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A Proof of Proposition 2.1 (InfoNCE Properties and derivation for some
popular variational MI bounds)

Proof. Now let us prove InfoNCE is a lower bound to MI and under proper conditions this estimate
is tight. Our proof is based on establishing that InfoNCE is a multi-sample extension of the NWJ
bound. For completeness, we first repeat the proof for BA and UBA below, and then show UBA leads to
NWJ and its multi-sample variant InfoNCE.

We can bound MI from below using an variational distribution q(y|x) as follows:

I(X,Y ) = Ep(x,y)

[
log

p(x, y)

p(x)p(y)

]
(1)

= Ep(x,y)

[
log

p(y|x)p(x)q(y|x)

p(x)p(y)q(y|x)

]
# q(y|x) is the variational distribution (2)

= Ep(x,y)

[
log

q(y|x)

p(y)

]
+ Ep(x)[KL(p(y|x)||q(y|x))] (3)

≥ Ep(x,y) [log q(y|x)− log p(y)] , IBA(X,Y ; q) (4)

In sample-based estimation of MI, we do not know the ground-truth marginal density p(y), which
makes the above BA bound impractical. However, we can carefully choose an energy-based variational
density that “cancels out” p(y):

qf (y|x) =
p(y)

Zf (x)
ef(x,y), Zf (x) , Ep(y)[e

f(x,y)]. (5)

This auxiliary function f(x, y) is known as the tilting function in importance weighting literature.
Hereafter, we will refer to it the critic function in accordance with the nomenclature used in contrastive
learning literature. The partition function Zf (x) normalizes this q(y|x). Plugging this qf (y|x) into
IBA yields:

IBA(X,Y ; qf ) = Ep(x,y)[f(x, y) + log(p(y))− log(Z(x))− log p(y)] (6)

= Ep(x,y)[f(x, y)]− Ep(x)[log(Zf (x))] , IUBA(X,Y ; f) (7)

For x, a > 0, we have inequality log(x) ≤ x
a + log(a) − 1. By setting x ← Z(y) and a ← e, we

have
log(Z(y)) ≤ e−1Z(y). (8)

Plugging this result into (7) we recover the celebrated NWJ bound, which lower bounds IUBA:

IUBA(X,Y ) ≥ Ep(x,y)[f(x, y)]− e−1Ep(x)[Zf (x)] , INWJ(X,Y ; f). (9)

When f(x, y) takes the value of

f∗(x, y) = 1 + log
p(x|y)

p(x)
, (10)

this bound is sharp.

We next extend these bounds to the multi-sample setting. In this setup, we are given one paired
sample (x1, y1) from p(x, y) (i.e., the positive sample) and K − 1 samples independently drawn
from p(y) (i.e., the negative samples). Note that when we average over x wrt p(x) to compute the MI,
this equivalent to comparing positive pairs from p(x, y) and negative pairs artificially constructed by
p(x)p(y). By the independence between X1 and Yk>1, we have
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I(X;Y1:K) = Ep(x1,y1)
∏
k>1 p(yk)

[
p(x1, y1)

∏
k>1 p(yk)

p(x1)
∏
k p(yk)

]
= Ep(x1,y1)

[
p(x1, y1)

p(x1)p(y1)

]
= I(X;Y )

(11)

So for arbitrary multi-sample critic f(x; y1:K), we know

I(X;Y ) = I(X1;Y1:K) ≥ INWJ(X1, Y1:K ; f) = Ep(x1,y1)
∏
k>1 p(yk)[f(x1, y1:K)]−e−1Ep(x)[Zf (x)]

(12)

Now let us set

f̃(x1; y1:K) = 1 + log
eg(x1,y1)

m(x1; y1:K)
, m(x1; y1:K) =

1

K

∑
k

eg(x1,yk). (13)

INWJ(X1, Y1:K ; f̃) =Ep(x1,y1)pK−1(yk)

[
1 + log

eg(x1,y1)

m(x1; y1:K)

]
− Ep(x′)pK(y′)

[
e
−1+1+log e

g(x′1,y
′
1)

m(x′1;y′
1:K

)

]

= Ep(x1,y1)pK−1(yk)

[
1 + log

eg(x1,y1)

m(x1; y1:K)

]
− Ep(x′)pK(y′)

[
eg(x

′
1,y
′
1)

m(x′1; y′1:K)

]

Due to the symmetry of {yk}Kk=1, we have

Ep(x′)pK(y′)

[
eg(x

′
1,y
′
1)

m(x′1; y′1:K)

]
= Ep(x′)pK(y′)

[
eg(x

′
1,y
′
k)

m(x′1; y′1:K)

]
. (14)

So this gives

Ep(x′)pK(y′)

[
eg(x

′
1,y
′
1)

m(x′1; y′1:K)

]
= Ep(x′)pK(y′)

[
1
K e

g(x′1,y
′
k)

m(x′1; y′1:K)

]
= 1, (15)

and one can easily see this recovers the K-sample InfoNCE defined in (3)

INWJ(X1, Y1:K ; f̃) = Ep(x1,y1)pK−1(yk)

[
log

eg(x1,y1)

m(x1; y1:K)

]
= IKInfoNCE(X;Y |g) (16)

Now we need to show this bound is sharp when K → ∞. We only need to show that for some
choice of g(x, y), the inequality holds asymptotically. Recall the NWJ’s optimal critic takes value of
f∗(x, y) = 1 + p(x|y)

p(x) , so with reference to (13) let us plug in g∗(x, y) = p(y|x)
p(y) into InfoNCE

L∗K = EpK

[
log

(
f∗(xk, yk)

f∗(xk, yk) +
∑
k′ 6=k f

∗(xk, yk′)

)]
+ logK (17)

= −E

[
log

(
1 +

p(y)

p(y|x)

∑
k′

p(yk′ |xk)

p(yk′)

)]
+ logK (18)

≈ −E
[
log

(
1 +

p(y)

p(y|x)
(K − 1)Eyk′

p(yk′ |xk)

p(yk′)

)]
+ logK (19)

= −E
[
log

(
1 +

p(yk)

p(yk|xk)
(K − 1)

)]
+ logK (20)

≈ −E
[
log

p(y)

p(y|x)

]
− log(K − 1) + logK (21)

(K →∞) → I(X;Y ) (22)

This concludes our proof.
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B Proof of Proposition 2.2 (FLO lower bounds MI)

Proof. The proof is given in line 133-140 in the main text. Basically we have applied the Fenchel
duality trick to the log term in the UBA bound. Note that unlike UBA, our FLO bound can be unbiased
estimated with finite samples (as UBA requires an infinite sum inside its log term, which makes
finite-sample empirical estimate biased per Jensen’s inequality).

C Proof of Proposition 2.3, Corollary 2.4 (FLO tightness, meaning of u(x, y))

Proof. The proof is given in the main text, more specifically the paragraph preceding Proposition
2.3.

D Gradient Analysis of FLO (More Detailed)
To further understand the workings of FLO, let us inspect the gradient of model parameters. Recall
the intractable UBA MI estimator can be re-expressed in the following form:

IUBA′(gθ) = Ep(x,y)[− logEp(y′)[exp(gθ(x, y
′)− gθ(x, y))]] (23)

In this part, we want to establish the intuition that∇θ{IFLO(uφ, gθ)} ≈ ∇θ{IUBA′(gθ)}, where

IFLO(uφ, gθ) , −
{
uφ(x, y) + Ep(y′)[exp(−uφ(x, y) + gθ(x, y

′)− gθ(x, y))]
}

(24)

is our FLO estimator.

By defining

Eθ(x, y) ,
1

Ep(y′)[exp(gθ(x, y′)− gθ(x, y))]
, (25)

we have

∇θ
{

1

Eθ(x, y)

}
= − ∇Eθ(x, y)

(Eθ(x, y))2
= −∇θ log Eθ(x, y)

Eθ(x, y)
, (26)

and

∇θ
{

1

Eθ(x, y)

}
= ∇θEp(y′)[{exp(gθ(x, y

′)− gθ(x, y))}] (27)

= Ep(y′)[∇θ {exp(gθ(x, y
′)− gθ(x, y))}]. (28)

We know fixing gθ(x, y), the corresponding optimal u∗θ(x, y) maximizing FLO is given by

u∗θ(x, y) = logEp(y′)[exp(gθ(x, y
′)− gθ(x, y))] = − log Eθ(x, y). (29)

This relation implies the view that exp−uφ(x,y) is optimized to approximate Eθ(x, y). And to
emphasize this point, we now write Êθ(x, y) , e−uφ(x,y). Assuming this approximation is sufficiently
accurate (i.e., Eθ ≈ Êθ), we have

∇θ{IFLO(uφ, gθ)} = −Ep(x,y)

[
e−uφ(x,y)Ep(y′)[∇θ exp(gθ(x, y

′)− gθ(x, y))]
]

(30)

= Ep(x,y)

[
e−uφ(x,y)

Eθ(x, y)
∇θ log Eθ(x, y)

]
(31)

= Ep(x,y)

[
Êθ(x, y)

Eθ(x, y)
∇θ log Eθ(x, y)

]
(32)

≈ Ep(x,y) [∇θ log Eθ(x, y)] (33)

= ∇θ
{
Ep(x,y)[log Eθ(x, y)]

}
= ∇θ{IUBA′(gθ)}. (34)

While the above relation shows we can use FLO to amortize the learning of UBA, one major caveat
with the above formulation is that û(x, y) has to be very accurate for it to be valid. As such, one needs
to solve a cumbersome nested optimization problem: update gθ, then optimize uφ until it converges
before the next update of gθ. Fortunately, we can show that is unnecessary: the convergence can be
established under much weaker conditions, which justifies the use of simple simultaneous stochastic
gradient descent for both (θ, φ) in the optimization of FLO.
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E Proof of Proposition 2.5 (FLO Convergence under SGD)

Our proof is based on the convergence analyses of generalized stochastic gradient descent from [20].
We cite the main assumptions and results below for completeness.
Definition E.1 (Generalized SGD, Problem 2.1 in [20]). Let h(θ;ω), ω ∼ p(ω) be an unbiased
stochastic gradient estimator for objective f(θ), {ηt > 0} is the fixed learning rate schedule, {ξt > 0}
is the random perturbations to the learning rate. We want to solve for ∇f(θ) = 0 with the iterative
scheme θt+1 = θt + η̃t h(θt;ωt), where {ωt} are iid draws and η̃t = ηtξt is the randomized learning
rate.
Assumption E.2. (Standard regularity conditions for Robbins-Monro stochastic approximation,
Assumption D.1 [20]).

A1. h(θ) , Eω[h(θ;ω)] is Lipschitz continuous;

A2. The ODE θ̇ = h(θ) has a unique equilibrium point θ∗, which is globally asymptotically
stable;

A3. The sequence {θt} is bounded with probability 1;

A4. The noise sequence {ωt} is a martingale difference sequence;

A5. For some finite constants A and B and some norm ‖ · ‖ on Rd, E[‖ωt‖2] ≤ A+B‖θt‖2 a.s.
∀t ≥ 1.

Proposition E.3 (Generalized stochastic approximation, Proposition 2.2 in [20]). Under the standard
regularity conditions listed in Assumption E.2, we further assume

∑
t E[η̃t] =∞ and

∑
t E[η̃2

t ] <∞.
Then θn → θ∗ with probability 1 from any initial point θ0.
Assumption E.4. (Weaker regularity conditions for generalized Robbins-Monro stochastic approxi-
mation, Assumption G.1 in [20]).

B1. The objective function f(θ) is second-order differentiable.

B2. The objective function f(θ) has a Lipschitz-continuous gradient, i.e., there exists a constant
L satisfying

−LI � ∇2f(θ) � LI,

B3. The noise has a bounded variance, i.e., there exists a constant σ > 0 satisfying
E
[
‖h(θt;ωt)−∇f(θt)‖2

]
≤ σ2.

Proposition E.5 (Weaker convergence results, Proposition G.2 in [20]). Under the technical condi-
tions listed in Assumption E.4, the SGD solution {θt}t>0 updated with generalized Robbins-Monro
sequence (η̃t:

∑
t E[η̃t] = ∞ and

∑
t E[η̃2

t ] < ∞) converges to a stationary point of f(θ) with
probability 1 (equivalently, E

[
‖∇f(θt)‖2

]
→ 0 as t→∞).

Proof. Since Êθt/Eθt is bounded between [a, b] (0 < a < b < ∞), results follow by a direct
application of Proposition E.3 and Proposition E.5.

F Gaussian Toy Model Experiments

First, we start validating the properties and utility of the proposed FLO estimator by comparing it to
competing solutions with the Gaussian toy models. Specifically, for the 2d-D Gaussian model with
correlation ρ, we have X ∈ Rd and Y ∈ Rd with covariance structure

cov[[X]i, [X]j ] = δij , cov[[Y ]i, [Y ]j ] = δij , cov[[X]i, [Y ]j ] = δij · ρ (35)

This allows us to have the ground-truth MI I(X;Y ) = −d2 log(1− ρ2) for reference and easily tune
the difficulty of the task via varying d and ρ.

F.1 Choice of baselines

We choose TUBA, NWJ, InfoNCE and α-InfoNCE as our baselines. Note α-InfoNCE results are not
reported in the main paper because we do not see a clear advantage via tuning α NWJ and InfoNCE
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Figure S1: Comparison of estimated u(x, y), g(x, y) and the ground-truth PMI − log p(x,y)
p(x)p(y) using

the 2D Gaussian experiment. This confirms our analyses that the optimized u(x, y) approximates the
true PMI.

are the two most popular estimators in practice that are employed without additional hacks. TUBA
is included for its close relevance to FLO (i.e., optimizing u(x) instead of u(x, y), and being non-
contrastive). We do not include DV here because we find DV needs excessively a large negative sample
size K to work. Variants like MINE are excluded for involving additional tuning parameters or hacks
which complicates our analyses. The proposed FDV estimator is also excluded from our analyses
for bound comparison since it includes ÎDV in the estimator. Note that although not suitable for MI
estimation, we find FDV works quite well in representation learning settings where the optimization
of MI is targeted. This is because in FDV, the primal term ÎDV term does not participate gradient
computation, so it does not yield degenerated performance as that of DV. In the results reported below,
we fixed α = 0.8 for better visualization.

F.2 Experimental setups

We use the following baseline setup for all models unless otherwise specified. For the critic functions
g(x, y), u(x, y) and u(x), we use multi-layer perceptron (MLP) network construction with hidden-
layers 512 × 512 and ReLU activation. For optimizer, we use Adam and set learning rate to 10−4

unless otherwise sepcified. A default batch-size of 128 is used for training. To report the estimated
MI, we use 10k samples and take the average. To visualize variance, we plot the decimal quantiles
at {10%, 20%, · · · , 80%, 90%} and color code with different shades. We sample fresh data point in
each iteration to avoid overfitting the data. All models are trained for ∼ 5, 000 iterations (each epoch
samples 10k new data points, that is 78 iterations per epoch for a total of 50 epochs).

F.3 PMI approximation with u(x, y)

For Figure S1, we use the 2-D Gaussian with ρ = 0.5 to compare the estimated u(x, y), g(x, y) with
the ground-truth PMI, and the contour plot is obtained with a grid resolution of 2.5 × 10−2. This
confirms our analyses that the optimized u(x, y) approximates the true PMI − log p(x,y)

p(x)p(y) .

F.4 Ablation study: efficiency of parameter sharing for g(x, y) and u(x, y).

For the shared parameterization experiment for FLO (Figure S2), we used the more challenging 20-D
Gaussian with ρ = 0.5, and trained the network with learning rate 10−3 and 10−4 respectively. We
repeat the experiments for 10 times and plot the distribution of the MI estimation trajectories. Note
that we intentionally used a setup such that the MLP network architecture we used is inadequate to
get a sharp estimate (both for FLO and other MI estimators), which simulates the realistic scenario
that the ground-truth MI is infeasible due to architecture constraints (refer to our ablation study on
the influence network capacity in Sec F.5). We observe the FLO estimator with a shared network
learns faster than its separate network counterpart under both learning rates, validating the superior
efficiency of parameter sharing.

6



0 10 20 30
Epochs

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Learning Rate = 10−3

True MI
(g, u) shared
(g, u) separate

0 10 20 30
Epochs

Learning Rate = 10−4

Figure S2: MI estimation with different critic parameter sharing strategies for FLO: shared network
and separate networks under learning rates 10−3 and 10−4 for 2-D Gaussian. Note shared parameter-
ization not only reduced half the network size, it also learns faster.
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Figure S3: Abaltion study for network complexity with FLO. More complex networks lead to faster
convergence and better MI estimates. However, the stability is more sensitive to learning rate with a
larger neural network.

F.5 Ablation study: network capacity and MI estimation accuracy

We further investigate how the neural network learning capacity affect MI estimation. In Figure
S3 we compare the training dynamics of the FLO estimator with L-layer neural networks, where
L ∈ {2, 3, 6} and each hidden-layer has 512-units. A deeper network is generally considered to be
more expressive. We see that using larger networks in general converge faster in terms of training
iterations, and also obtain better MI estimates. However, more complex networks imply more
computation per iteration, and it can be less stable when trained with larger learning rates.

F.6 Ablation study: Bi-linear critics and scaling

We setup the bi-linear critic experiment as follows. For the naive baseline FLO, we use the shared-
network architecture for g(x, y) and u(x, y), and use the in-batch shuffling to create the desired
number of negative samples (FLO-shuff). For FLO-BiL, we adopt the following implementation:
feature encoders h(x), h̃(y) are respectively modeled with three layer MLP with 512-unit hidden
layers and ReLU activations, and we set the output dimension to 512. Then we concatenate the feature
representation to z = [h(x), h̃(y)] and fed it to the u(x, y) network, which is a two-layer 128-unit
MLP. Note that is merely a convenient modeling choice and can be further optimized for efficiency.
Each epoch containing 10k samples, and FLO-shuff is trained with fixed batch-size. For FLO-BiL, it
is trained with batch-size set to the negative sample-size desired, because all in-batch data are served
as negatives. We use the same learning rate 10−4 for both cases, and this puts large-batch training at
disadvantage, as fewer iterations are executed. To compensate for this, we use T (K) = ( KK0

)
1
2 · T0

to set the total number of iterations for FLO-BiL, where (T0,K0) are respectively the baseline
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Figure S6: Bias variance plot for the popular MI bounds with the 2-D Gaussians. In this simpler case,
TUBA, NWJ and FLO all give sharp estimate at K = 5. α-InfoNCE gives worst variance profile. The
reason is that because α-InfoNCE interpolates between the low-variance multi-sample InfoNCE and
high-variance single-sample NWJ (see Figure S7), and in this case the variance from NWJ dominates.

training iteration and negative sample size used by FLO-shuff, and the number of negative sample
K are {10, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500}. We are mostly interested in computation
efficiency here so we do not compare the bound. In Figure S4, we see the cost for training FLO-shuff
grows linearly as expected. For FLO-BiL, a U-shape cost curve is observed. This is because bilinear
implementation has three networks total, while the shared MLP only have one network. This implies
more computations when the batch size is small, however, as the batch size grows, the computation
overhead is amortized by better parallelism employed with the bilinear strategy, thus increasing
overall efficiency until the device capacity has been reached. This explains the initial drop in cost,
followed by the anticipated square-root growth.

F.7 Comparison of learning dynamics for different variational MI bounds

In Figure S5, we show the learning dynamics of competing estimators for the 20-D Gaussian when
ρ = 0.9. We can find FLO achieves the best accuracy, it also learns fast and stably. InfoNCE learns
very stably, yet its learning efficiency varies significantly in small-batch and large-batch setups.
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F.8 Comprehensive analyses of bias-variance trade-offs

To supplement our results in the main paper, here we provide additional bias-variance plots for
different MI estimators under various settings. In Figure S6 we show the bias-variance plot of MI
estimates for 2-D Gaussians. In this case, the network used are sufficiently comprehensive so sharp
estimate is attainable. In all cases the estimation variance grows with MI value, which is consistent
with the theoretical prediction that for tight estimators, the estimation variance grows exponential
with MI [17]. In such cases, the argument for InfoNCE’s low-variance profile no longer holds: it
is actually performing sub-optimally. For complex real applications, the negative sample size used
might not provide an adequate estimate of ground-truth MI (i.e., the logK cap), and that is when
InfoNCE’s low-variance profile actually helps. We also notice that, when the MI estimate is not
exactly tight, but very close to the true value, the variance dropped considerably. This might provide
alternative explanation (and opportunity) for the development near-optimal MI estimation theories,
which is not covered in existing literature.

We also tried the single-sample estimators for NWJ, TUBA and FLO to their multi-sample InfoNCE-
based counterparts (Figure S7), which is the comparison made by some of the prior studies (Note we
do not apply Bilinear tric here, thus FLO seems similar to other methods). In this setting, the variance
single-sample estimators’ variances are considerably larger, which explains their less favorable
performance. Note that contradictory to theoretical predictions, a larger negative sample size does
make NWJ, TUBA and FLO tighter empirically, although the gains are much lesser compare to that of
InfoNCE (partly because these three estimators are already fairly tight relative to InfoNCE). This
might be explained by a better optimization landscape due to reduced estimation variance. We
conjecture that for multi-sample NWJ, TUBA and FLO, the performance in empirical applications such
as self-supervised learning should be competitive to that of InfoNCE, which has never been reported
in literature.

9



G Comparison with Classical MI Estimators

We also compare our FLO estimator to the classical MI estimators in Figure S8. The following
implementations of baseline estimators for multi-dimensional data are considered: (i) KDE: we use
kernel density estimators to approximate the joint and marginal likelihoods, then compute MI by
definition; (ii) NPEET 1, a variant of Kraskov’s K-nearest neighbour (KNN) estimator [15, 21];
(iii) KNNIE 2, the original KNN-estimator and its revised variant [10]. These models are tested on
2-D and 20-D Gaussians with varying strength of correlation, with their hyper-parameters tuned
for best performance. Note that the notation of “best fit” is a little bit subjective, as we will fix the
hyper-parameter for all dependency strength, and what works better for weak dependency might
necessarily not work well for strong dependency. We choose the parameter whose result is visually
most compelling. In addition to the above, we have also considered other estimators such as maximal-
likelihood density ratio 3 [19] and KNN with local non-uniformity correction 4. However, these
models either do not have a publicly available multi-dimensional implementation, or their codes do
not produce reasonable results 5.

H Comparison to Parametric Variational Estimators and Bounds Targeting
Alternative Information Metrics

Parametric variational estimators are typically associated with upper bound of MI [8, 18]. Inspired by
multi-sample variational bounds for likelihood estimation, [7] derived a generic family of importance-
weighted MI bounds that are provably tighter. These bounds usually require the additional knowledge
of likelihood, and consequently they can not be directly used for data-driven MI estimations. On
the other hand, these models do not suffer from the exponential scaling of variance suffered by
non-parametric MI estimators. Note that MI is not the only measure to assess association between
two random variables, some alternatives can potentially do better for specific applications. Examples
include V information [22], Rényi information [16], and the spectral information [11].

I Regression with Sensitive Attributes (Fair Learning) Experiments

I.1 Introduction to fair machine learning

Nowadays consequential decisions impacting people’s lives have been increasingly made by machine
learning models. Such examples include loan approval, school admission, and advertising campaign,
amongst others. While automated decision making has greatly simplified our lives, concerns have
been raised on (inadvertently) echoing, even amplifying societal biases. Specially, algorithms are
vulnerable in inheriting discrimination from the training data and passed on such prejudices in their
predictions.

To address the growing need for mitigating algorithmic biases, research has been devoted in this
direction under the name fair machine learning. While discrimination can take many definitions
that are not necessarily compatible, in this study we focus on the most widely recognized criteria
Demographic Parity (DP), as defined below

Definition I.1 (Demographic Parity, [9]). The absolute difference between the selection rates of a
decision rule ŷ of two demographic groups defined by sensitive attribute s, i.e.,

DP(Ŷ , S) =
∣∣∣P(Ŷ = 1|S = 1)− P(Ŷ = 1|S = 0)

∣∣∣ . (36)

With multiple demographic groups, it is the maximal disparities between any two groups:

DP(Ŷ , S) = max
s6=s′

∣∣∣P(Ŷ = 1|S = s)− P(Ŷ |S = s′)
∣∣∣ . (37)

1https://github.com/gregversteeg/NPEET
2https://github.com/wgao9/knnie
3https://github.com/leomuckley/maximum-likelihood-mutual-information
4https://github.com/BiuBiuBiLL/NPEET_LNC
5These are third-party python implementations, so BUGs are highly likely.
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I.2 Experiment details and analyses

To scrub the sensitive information from data, we consider the in-processing setup

L = Loss(Predictor(Encoder(xi)), yi︸ ︷︷ ︸
Primary loss

) + λ I(si,Encoder(xi))︸ ︷︷ ︸
Debiasing

. (38)

By regularizing model training with the violation of specified fairness metric ∆(ŷ, s), fairness is
enforced during model training. In practice, people recognize that appealing to fairness sometimes
cost the utility of an algorithm (e.g., prediction accuracy) [12]. So most applications seek to find
their own sweet points on the fairness-utility curve. In our example, it is the DP-error curve. A
fair-learning algorithm is consider good if it has lower error at the same level of DP control.

In this experiment, we compare our MI-based fair learning solutions to the state-of-the-art methods.
Adversarial debiasing tries to maximize the prediction accuracy for while minimize the prediction
accuracy for sensitivity group ID [23]. We use the implementation from AIF3606 package [6]. FERMI
is a density-based estimator for the exponential Rényi mutual information ERMI , Ep(x,y)[

p(x,y)
p(x)p(y) ],

and we use the official codebase. For evaluation, we consider the adult data set from UCI data
repository [5], which is the 1994 census data with 30k samples in the train set and 15k samples in
the test set. The target task is to predict whether the income exceeds $50k, where gender is used
as protected attribute. Note that we use this binary sensitive attribute data just to demonstrate our
solution is competitive to existing solutions, where mostly developed for binary sensitive groups.
Our solution can extend to more general settings where the sensitive attribute is continuous and
high-dimensional.

We implement our fair regression model as follows. To embrace data uncertainty, we consider latent
variable model pθ(y, x, z) = pθ(y|z)pθ(x|z)p(z), where v = {x, y} are the observed predictor and
labels. Under the variational inference framework [13], we write the ELBO(v; pθ(v, z), qφ(z|v)) as

EZ∼qφ(z|v)[log pθ(y|Z)] + EZ∼qφ(z|v)[log pθ(x|Z)]− βKL(qφ(z|v) ‖ p(z)) (39)

p(z) is modeled with standard Gaussian, and the approximate posterior qφ(z|v) is modeled by a
neural network parameterizing the mean and variance of the latents (we use the standard mean-field
approximation so cross-covariance is set to zero), and β is a hyperparameter controlling the relative
contribution of the KL term to the objective. Note that unlike in the standard ELBO we have dropped
the term EZ∼qφ(z|v)[log pθ(x|Z)] because we are not interested in modeling the covariates. Note
this coincides with the variational information bottleneck (VIB) formulation [1]. Additionally, the
posterior qφ(z|v) will not be conditioned on y, but only on x, because in practice, the labels y are
not available at inference time. All networks used here are standard three-layer MLP with 512
hidden-units.

For Figure S9, we note that the adversarial de-biasing actually crashed in the DP range [0.1, 0.18], so
the results have to be removed. Since interpolation is used to connect different data points, it makes
the adversarial scheme look good in this DP range, which is not the case. FERMI also gave unstable
estimation in the DP range [0.1, 0.18]. Among the MI-based solutions, NWJ was most unstable.
Performance-wise, InfoNCE, TUBA and FDV are mostly tied, with the latter two slightly better in the
“more fair” solutions (i.e., at the low DP end).

J Self-supervised Learning

Our codebase is modified from a public PyTorch implementation7. Specifically, we train 256-
dimensional feature representations by maximizing the self-MI between two random views of data,
and report the test set classification accuracy using a linear classifier trained to convergence. We
report performance based on ResNet-50. Hyper-parameters are adapted from the original SimCLR
paper. For the large-batch scaling experiment, we first grid-search the best learning rate for the base
batch-size, then grow the learning rate linearly with batch-size.

6https://github.com/Trusted-AI/AIF360
7https://github.com/sthalles/SimCLR
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Figure S9: Fair Learning Result.

Table S1: MNIST cross-view results.

Model CCA NWJ TUBA InfoNCE FLO FDV

Accuracy 67.78 76.71 79.49 79.27 79.47 80.14
Î(xl, xr) NA 5.73 4.78 4.65 4.84 4.67

K Bayesian Experimental Design

K.1 Noisy Linear Model

Our setup is the same as the Noisy Linear Model in [14]. We use 10 individual experimental designs.
For encoder θ and encoder y, we use MLP with 2-layer, 128-dim hidden layer, and set the feature
dim as 512. We train models in 5000 epochs, the batch size is 64, and the learning rate is 2 ∗ 10−5.
Four MI estimators (NWJ, TUBA, InfoNCE, and FLO) has been compared in this experiment and we
got four optimized designs. Then, we use MCMC to estimate the posterior of the parameters.

K.2 Pharmacokinetic Model

The settings of this experiment refer to the Pharmacokinetic Model of [14]. We use 10 individual
experimental designs. The MLP is with 2-layer, 128-dim hidden layer, and set the output feature dim
as 512. We train 10000 epochs with learning rate is 10−5 via four methods (NWJ, TUBA, InfoNCE,
FLO).

K.3 SIR Model

We here consider the spread of a disease within a population of N individuals, mod- elled by stochastic
versions of the well-known SIR [3]. a susceptible state S(t) and can then move to an infectious state
I(t) with an infection rate of β. These infectious individuals then move to a recovered state R(t)
with a recovery rate of γ, after which they can no longer be infected. The SIR model, governed by
the state changes S(t)→ I(t)→ R(t), thus has two model parameters θ1 = (β, γ).

The stochastic versions of these epidemiological processes are usually defined by a continuous-time
Markov chain (CTMC), from which we can sample via the Gillespie algorithm [2]. However, this
generally yields discrete population states that have undefined gradients. In order to test our gradient-
based algorithm, we thus resort to an alternative simulation algorithm that uses stochastic differential
equations (SDEs), where gradients can be approximated.

We first define population vectors X1(t) = (S(t), I(t)) for the SIR model and X2(t) =
(S(t), E(t), I(t)) for the SEIR model. We can effectively ignore the population of recovered because
the total population is fixed. The system of Itô SDEs for the above epidemiological processes is

dX(t) = f(X(t)) dt+G(X(t)) dW (t), (40)

where f is the drift term, G is the diffusion term and W is the Wiener process. Euler-Maruyama
algorithm is used to simulate the sample paths of the above SDEs.

fSIR =

(
−β S(t)I(t)

N

β S(t)I(t)
N − γI(t)

)
,GSIR =

 −√β S(t)I(t)
N 0√

β S(t)I(t)
N −

√
γI(t)

 (41)

We use the infection rate (I) as 0.1 and the recovery (R) rate as 0.01. The independent priors are
N(0.1,0.02) and N(0.01, 0.002). The initial infection number is 10. We update MI one time after
updating sampler three steps.We use RNN network with 2 layer 64 dim hidden layer construction to
decoder the sequential design.
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L Meta Learning

Intuitions. Now let us describe the new Meta-FLO model for meta-learning. Given a model spaceM
and a loss function ` :M×Z → R, the true risk and the empirical risk of f ∈M are respectively
defined as Rt(f) , EZ∼µt [`(f, Z)] and R̂t(f ;St) , 1

m

∑m
i=1 `(f, Zi).Let us denote Rτ is the

generalization error for the task distribution τ where all tasks originate, and R̂τ is the empirical
estimate. Our heuristic is simple, that is to optimize a tractable upper bound of the generalization risk
given by

Rτ ≤ R̂τ︸︷︷︸
Utility

+ |Rτ − R̂τ |︸ ︷︷ ︸
Generalization

, Lupper. (42)

For meta-learning, we sample n-tasks for training and n′-tasks for testing, respectively denoted
as S1:n and Stest1:n′ . We further decouple the learning algorithm into two parts: the meta-learner
Ameta(S1:n) that consumes all train data to get the meta-model fmeta, and then task-adaptation learner
Aadapt(fmeta,St) which adapts the meta-model to the individual task data St to get task model ft.
For parameterized models such as deep nets, we denote Θ as our meta parameters and Et as task-
parameters, that is to say Θ , Ameta(S1:n), Et , Aadapt(Θ,St), where Θ, Et can be understood
as weights of deep nets. In subsequent discussions, we will also call Et the task-embedding. We
can define the population meta-risk as Rτ (Θ) , Et,Θ=Ameta(S1:n)[EEt=Aadapt(Θ,St)[Rt(fEt)]], and
similarly for the empirical risk R̂τ evaluated on the query set Qt. Our model is based on the following
inequality [4]:

lim
n→∞

|E[R− R̂]| ≤
√

2σ2

m
I(Et;St|Θ) (43)

which gives the main objective LMeta-FLO(f) = R̂(f) + λ

√
IFLO(D̂t; Êt). We summarize our model

architecture in Figure S10.

The sin-wave adaptation experiment involves regressing from the input (x ∼ Uniform([−5, 5]))
to the output of a sine wave κ sin(x − γ), where amplitude κ ∼ Uniform([0.1, 5]) and phase
(γ ∼ Uniform([0, π]) of the sinusoid vary for each task. We use mean-squared error (MSE) as
our loss and set the support-size = 3 and query-size = 2. We use simple three-layer MLPs for
all the models: regressor, prompt encoder, and FLO critics, with hidden units all set to [512, 512].
During training, we use an episode-size of 64. For MAML, we use the first-order implementation
(FOMAML), and set inner learning rate to α = 10−4. For Meta-FLO, we set regularization strength
to λ = 10−2.
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