential reason why red is always not the best model is that we use the heldout validation set
from the unlabeled training corpus (Wikipedia + BooksCorpus) for student selection and then evaluate
them on MNLI (see Sections 3.3 and 4.1) which may not be optimal due to sample differences in the
two datasets.

I Subnetwork Evaluation Strategy in Task-agnostic Search

The validation set contains 300K instances. We use 128 as the sequence length and batch size. (ii)
Table 4 reports the search cost for Small-sized models from AutoDistil and AutoTinyBERT. Note
that this step does not require any training for AutoDistil. We compute only the self-attention relation
loss for all the 256 student subnetworks (5x� 22x speedups for Small-sized models) using Equation
4 with the teacher relations computed only once. We use Equation 6 to select the subnetwork with
desired trade-off with deterministic computation of the FLOPs. The algebraic expression to compute
FLOPs as a function of layers, heads, hidden size etc. is included in the submitted source code. In
contrast, AutoTinyBERT performs task-specific search which requires fine-tuning the subnetworks
on the task (e.g., MNLI) thereby increasing the search cost.

J Hyper-parameter Settings for Fine-Tuning

Table 11: Hyper-parameters used for fine-tuning on GLUE.

Tasks Learning Rate Batch Size Epochs

MNLI-m 2e-5 32 5
QNLI 2e-5 32 5
QQP 2e-5 32 5
SST-2 2e-5 32 10
CoLA 1e-5 32 20
MRPC 2e-5 32 10
RTE 2e-5 32 10

We report the fine-tuning hyper-parameter settings of GLUE benchmark in Table 11. AutoDistil
and baselines follow the same settings.

K Limitations and Broader Impact

In this work, we introduce a framework for distilling large pre-trained neural language models with
resource constraints.

This work is likely to increase the progress of NLP applications and drive the development of general-
purpose language systems for deployment environments with limited resources. Our framework can
be used for applications in finance, legal, healthcare, retail and other domains for edge scenarios
where adoption of deep neural networks have been hindered due to resource efficiency concerns.

In our work, we propose a solution of a single-stage training combining NAS and distillation with
no further pre-training or augmentation, and experiments on GLUE benchmark demonstrate our
solution to outperform state-of-the-art KD and NAS methods with upto 3x additional reduction in
computational cost and negligible loss in task performance.

19



While our framework accelerates the progress of NLP, it may also suffer from similar concerns as
with the use of large pre-trained models by malicious agents for propagating bias, misinformation
and indulging in other nefarious activities.

20


	Introduction
	Background
	Few-shot Task-agnostic NAS
	Search Space Design
	Task-agnostic SuperLM Training
	Lightweight Optimal Student Search

	Experiments
	Finding the Optimal Compressed Models
	Comparison with Traditional Knowledge Distillation Baselines
	Comparison with Neural Architecture Search Baselines
	Task-agnostic Training Strategies
	One-shot vs. Few-shot NAS with Varying K
	Comparing Search Strategies and Optimal Architectures


	Related Work
	Conclusion
	Comparisons with Existing NAS and KD Methods
	Training Cost Comparisons with Traditional Task-agnostic KD Methods
	Comparisons between AutoDistil and Few-shot CV NAS zhao2021few
	Comparisons between AutoDistil and DynaBERT NEURIPS20206f5216f8
	Additional Quantitative Comparisons with Existing NAS and KD Methods

	Layer Selection Strategies
	Scaling of Training Data
	Search Space Design
	Transferability of Optimal Architectures
	Application of Few-shot Task-agnostic NAS Method to Other Domains
	Quantifying "Best Trade-off" between Task Performance (e.g., Accuracy) and Computational Cost (e.g., #FLOPs)
	Why Are the Selected Models (Red in Figure 1) Not Always the Best Performing Models?
	Subnetwork Evaluation Strategy in Task-agnostic Search
	Hyper-parameter Settings for Fine-Tuning
	Limitations and Broader Impact

