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Abstract

Successful applications of InfoNCE (Information Noise-Contrastive Estimation)
and its variants have popularized the use of contrastive variational mutual infor-
mation (MI) estimators in machine learning. While featuring superior stability,
these estimators crucially depend on costly large-batch training, and they sacrifice
bound tightness for variance reduction. To overcome these limitations, we revisit
the mathematics of popular variational MI bounds from the lens of unnormalized
statistical modeling and convex optimization. Our investigation yields a new uni-
fied theoretical framework encompassing popular variational MI bounds, and leads
to a new simple and powerful contrastive MI estimator we name FLO. Theoreti-
cally, we show that the FLO estimator is tight, and it converges under stochastic
gradient descent. Empirically, the FLO estimator overcomes the limitations of its
predecessors and learns more efficiently. The utility of FLO is verified using exten-
sive benchmarks, and we further inspire the community with novel applications
in meta-learning. Our presentation underscores the foundational importance of
variational MI estimation in data-efficient learning.

1 Introduction
Assessing the dependence between pairs of variables is integral to many scientific and engineering
endeavors [66, 67]. Mutual information (MI) is a popular metric to quantify generic associations
[50], and its empirical estimators have been widely used in applications such as independent compo-
nent analysis [3], fair learning [32], neuroscience [58], Bayesian optimization [43], among others.
Notably, the recent advances in deep self-supervised learning (SSL) heavily rely on nonparametric
MI optimization [76, 57, 35, 15, 29]. In this study we investigate the likelihood-free variational
approximation of MI using only paired samples, and improve the data-efficiency of current machine
learning practices.

MI estimation has been extensively studied [6, 51, 50, 59, 61, 77, 10]. While most classical estimators
work reasonably well for low-dimensional cases, they scale poorly to big datasets: naïve density-based
estimator(s) and k-nearest neighbor estimators [45, 60, 24] struggle with high-dimensional inputs,
while kernel estimators are slow, memory demanding and sensitive to hyperparameters [28, 27].
Moreover, these estimators are usually either non-differentiable or need to hold all data in memory.
Consequently, they are not well suited for emerging applications where the data representation needs
to be differentiably optimized based on small-batch estimation of MI [39]. Alternatively, one can
approach MI estimation through an estimated likelihood ratio [71, 39], but the associated numerical
instability has raised concerns [2].

To scale MI estimation to the growing size and complexity of modern datasets, and to accommodate
the need for representation optimization [8], variational objectives have been widely utilized recently
[57]. Instead of directly estimating data likelihoods, density ratios, or the corresponding gradients
[81], variational approaches appeal to mathematical inequalities to construct tractable lower or
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upper bounds of the mutual information [62], facilitated by the use of auxiliary critic functions1.
This practice turns MI estimation into an optimization problem. Prominent examples include the
Barber-Agakov (BA) estimator [4], the Donsker-Varadhan (DV) estimator [19], and the Nguyen-
Wainwright-Jordan (NWJ) estimator [55]. These variational estimators are closely connected to the
variational objectives for likelihood inference [1].

Despite reported successes, these variational estimators have a major limitation: their estimation
variance grows exponentially to the ground-truth MI [52]. This is especially harmful to applications
involving deep neural nets, as it largely destabilizes training [69]. An effective fix is to leverage
multi-sample contrastive estimators, pioneered by the work of InfoNCE [57]. However, the massive
reduction in the variance comes at a price: the performance of the InfoNCE estimator is upper
bounded by logK, where K is the number of samples used for estimation (i.e., batch-size) [62]. For
a large MI, K needs to be sufficiently large to allow for an adequate estimate, consequently placing a
significant burden on computation and memory. While variants of InfoNCE have been motivated to
achieve more controllable bias and variance tradeoffs [62, 69], little research has been conducted on
the cost-benefit aspect of contrastive learning.
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Figure 1: Schematic of variational
lower bounds of mutual information.
FLO provides a novel unified framework
to analyze contrastive MI bounds.

A critical insight enabled by InfoNCE is that mutual infor-
mation closely connects to contrastive learning [33, 57]. Par-
alleled by the empirical successes of instance discrimination-
based self-supervision [53, 83, 15, 35] and multi-view super-
vision [75, 63], InfoNCE offers an InfoMax explanation
to why the ability to discriminate naturally paired posi-
tive instances from the randomly paired negative instances
leads to universal performance gains in these applications
[47, 68, 62]. Despite these encouraging developments, the
big picture of MI optimization and contrastive learning is
not yet complete: (i) There is an ongoing debate about to
what extent MI optimization helps to learn useful represen-
tation [79]; (ii) how does the contrastive view reconcile
with those non-contrastive MI estimators; and crucial for
practical applications, (iii) are the empirical tradeoffs made
by estimators such as InfoNCE absolutely necessary? Also
theoretically, (iv) formal guarantees on the statistical con-
vergence of popular variational non-parametric MI estimation are missing currently.

In this work we seek to bridge the above gaps by approaching the MI estimation from the novel
perspective of energy modeling. While this subject has recently been studied extensively using
information-theoretic and variational inequalities, we embrace a new view from the lens of unnormal-
ized statistical modeling. Our main contributions include:

• Unifying popular variational MI bounds under unnormalized statistical modeling;

• Deriving a simple but powerful novel contrastive variational bound called FLO;

• Providing theoretical justification of the FLO bound (tightness and convergence);

• Demonstrating strong empirical evidence of the superiority of FLO over its predecessors.

• Highlighting the importance of MI in data-efficient learning with novel applications

We contribute in-depth discussion to bridge the gaps between contrastive learning and MI estimation,
along with principled practical guidelines informed by theoretical insights.

2 Fenchel-Legendre Optimization for Mutual Information Estimation
2.1 Preliminaries

This section briefly reviews the mathematical background needed for our subsequent developments.

Unnormalized statistical modeling defines a rich class of models of general interest. Specifi-
cally, we are interested in problems for which the system is characterized by an energy function
p̃θ(x) = exp(−ψθ(x)), where θ is the system parameters and ψθ(x) is known as the potential
function. The goal is to find a solution that is defined by a normalized version of p̃θ(x), i.e.,

1When estimates are sharp, these critic functions usually recover some transformation of the likelihood ratio.
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minθ

{
L
(

p̃θ∫
p̃θ(x′) dµ(x′)

)}
, where L(·) is the loss function, µ is the base measure on X and

Z(θ) ,
∫
p̃θ(x

′) dµ(x′) is called the partition function for p̃θ(x). Problems in the above form
arise naturally in statistical physics [65], Bayesian analysis [9], and maximal likelihood estimation
[72]. A major difficulty with unnormalized statistical modeling is that the partition function Z(θ)
is generally intractable for complex energy functions 2, and in many applications Z(θ) is further
composed by logZ(θ), whose concavity implies any finite sample estimate Monte-Carlo of Z(θ) will
render the loss function biased [64, 87]. Bypassing the difficulties caused by the intractable partition
function is central to unnormalized statistical modeling [26, 54, 37, 40, 33].

Mutual information and unnormalized statistical models. As a generic score assessing the
dependency between two random variables (X,Y ), mutual information is formally defined as the
Kullback-Leibler divergence (KL) between the joint distribution p(x, y) and product of the respective
marginals p(x)p(y) [67], i.e., I(X;Y ) , Ep(x,y)

[
log p(x,y)

p(x)p(y)

]
. The integrand log p(x,y)

p(x)p(y) is often
known as the point-wise mutual information (PMI) in the literature. Mutual information has a few
appealing properties: (i) it is invariant wrt invertible transformations of x and y, and (ii) it has the
intuitive interpretation of the reduced uncertainty of one variable given another variable3.

To connect MI to unnormalized statistical modeling, we consider the classical Barber-Agakov (BA)
estimator of MI [5]. To lower bound MI, BA introduces a variational approximation q(y|x) for the
posterior p(y|x), and by rearranging the terms we obtain an inequality

I(X;Y ) = Ep(x,y)

[
log

p(y|x)

p(y)

]
= Ep(x,y)

[
log

q(y|x)

p(y)

]
+ Ep(x)[KL(p(y|x) ‖ q(y|x))]

≥ Ep(x,y)

[
log

q(y|x)

p(y)

]
, IBA(X;Y |q). (1)

Here we have used notation IBA(X;Y |q) to highlight the dependence on q(y|x), and when q(y|x) =
p(y|x) this bound is sharp. Unfortunately, this naïve BA bound is not useful for sample-based
MI estimation, as we do not know the ground-truth p(y). But we can bypass this difficulty by
setting qθ(y|x) = p(y)

Zθ(x)e
gθ(x,y), where we call egθ(x,y) the tilting function and recognize Zθ(x) =

Ep(y)[e
gθ(x,y)] as the associated partition function. Substituting this qθ(x|y) into (1) gives the

following unnormalized BA bound (UBA) that pertains to unnormalized statistical modeling [62]

IUBA(X;Y |gθ) , Ep(x,y)[gθ(x, y)− logZθ(x)] = Ep(x)

[
Ep(y|x)

[
log

egθ(x,y)

Zθ(x)

]]
. (2)

While this UBA bound remains intractable, now with Zθ(x) instead of p(y) we can apply different
techniques for empirical estimates of Zθ(x) to render a tractable surrogate target. This has led to
various popular MI bounds listed in Table 1 (see Appendix A for derivations).

InfoNCE and noise contrastive estimation. InfoNCE is a multi-sample mutual information esti-
mator proposed in [57], built on the idea of noise contrastive estimation (NCE) [33]. NCE learns
statistical properties of a target distribution by comparing the positive samples from the target dis-
tribution to the “negative” samples from a carefully crafted noise distribution, and this technique is
also known as negative sampling in some contexts [53, 30]. The InfoNCE estimator implements this
contrastive estimation idea via using the naïve empirical estimate of Zθ(x) in UBA4, i.e.

IKInfoNCE(X;Y |gθ) , EpK(x,y)

[
log

egθ(x1,y1)

1
K

∑
j e
gθ(x1,yj)

]
, IKInfoNCE(X;Y ) , max

gθ∈F
{IKInfoNCE(X;Y |gθ)},

(3)
where gθ is known as the critic in the nomenclature of contrastive learning, and we have used
pK(x, y) to denote K independent draws from the joint density p(x, y), and {(xk, yk)}Kk=1 for each
pair of samples. Here the positive and negative samples are respectively drawn from the joint p(x, y)
and product of marginals p(x)p(y). Intuitively, InfoNCE tries to accurately classify the positive
samples when they are mixed with negative samples, and the Proposition below formally characterizes
InfoNCE’s statistical properties as a MI estimator.

2In the sense that they do not render closed-from expressions.
3Formally, I(X;Y ) = H(X) −H(X|Y ) = H(Y ) −H(Y |X), where H(X) (resp. H(X|Y )) denotes

the Shannon entropy (resp. conditional Shannon entropy) of a random variable.
4This estimator is technically equivalent to the original definition due to the symmetry of K samples.
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Proposition 2.1 ([62]). InfoNCE is an asymptotically tight mutual information lower bound, i.e.
IKInfoNCE(X;Y |gθ) ≤ I(X;Y ), limK→∞ IKInfoNCE(X;Y )→ I(X;Y ).

Fenchel-Legendre duality. Our key idea is to exploit the
convex duality for MI estimation. Let f(t) be a proper con-
vex, lower-semicontinuous function; then its convex conju-
gate function is defined as f∗(v) , supt∈D(f){tv − f(t)},
where D(f) is the domain of function f [38]. We call f∗(v)
the Fenchel conjugate of f(t), which is also known as the
Legendre transform in physics. The Fenchel conjugate pair
(f, f∗) are dual to each other, in the sense that f∗∗ = f , i.e.,
f(t) = supv∈D(f∗){vt − f∗(v)}. For f(t) = − log(t) and its
Fenchel conjugate f∗(v) = −1− log(−v), we have inequality

− log(t) ≥ −u− e−ut+ 1, for u ∈ R (4)

with the equality holds when u = log(t).
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Figure 2: K-sample InfoNCE and
single-sample FLO. Note FLO is
tight regardless of sample-size.

2.2 Fenchel-Legendre Optimization for tight mutual information estimation
With the above mathematical tools, we are ready to present the main result of this paper: a tight,
data-efficient variational MI lower bound that can be efficiently implemented.

Lower bounding MI with Fenchel-Legendre Optimization. Our key insight is that MI estimation
is essentially an unnormalized statistical model, which can be efficiently handled by the Fenchel-
Legendre transform technique. Take the integrand from UBA in (2) and we can rewrite it as

log
exp(gθ(x, y))

Zθ(x)
= − log

{
Ep(y′)[exp(g(x, y′)− g(x, y))]

}
, (5)

where p(y′) is the same probability density as p(y) (i.e., Y ′ is an independent copy of Y ). Now let us
use the Fenchel inequality of − log(t) from (4), plugging it into the above equation and then we have

log
exp(gθ(x, y))

Zθ(x)
≥
{
−u− e−uEp(y′)[exp(g(x, y′)− g(x, y))]

}
+ 1. (6)

for all u ∈ R. This implies for any function uφ(x, y) : X × Y → R, the following inequality holds

log
exp(gθ(x, y))

Zθ(x)
≥ −{uφ(x, y) + e−uφ(x,y)Ep(y′)[exp(g(x, y′)− g(x, y))]}+ 1. (7)

By putting (7) back to (2), we obtain our new Fenchel-Legendre Optimization (FLO) MI lower bound

IFLO(X;Y |gθ, uφ) , Ep(x,y)

[
−{uφ(x, y) + e−uφ(x,y)Ep(y′)[egθ(x,y′)−gθ(x,y)]}

]
+ 1, (8)

and concludes the proof for the following Proposition.
Proposition 2.2. IFLO(X;Y |gθ, uφ) ≤ IUBA(X;Y |gθ) ≤ I(X;Y ).

In practice, FLO can be estimated with the following naïve empirical K-sample estimator

ÎKFLO(X;Y |gθ, uφ) , −

uφ(xi, yi) + e−uφ(xi,yi)
1

K − 1

∑
j 6=i

egθ(xi,yj)−gθ(xi,yi)

+ 1. (9)

Since the summation in ÎKFLO is not encapsulated by a convex log transformation, IKFLO , EpK [ÎKFLO] is
an unbiased estimator for IFLO(X;Y |gθ, uφ) independent of the batch size K (see Figure 2).

Why is the FLO bound more appealing? At first sight, it may appear counter-intuitive that IFLO is a
better MI bound compared to prior arts such as NWJ or InfoNCE: it seems to be more complicated as
an extra variational function uφ(x, y) has been introduced. To answer this question, we next explain
the statistical meaning of the newly introduced uφ(x, y), and establish some important statistical
properties of FLO that makes it more favorable: that IFLO is tight, meaning the ground-truth MI can
be recovered for some specific choice of gθ(x, y) and uφ(x, y); and that IKFLO for any batch size K is
effectively optimizing InfoNCE with an infinite batch size. And in Sec 2.4, we further justify FLO’s
advantages from optimization perspectives.
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Given the close connection between FLO and UBA, we first recall UBA’s optimal critic that gives the
tight MI estimate is g∗(x, y) = log p(x|y) + c(x), where this c(x) can be any function of x [49].
This g∗(x, y) is not directly meaningful in a statistical sense, however, by integrating out y′, we have

Ep(y′)
[
eg
∗(x,y′)−g∗(x,y)

]
= Ep(y′)

[
p(x|y′)
p(x|y)

]
=

p(x)

p(x|y)
=
p(x)p(y)

p(x, y)
, (10)

which is the likelihood ratio between the marginals and joint. On the other hand, based on
the Fenchel-Legendre inequality (4), we know for fixed g(x, y) our FLO bound in (8) can be
maximized with ug(x, y) = logEp(y′)

[
eg(x,y

′)−g(x,y)
]
. Putting these all together we have

ug∗(x, y) = − log p(x,y)
p(x)p(y) . This shows the uφ(x, y) introduced in FLO actually tries to recover

the negative PMI. Comparing to the competing MI bounds that only optimizes for gθ, eliminating the
drift term c(x) reveals FLO enjoys the appealing self-normalizing property [33] that helps stabilize
training. Plugging (g∗, ug∗) into (8), we readily see IFLO(X;Y |ug∗ , g∗) = I(X;Y ), proving FLO is
a tight MI bound.

Proposition 2.3. The FLO estimator is tight, the eqaulity holds when g(x, y) = log p(x|y) + c(x)

for arbitrary function c(x) and u(x, y) = − log p(x,y)
p(x)p(y) .

Corollary 2.4. Let (g∗, ug∗) be the maximizers for (8), then I(X;Y ) = Ep(x,y)[−ug∗(x, y)].

Finally, we give a simple asymptotic argument showing FLO essentially optimizes InfoNCE with
an infinite batch size. In virtue of the law of large numbers, we have the denominator in InfoNCE
converging to limK→∞

1
K

∑K
j=1 e

gθ(xi,yj) → Ep(y′)[egθ(xi,y
′)] = Zθ(xi), and consequently it

recovers the UBA bound. Since FLO is derived from UBA, we can view FLO as using the optimization
of uφ(x, y) to amortize the difficulty of evaluating infinite number of egθ(xi,yj) with InfoNCE.

Efficient implementations of FLO. A lingering concern is that the newly introduced uφ(x, y) can
incur extra computation overhead. This is not true, as we can maximally encourage parameter sharing
by jointly model uφ(x, y) and gθ(x, y) with a single neural network fΨ(x, y) : X×Y → R2 with two
output heads, i.e., [ui, gi] = fΨ(xi, yi). Consequently, while FLO adopts a dual critics design, it does
not actually invoke extra modeling cost compared to its single-critic counterparts (e.g., InfoNCE).
Experiments show this shared parameterization in fact promotes synergies and speeds up learning
(see our ablation studies in Appendix F.6).

To further enhance the computation efficiency, we consider a massively parallelized bi-linear critic
design that uses all in-batch samples as negatives. Let gθ(x, y) = τ ·〈hθ(x), h̃(y)〉, where h : X → Sp
and h̃ : Y → Sp are respectively encoders that map data to unit sphere Sp embedded in Rp+1,
〈a, b〉 = aT b is the inner product operation, and τ > 0 is the inverse temperature parameter. Thus
the evaluation of the Gram matrix G = τ · h(X)T h̃(Y), where [X,Y] ∈ RK×(dx+dy) is a mini-batch
of K-paired samples and gθ(xi, yj) = Gij , can be parallelized via matrix multiplication. In this
setup, the diagonal terms of G are the positive scores while the off-diagonal terms negative scores. A
similar strategy has been widely employed in the contrastive representation learning literature (e.g.,
[15])5. We can simply model the PMI critic as u(x, y) = MLP(h(x), h̃(y)), whose computation cost
is almost neglectable in practice, where feature encoders h, h̃ dominate computing.

2.3 Connections to the existing MI bounds
Due to space limitations, we elaborate the connections to the existing MI bounds here, and have
relegated an extended related work discussion in a broader context to Appendix A, H.

From log-partition approximation to MI bounds. To embrace a more holistic understanding, we
list popular variational MI bounds together with our FLO in Table 1, and visualize their connections in
Figure 1. With the exception of JSD, these bounds can be viewed from the perspective of unnormalized
statistical modeling, as they differ in how the log partition function logZ(x) is estimated. We broadly
categorize these estimators into two families: the log-family (DV, MINE, InfoNCE) and the exponential-
family (NWJ, TUBA, FLO). In the log-family, DV and InfoNCE are multi-sample estimators that leverage

5As an important note to the community, most open source implementations for the bilinear contrastive loss
have mechanically implemented 1

T
〈·, ·〉 following the practice from pioneering contrastive learning studies,

which is numerically unstable compared to our parameterization τ〈·, ·〉 proposed here.
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Table 1: Comparison of popular variational MI estimators. Here g(x, y), u(x, y) and u(x) are
variational functions to be optimized, σ(u) = 1

1+exp(−u) is the Sigmoid function, E [f(u), η] denotes
exponential average of function f(u) with decay parameter η ∈ (0, 1), and α ∈ [0, 1] is the balancing
parameter used by α-InfoNCE trading off bias and variance between InfoNCE and TUBA. we use
(xi, yi) to denote positive samples from the joint density p(x, y), and (xi, yj) or (x′k, y

′
k) to denote

negative samples drawn from the product of marginal p(x)p(y). In context, y⊕ and y	 have the
intuitive interpretation of positive and negative samples. We exclude variational upper bounds here
because their computations typically involve the explicit knowledge of conditional likelihoods.

Name Objective Bias Var. Converge

(xi, yi)
iid∼ p(x, y), (x′k, y

′
k)

iid∼ p(x)p(y), mα,u(x, y1:K) , α 1
K

{∑K
k=1 exp(g(x, yk))

}
+ (1− α) exp(u(x))

DV [19] g(xi, yi)− log(
∑K
k=1 exp(g(x′k, y

′
k))/K) high high no

MINE [7] g(xi, yi)− log(E [exp(g(xi, yj)), η]) low high no
NWJ [55] g(xi, yi)− exp(g(xi, yj)− 1) low high no
JSD [39] g∗(xi, yi)− exp(g∗(xi, yj)− 1) low high no

g∗
arg max←−−−−− {log σ(g(xi, yi)) + log σ(−g(xi, yj))}

TUBA [62] g(xi, yi) + u(xi) + 1− exp(g(xi, yj)− u(xi)) low high no
InfoNCE [57] g(xi, yi)− log(

∑
j exp(g(xi, yj))/K) high low no

α-InfoNCE [62] g(xi, yi)− g(xi, yj)− log(mα,u(x, y1:K)) + log(mα,u(x′k, y
′
k)) no

α-InfoNCE interpolates between low-bias high-var (α→ 1, NWJ) to high-bias low-var (α→ 0, InfoNCE)

FLO (ours) −u(xi, yi)− exp(−u(xi, yi) + g(xi, yj)− g(xi, yi)) low moderate yes

direct Monte-Carlo estimates Ẑ for logZ(x), and these two differ in whether to include the positive
sample in the denominator or not. To avoid the excessive in-batch computation of the normalizer
and the associated memory drain, MINE further employed an exponential moving average (EMA) to
aggregate the normalizer across batches. Note for the log-family estimators, their variational gaps
are partly caused by the log-transformation on finite-sample average due to Jensen’s inequality (i.e.,
logZ = logE[Ẑ] ≥ E[log Ẑ]). In contrast, the objective of exponential-family estimators do not
involve such log-transformation, since they can all be derived from the Fenchel-Legendre inequality:
NWJ directly applies the Fenchel dual of f -divergence for MI [56], while TUBA exploits this inequality
to compute the log partition logZ(x) = logEp(y′)[exp(g(x, y′))]. Motivated from a contrastive
view, our FLO applies the Fenchel-Legendre inequality to the log-partition of contrast scores.

A contrastive view for MI estimation. The MI estimators can also be categorized based on how
they contrast the samples. For instance, NWJ and TUBA are generally considered to be non-contrastive
estimators, as their objectives do not compare positive samples against negative samples on the
same scale (i.e., log versus exp), and this might explain their lack of effectiveness in representation
learning applications. For JSD, it depends on a two-stage estimation procedure similar to that in
adversarial training to assess the MI, by explicitly contrasting positive and negative samples to
estimate the likelihood ratio. This strategy has been reported to be unstable in many empirical settings.
The log-family estimators can be considered as a multi-sample, single-stage generalization of JSD.
However, the DV objective can go unbounded thus resulting in a large variance, and the contrastive
signal is decoupled by the EMA operation in MINE. Designed from contrastive perspectives, InfoNCE
trades bound tightness for a lower estimation variance, which is found to be crucial in representation
learning applications. Our FLO formalizes the contrastive view for exponential-family MI estimation,
and bridges existing bounds: the PMI normalizer exp(−u(x, y)) is a more principled treatment than
the EMA in MINE, and compared to DV the positive and negative samples are explicitly contrasted
and adaptively normalized.

Important FLO variants. We now demonstrate that FLO is a flexible framework that not only
recovers existing bounds, but also derives novel bounds such as

IFDV , StopGrad[IDV({(xi, yi)})] +
∑
j exp(cθ(xi,yi,yj))

StopGrad[
∑
j exp(cθ(xi,yi,yj))]

− 1. (11)

Recall the optimal g∗(x, y) = log p(x|y) + c(x) and u∗(x, y) = − log p(x,y)
p(x)p(y) , which motivates

us to parameterize u(x, y) in the form of −gθ(x, y) + sψ(x), where sψ(x) models the arbitrary
drift c(x), and this recovers the TUBA bound. Additionally, we note that (i) fixing either of u
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and g, and optimizing the other also gives a valid lower bound to MI; and (ii) a carefully chosen
multi-input u({(xi, yi)}) can be computationally appealing. As a concrete example, if we set uφ to

uθ({(xi, yi)})← log
(

1
K

∑
j e
c(xi,yi,yj ;gθ)

)
and update uθ(x, y) while artificially keeping the critic

gθ(x, y) fixed 6, then FLO falls back to DV. Alternatively, we can consider the Fenchel dual version of
it: using the same multi-input uθ({(xi, yi)}) above, treat uφ as fixed and only update gθ, and this
gives us the novel MI objective in (11), we call it Fenchel-Donsker-Varadhan (FDV) estimator.

2.4 Gradient and convergence analysis of FLO

In this section, we will establish that FLO better optimizes the MI because its gradient is more accurate
than competing variational bounds such as NWJ and TUBA; also, we provide the first convergence
analysis for variational MI estimation by showing FLO converges under SGD.

First, recall most tractable variational MI bounds are derived from and upper bounded by the
intractable UBA bound [62]. For instance, with the same critic gθ we have INWJ ≤ ITUBA ≤ IUBA. So
if we can show ∇θIFLO ≈ ∇θIUBA then FLO is better optimized. To simplify notations, we denote
cθ(x, y, y

′) , gθ(x, y
′)− gθ(x, y) and Eθ(x, y) , 1/Ep(y′)[ecθ(x,y,y′)], and we can easily verify

Ep(y′)
[
∇θ
{
ecθ(x,y,y′)

}]
= ∇θ

{
1

Eθ(x, y)

}
= − ∇Eθ(x, y)

(Eθ(x, y))2
= −∇θ log Eθ(x, y)

Eθ(x, y)
. (12)

Since for fixed gθ(x, y) the corresponding optimal u∗θ(x, y) maximizing IFLO(uφ, gθ) , 1 −{
uφ(x, y) + Ep(y′)[e−uφ(x,y)+c(x,y,y′;gθ)]

}
is given by u∗θ(x, y) = logEp(y′)[ecθ(x,y,y′)] =

− log Eθ(x, y) (using (4)), we see that the term e−uφ(x,y) is essentially optimized to approximate
Eθ(x, y). To emphasize this point, we now write Êθ(x, y) , e−uφ(x,y). When this approximation is
sufficiently accurate (i.e., Eθ ≈ Êθ), we can see that∇IFLO approximates∇IUBA as follows

∇θ{IFLO(uφ, gθ)} = −Exy
[
e−uφ(x,y)Ey′ [∇θecθ(x,y,y′)]

]
= Exy

[
Êθ(x,y)
Eθ(x,y)∇θ log Eθ(x, y)

]
≈ Exy [∇θ log Eθ(x, y)] = ∇θ

{
Ep(x,y)[log Eθ(x, y)]

}
= ∇θ{IUBA(gθ)}.

(13)

We can prove FLO will converge under much weaker conditions, even when this approximation

û(x, y) is rough. The intuition is as follows: in (13), the term Êθt
Eθt

only rescales the gradient, so the
optimizer is still proceeding in the same direction as UBA in SGD. The informal version of our result
is summarized in the Proposition below (see Appendix E for the formal version and proof).

Proposition 2.5 (Convergence of FLO, informal version).
Let {ηt}∞t=1 be the stochastic Robbins-Monro sequence of

learning rates:
∑
t E[η̃t] = ∞ and

∑
t E[η̃2

t ] < ∞. If ÊθtEθt
is bounded between [a, b] (0 < a < b < ∞), then under
the stochastic gradient descent scheme described in Algo-
rithm 1, θt converges to a stationary point of IUBA(gθ) with
probability 1, i.e., limt→∞ ‖∇IUBA(gθt)‖ = 0. Additionally
assume IUBA is convex with respect to θ, then FLO converges
with probability 1 to the global optimum θ∗ of IUBA from
any initial point θ0.

Algorithm 1 FLO
Empirical data p̂d = {(xi, yi)}ni=1

Model parameters Ψ = (θ, φ)
for t = 1, 2, · · · do

Sample i, j iid∼ [n]
uii = uφ(xi, yi), gii = gθ(xi, yi),
gij = gθ(xi, yj)
F = uii + exp(−uii + gij − gii)
Ψt = Ψt − ηt∇ΨF

end for

Importantly, this marks the first SGD convergence analyses for variational MI estimators. The
convergence analyses for MI estimation is non-trivial and scarce even for those standard statistical
estimators [59, 24, 64]. For variational MI bounds, existing convergence analyses only apply to oracle
estimators but not practical estimators discussed here [55, 70]. The lack of convergence guarantees
has led to a proliferation of unstable MI-estimators used in practice (in particular, DV, JSD, and
MINE) that critically rely on various empirical hacks to work well (see discussions in [69]). Our work
establishes a family of variational MI estimators that provably converges, a contribution we consider
significant as it fills an important gap in current literature on both theoretical and practical notes.
While our convergence result is local, in practice we have observed that FLO.

6That is to say gθ in uφ is an independent copy of gθ .
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Figure 3: Bias-variance plot for popular variational MI bounds with the 10-D Gaussians. Estimators
that are more concentrated around the dashed line is considered better (low-bias, low-variance). In the
more challenging high-MI regime, FLO shows a clear advantage over competing alternatives, where
FLO pays less price in variance to achieve even better accuracy when tight estimation is impossible.
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Figure 4: Bayesian Optimal Experiment Design results. FLO consistently performs best, demonstrat-
ing superior strength in learning efficiency and robustness. NWJ takes the runner-up, but it has larger
variance and is sensitive to network initializations. InfoNCE is less competitive due to low sample
inefficiency, but its smaller variance helps in the more challenging dynamic case.

3 Experiments

We consider an extensive range of tasks to validate FLO and benchmark it against state-of-the-
art solutions. To underscore the practical significance of MI in efficient machine learning, we
demonstrate example applications from data collection (in statistical parlance, experimental design),
self-supervised pre-training, to meta/transfer-learning. Limited by space, we present only the key
results in the main text, and defer ablation studies and details of our experimental setups to the
Appendix. Our code is available from https://github.com/qingguo666/FLO. All experiments
are implemented with PyTorch.

Comparison to baseline MI bounds. We start by comparing FLO
to the following popular competing variational estimators: NWJ,
TUBA, and InfoNCE. We use the bilinear critic implementation for
all models which maximally encourages both sample efficiency
and code simplicity, and this strategy does perform best based
on our observations. We consider the synthetic benchmark from
[62], where (X ∈ Rd, Y ∈ Rd) is jointly standard Gaussian with
diagonal cross-correlation parameterized by ρ ∈ [0, 1). We report
d = 10 and ρ ∈ [0, 0.99] here (other studies only report ρ up to
0.9, which is less challenging.), providing a reasonable coverage
of the range of MI one may encounter in empirical settings.
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Figure 5: FLO compares favor-
ably to classical MI estimators.

To focus on the bias-variance trade-off, we plot the decimal quantiles in addition to the estimated MI
in Figure 3, where FLO significantly outperformed its variational counterparts in the more challenging
high-MI regime. In Figure 5, we show FLO also beats classical MI estimators [45, 80, 25]. In
the Appendix H, we further discuss recent works on parametric estimators [17, 10] and alternative
information metrics [85].

Bayesian optimal experiment design (BOED). We next direct our attention to BOED, a topic of
significant interest shared by the statistical and machine learning communities [11, 82, 36, 23]. The
performance of machine learning models crucially relies on the quality of data supplied for training,
and BOED is a principled framework that optimizes the data collection procedure (in statistical
parlance, conducting experiments) [22]. Mathematically, let x be the data to be collected, θ be the
parameters to be inferred, and d be the experiment parameters the investigator can manipulate (a.k.a,
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the design parameters), BOED tries to find the optimal data collection procedure that is expected
to generate data that is most informative about the underlying model parameters, i.e., solves for
arg maxd I(x; θ; d). In this study, we focus on the more generic scenario where explicit likelihoods
are not available, but we can still sample from the data generating procedure [43, 44].

We consider three carefully-selected models from recent literature for their progressive practical
significance and the challenges involved [21, 41, 42]: static designs of (i) a simple linear regression
model and (ii) a complex nonlinear pharmacokinetic model for drug development; and the dynamic
policy design for (iii) epidemic disease surveillance and intervention (e.g., for Covid-19 modeling).
Designs with higher MI are more favorable, because it implies the data carries more information. In
Figure 4 we compare design optimization curves using different MI optimization strategies, where
FLO consistently leads. Popular NWJ and InfoNCE reports different tradeoffs that are less susceptible
to FLO. We also examine the FLO predicted posteriors and confirm they are consistent with the
ground-truth parameters (Figure 6 right). For the dynamic policy optimization, we also manually
inspect the design strategies reported by different models (Figure 6 left,middle). Consistent with
human judgement, FLO policy better assigns budgeted surveillance resources at different stages of
pandemic progression.

A novel meta-learning framework. A second application of our work is to meta-learning, an
area attracting substantial recent interest. In meta-learning, we are concerned with scenarios that at
training time, there are abundant different labelled tasks, while upon deployment, only a handful
of labeled instances are available to adapt the learner to a new task. Briefly, for an arbitrary loss
`t(ŷ, y), where t is the task identifier and ŷ = f(x) is the prediction made by the model, we denote
the risk by Rt(f) = Ept(x,y)[`t(f(x), y)]. Denote R(f) , Et∼p(t)[Rt(f)] as the expected risk for
all tasks and R̂(f) for the mean of empirical risks computed from all training tasks. Inspired by
recent information-theoretic generalization theories [84], we derived a novel, principled objective

LMeta-FLO(f) = R̂(f) + λ

√
IFLO(D̂t; Êt), (14)

where λ is known given the data size
and loss function, (D̂t, Êt) are respec-
tively data and task embeddings for
training data, which for the first time
lifts contrastive learning to the task
and data distribution level. Our reason-
ing is that LMeta-FLO(f) theoretically
bounds R(f) from above, and it is rel-
atively sharp for being data-dependent.
We give more information on this in
the Appendix and defer a full exposi-
tion to a dedicated paper due to inde-
pendent interest and space limits here.
Note other MI bounds are not suitable
for this task due to resource and vari-

Table 2: Multi-view representation learning on Cifar

Model InfoNCE SpecNCE [34] a FLO FDV

MI 5.73± .07 4.76± .08 5.83± .08 5.93 ± .08
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Figure 7: Few-shot adaptation with Meta-FLO.
aNote SpecNCE does not explicitly target mutual information

ance concerns. In Figure 7 we show Meta-FLO wins big over the state-of-the-art model agnostic
meta-learning (MAML) model on the regression benchmark from [20].
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Self-supervised learning (SSL). Finally, we wrap our experiments with one of the prime applications
of contrastive MI estimation in machine learning: SSL for model pre-training7. Here we focus on how
FLO-inspired objectives can improve the current practice of SSL, and given this topic’s independent
interest, we defer in-depth discussions in our dedicated work [12] where SSL-specific problems such
as training diagnosis and low-precision numerical overflow are explored in detail. In this experiment,
we follow the SSL setup described in the SimCLR paper [15]: in the pre-training phase, we optimize
the mutual information between difference augmentations of the same image (i.e., scaling, rotation,
color jitting, etc.); and use linear probing accuracy as our performance criteria.

We compare the effectiveness of the InfoNCE-based SimCLR framework [15] to our FLO-based
alternatives. To ensure fair comparison, we have used the FDV variant defined in Eq. (11) as our
training objective, so that we are not introducing extra parameters to model u(x, y). We call our new
model FlatCLR because, perhaps counter-intuitively, the second term in Eq. (11) contributing all the
learning signal is constant one in value (i.e., being flat). In Figure 8 and 9, we show our new model
FlatCLR shows superior sample efficiency compared to the SOTA SimCLR (a 8× boost for the same
performance, FlatCLR-32 versus SimCLR-256). This result is significant because SimCLR’s crucial
reliance on large-batch training is a well-known limitation [34, 86, 46]. Figure 10 shows typical
training curves with the respective models. Note that while the empirical estimates of MI are tied
between the two methods, FDV optimized representation enjoys a better ground-truth MI 8, which
can be explained by its robustness to the numerical overflow issue (see [12] for details). Further
comparisons on the ground-truth MI estimation with different estimators can be found in Table 2.

4 Conclusion
We have described a new framework for the contrastive estimation of mutual information from energy
modeling perspectives. Our work not only encapsulates popular variational MI bounds but also
inspires novel objectives such as FLO and FDV, which comes with strong theoretical guarantees. In
future work, we will leverage our theoretical insights to improve practical applications involving MI
estimation, such as representation learning, fairness, causal inference [48], clustering [31], and in
particular, data efficient learning. We are also interested in further exploring the deep connections
between contrastive MI estimation and generative modeling [16, 73, 14, 18, 74, 13].
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