Appendix

A Topological Data Analysis (TDA)

A.1 Single Parameter Persistent Homology

Here, we give further details on single parameter persistent homology. To sum up, PH machinery is a
3-step process. The first step is the filtration step, where one can integrate the domain information to
the process. The second step is the persistence diagrams, where the machinery records the evolution
of topological features (birth/death times) in the filtration, sequence of the simplicial complexes. The
final step is the vectorization (fingerprinting) where one can convert these records to a function or
vector to be used in suitable ML models.

Constructing Filtrations: As PH is basically the machinery to keep track of the evolution of
topological features in a sequence, the most important step is the construction of the sequence

G1 C ... C Gy. This is the key step where one can inject the valuable domain information to the
PH process by using important domain functions (e.g., atomic mass, partial charge). While there are
various filtration techniques used for PH machinery on graphs [5} 41]], we will focus on two most
common methods: Sublevel/superlevel filtration and Vietoris-Rips (VR) filtration.

For a given unweighted graph (compound) G = (V,€) with V = {vy,..., v} the set of nodes
(atoms) and £ = {e,} the set of edges (bonds), the most common technique is to use a filtering
function f : V — R with a choice of thresholds Z = {«; } where a1 = mingey f(v) < ag < ... <
ay = max,ey f(v). Fora; € Z,1let V; = {v, € V| f(v,) < a;} (sublevel sets for f). Here, in VS
problem, this filtering function f can be atomic mass, partial charge, bond type, electron affinity,
ionization energy or another important function representing chemical properties of the atoms. One
can also use the natural graph induced functions like node degree, betweenness, etc. Let G; be the
induced subgraph of G by V;, i.e., G; = (V;, ;) where &; = {e,s € £ | v,,vs € V;}. This process
yields a nested sequence of sql\)graphs G1 C Gy C ... C Gy = G. To obtain a filtration, next step is to
assign a simplicial complex G; to the subgraph G;. One of the most common techniques is the clique

complexes [5]. The clique complex G is a simplicial complex obtained from G by assigning (filling
with) a k-simplex to each complete (k + 1)-complete subgraph in G, e.g., a 3-clique, a complete
3-subgraph, in G will be filled with a 2-simplex (triangle). This technique is generally known as
sublevel filtration with clique complexes. As f(v;) < «; condition in the construction gives sublevel
filtration, one can similarly use f(v;) > «; condition to define superlevel filtration. Similarly, for a
weighted graph (bond strength), sublevel filtration on edge weights provides corresponding filtration
reflecting the domain information stored in the edge weights [3].

While sublevel/superlevel filtration with clique complexes is computationally cheaper and more
common in practise, in this paper, we will essentially use a distance-based filtration technique called
Vietoris-Rips (VR) filtration where the pairwise distances between the nodes play key role. This
technique is computationally more expensive, but gives much finer information about the graph’s
intrinsic properties [2]]. For a given graph G = (V, £), we define the distance between d(v,., vs) = ds
where d,., is the smallest number of edges required to get from v, to v, in G. Then, let I',, = (V, &)
be the graph where &, = {e;s | drs < n},ie. & =0and & = E withTp =V andT; =G. In
other words, we start with the nodes of G, then for any pair of vertices v,., vs with distance d,s < n
in G, we add an edge e, to the graph I',,. Then, define the simplicial complex A,, = T, the
clique complex of I';,. This defines a filtration Ag C A; C --- C Ag where K = maxd,., i.e.
the distance between farthest two nodes in the graph G. Hence, for n > K, A,, = Ak which is
a (m — 1)-simplex as ' is complete m-graph where [V| = m. In particular, in this setting, we
consider the vertex set) as a point cloud where the distances between the points induced from the
graph G. In graph setting, V R-filtration is also known as power filtration as the graph T',, is also
called G", n'" power of G.

Persistence Diagrams: The second step in PH process is to obtain persistence diagrams (PD)
for the filtration Ay C A; C --- C Ag. As explained in Section [3.1} PDs are collection of
2-tuples, marking the birth and death times of the topological features appearing in the filtration, i.e.
PDy(G) = {(bo,ds) | 0 € Hp(A;) for b, < i < d,}. This step is pretty standard and there are
various software libraries for this task [[74].

Vectorizations (Fingerprinting): While PH extracts hidden shape patterns from data as persistence
diagrams (PD), PDs being collection of points in R? by itself are not very practical for statistical and
ML purposes. Instead, the common techniques are by faithfully representing PDs as kernels [54] or
vectorizations [39]. One can consider this step as converting PDs into a useful format to be used in
ML process as fingerprints of the dataset. This provides a practical way to use the outputs of PH in
real life applications. Single Persistence Vectorizations transform obtained PH information (PDs) into
a function or a feature vector form which are much more suitable for ML tools than PDs. Common
single persistence (SP) vectorization methods are Persistence Images [3], Persistence Landscapes [13]],
Silhouettes [21]], Betti Curves and various Persistence Curves [25]]. These vectorizations define a
single variable or multivariable functions out of PDs, which can be used as fixed size 1D or 2D
vectors in applications, i.e 1 X n vectors or m x n vectors. For example, a Betti curve for a PD with n
thresholds can also be expressed as 1 x n size vectors. Similarly, Persistence Images is an example of
2D vectors with the chosen resolution (grid) size. See the examples given in Section [B.4] for further
details.

B Multiparameter Persistence (MP) Fingerprints

B.1 Stability of MP Fingerprints

Stability of Single Persistence Vectorizations: A given PD vectorization ¢ can be considered as a map
from space of persistence diagrams to space of functions, and the stability intuitively represents the
continuity of this operator. In other words, stability question is whether a small perturbation in PD
cause a big change in the vectorization or not. To make this question meaningful, one needs to define
what "small perturbation" means in this context, i.e., a metric in the space of persistence diagrams.
The most common such metric is called Wasserstein distance (or matching distance) which is defined
as follows.

Let PD(X ™) and PD(X ™) be persistence diagrams two datasets X and X'~ (We omit the dimen-
sions in PDs). Let PD(X ") = {q; } UAT and PD(X~) = {g; } U A~ where A* represents the

diagonal (representing trivial cycles) with infinite multiplicity. Here, q;-r = (bj, dj') € PD(x™)
represents the birth and death times of a topological feature o in X*. Let ¢ : PD(X*) — PD(X ™)
represent a bijection (matching). With the existence of the diagonal A* in both sides, we make sure

the existence of these bijections even if the cardinalities |{qj+}| and |{g, }| are different.

Definition B.1 Let PD(X*) be persistence diagrams of the datasets X*, and M = {¢} represent
the space of matchings as described above. Then, the p" Wasserstein distance Wy, defined as

W(PD). D) = min (Sl — ol) . pez

Now, we define stability of vectorizations. A vectorization can be considered as an operator from
space of persistence diagrams P to space of functions (or vectors) Y, e.g., ¥ : P — Y. In particular,
when W is persistence landscape, Y = C([0, K], R) and when ¥ is Betti summary, then Y = R™
(See MP Examples in Section[B.4) Stability of vectorization ¥ basically corresponds to the continuity
of W as an operator. Let d(.,.) be a suitable metric on the space of vectorizations used. Then, we
define the stability of W as follows:

Definition B.2 Let ¥ : P — Y be a vectorization for single persistence diagrams. Let W, d be
the metrics on P and Y respectively as described above. Let)* = U(PD(X*)) € Y. Then, ¥ is
called stable if

d(i/)+,¢_) <C- WP\I/ (PD(X+)7 PD(X_))

Here, the constant C' > 0 is independent of X'*. This stability inequality interprets as the changes
in the vectorizations are bounded by the changes in PDs. Two nearby persistence diagrams are
represented by nearby vectorizations. If a given vectorization ¢ holds such a stability inequality
for some d and W,,, we call ¢ a stable vectorization [1]. Persistence Landscapes [[13]], Persistence
Images [3]], Stabilized Betti Curves [48] and several Persistence curves [25] are among well-known
examples of stable vectorizations.

Now, we are ready to prove the stability of MP Fingerprints given in Section [4.1]

LetGT = (VT,ET)and G~ = (V—, &™) be two graphs. Let ¢ be a stable SP vectorization with the
stability equation

d(e(PD(G")),¢(PD(G™))) < Cp - Wy, (PD(GT), PD(G™)) 2

for some 1 < p, < oco. Here, go(gi) represent the corresponding vectorizations for PD(Qi) and
W, represents Wasserstein-p distance as defined in Section[B.1}

Now, let f : V¥ — R be a filtering function with threshold set {a;}" ;. Then, define the sublevel
vertex sets V¥ = {v, € V¥ | f(v,) < oy}. For each V¥, construct the induced VR-filtration
AL c AL C - A, as before. For each 1 < iy < m, we will have persistence diagram
PD(V5) of the filration {AF,}.

We define the induced matching distance between the multiple persistence diagrams as
D, ((G".G7) =Y Wp(PDV"), PD(V))). 3)
i=1

Now, we define the distance between induced MP Fingerprints as
DMy (¢7). M Zd (PD(V")),o(PD(V;))) @)

Theorem B.1 Let ¢ be a stable SP vectorization. Then, the induced MP Fingerprint M, is also

stable, i.e., with the notation above, there exists @9 > 0 such that for any pair of graphs G+ and G,
we have the following inequality.

~

DM, (G7), My (7)) < Cp - Dp, ({PD(GT)} {PD(GT)})
Proof: As ¢ is a stable SP vectorization, by Equanon 2l for any 1 < i < m, we have

d(<p(PD(V;r)) o(PD(VN)) < Cy,- W, (PD(V*) D(V;")) for some C,, > 0, where W,,_ is
Wasserstein-p distance. Notice that the constant C > 0 is independent of :. Hence,

DML(GT). Mp(GT)) = Zd (PD(V)),¢(PD(V;)))

IN

ZO b, (PD(V), PD(V]))

= szwpv(PD(V;“),PD(Vf)
i=1

= C,-Dy,(67.67)

where the first and last equalities are due to Equation [3]and Equation[d} while the inequality follows
from Equation [2| which is true for any ¢. This concludes the proof of the theorem.

B.2 MP Fingerprint for Other Types of Data

So far, to keep the exposition focused on VS setting, we described our construction only in the graph
setup. However, our framework is suitable for various types of data. Let X be a an image data or a
point cloud. Let f : X — Rand g : X — R be two filtering functions on X. e.g., grayscale function
for image data, or density function on point cloud data.

Let f : X — R be the filtering function with threshold set {a; }7*. Let X; = f~1((—o00, a;]). Then,
we get a filtering of X as nested subspaces X1 C Xy C --- C &), = &X. By using the second
filtering function, we obtain finer filtrations for each subspace &; where 1 < ¢ < m. In particular,
fix 1 <ip < m and let {3;}7_, be the threshold set for the second filtering function g. Then, by
restricting g to X, we get a ﬁlterlng function on X, i.e., g : X;, — R which produces ﬁlterlng

Xig1 C X2 C -+ C &y, = &j,. By inducing a simplicial complex Xw for each & ;, w

get a filtration Q?iol - /\A’iog C---C)?ion = /ﬁo. This filtration results in a persistence diagram
(PD) PD(X,,,g). Foreach 1 < i < m, we obtain PD(X}, g). Note that after getting { X}/, via
f, instead of using second filtering function g, one can apply Vietoris-Rips construction based on

distance for each X, in order to get a different filtration X; 1 C X0 C -+ C Xjyp, = Xy

By using m PDs, we follow a similar route to define our MP Fingerprints. Let (o be a single
persistence vectorization. By applying the chosen SP vectorization ¢ to each PD, we obtain a
function ¢; = p(PD(X;, g)) on the threshold domain [S1, 5,,], which can be expresses as a 1.D (or
2D) vector in most cases (Section[B.4). Let ; be the corresponding 1 x k vector for the function
;. Define the corresponding MP Fingerprint M, as Mi, = g; where Mi; is the i*" row of M,. In
particular, M, is a 2D-vector (a matrix) of size m X k where m is the number of thresholds for the
first filtering function f, and k is the length of the vector (.

B.3 3D or higher dimensional MP Fingerprints:

If one wants to use two filtering functions and get 3D-vectors as the topological fingerprint of the
process, the idea is similar. Let f, g : V — R be two filtering functions with threshold sets {c; }7,
and {3;}"7_, respectively. Let V;; = {v, € V | f(v;) < a; and g(v;) < B;}. Again, compute all
the pairwise distances d(v,.,vs) = m,. in G before defining simplicial complexes. Then, for each
10, jo, obtain a VR-filtration A; ;00 C Ajgje1--- C Ayyjo i for the vertex set V; ;, with distances
d(vy,vs) = mys in G. Compute the persistence diagram PD(V;,) for the filtration {A; ;% }. This
gives m x n persistence diagrams { PD(V;;)}. After vectorization, we obtain a 3 D-vector of size
m X n X r as before.

B.4 Examples of MP Fingerprints

Here, we give explicit constructions of MP Fingerprints for most common SP vectorizations. As noted
above, the framework is generalizable and can be applied to most SP vectorization methods. In all the
examples below, we use the following setup: Let G = (V, £) be a graph, and let f, g : V — R be two
filtering functions with threshold sets {c; }72, and {3, j—1 respectively. As explained above, we first
apply sublevel filtering with f to get a sequence of nested subgraphs, G; C ... C G,, = G. Then, for
each G;, we apply sublevel filtration with g to get persistence diagram PD(G;, g). Therefore, we will
have m PDs. In the examples below, for a given SP vectorization ¢, we explain how to obtain a vector
G(PD(G;, g)), and define the corresponding MP Fingerprint M.,. Note that we skip the homology
dimension (subscript k for PD(G)) in the discussion. In particular, for each dimension & = 0,1, .. .,
we will have one MP Fingerprint M, (G) (a matrix) corresponding to {F(PDy(G;, g))}. The most
common dimensions are k = 0 and k = 1 in applications.

MP Landscapes Persistence Landscapes A are one of the most common SP vectorizations introduced
by [13]. For a given persistence diagram PD(G) = {(b;, d;)}, A produces a function A(G) by using
generating functions A; for each (b;,d;) € PD(G), ie., A; : [bi,d;] — R is a piecewise linear
function obtained by two line segments starting from (b;,0) and (d;, 0) connecting to the same point

2i5%). Then, the Persistence Landscape function A(G) : [e1,€¢,] — Rfort € [e1,¢,] is

defined as
A(G)(t) = max A;(t),

where {¢; }{ are thresholds for the filtration used.

Considering the piecewise linear structure of the function, A(G) is completely determined by its
values at 2¢ — 1 points, i.e., bigdi € {e1,€1.5,€2,€25,...,€6} Where €5 = (€5 + €,11)/2. Hence,
a vector of size 1 x (2¢ — 1) whose entries the values of this function would suffice to capture all the
information needed, i.e. X = [A(e1) Ae1.5) Alea) A(eas) Ales) ... A(eq)]

Considering we have threshold set {/3;}’/_; for the second filtering function g, Xi = XM(PD(Gi, g))

will be a vector of size 1 x 2n — 1. Then, as M} = Xl for each 1 < i < m, MP Landscape M (G)
would be a 2D-vector (matrix) of size m x (2n — 1).

MP Persistence Images Next SP vectorization in our list is Persistence Images [3]]. Different than
the most SP vectorizations, Persistence Images produces 2D-vectors. The idea is to capture the

location of the points in the persistence diagrams with a multivariable function by using the 2D
Gaussian functions centered at these points. For PD(G) = {(b;, d;)}, let ¢; represent a 2 D-Gaussian
centered at the point (b;,d;) € R2. Then, one defines a multivariable function, Persistence Surface,
i =Y, wi¢; where w; is the weight, mostly a function of the life span d; — b;. To represent this
multivariable function as a 2D-vector, one defines a £ x [grid (resolution size) on the domain of
11, 1.e., threshold domain of PD(G). Then, one obtains the Persistence Image, a 2D-vector (matrix)
A = [prs] of size k x I where ji,s = | A, H(z,y) dzdy and A, is the corresponding pixel (rectangle)
in the k& x [grid. ‘

This time, the resolution size k£ x [is independent of the number of thresholds used in the filtering,
the choice of k£ and [is completely up to the user. Recall that by applying the first function f, we
have the nested subgraphs {G;}™ ;. For each G;, the persistence diagram PD(G;, g) obtained by
sublevel filtration with g induces a 2D vector [i; = (PD(G;, g)) of size k x . Then, define MP
Persistence Image as ML = [i;, where ML is the it"-floor of the matrix M,,. Hence, M#(g) would
be a 3D-vector of size m x k x | where m is the number of thresholds for the first function f and

k x [is the chosen resolution size for the Persistence Image /i.

MP Betti Summaries Next, we give an important family of SP vectorizations, Persistence Curves [25]].
This is an umbrella term for several different SP vectorizations, i.e., Betti Curves, Life Entropy,
Landscapes, et al. Our MP Fingerprint framework naturally adapts to all Persistence Curves to
produce multidimensional vectorizations. As Persistence Curves produce a single variable function in
general, they all can be represented as 1D-vectors by choosing a suitable mesh size depending on the
number of thresholds used. Here, we describe one of the most common Persistence Curves in detail,
i.e., Betti Curves. It is straightforward to generalize the construction to other Persistence Curves.

Betti curves are one of the simplest SP vectorization as it gives the count of topological feature at a
given threshold interval. In particular, 85 (A) is the total count of k-dimensional topological feature
in the simplicial complex A, i.e., By (A) = rank(Hy(A)) . Then, 8;(G) : [e1,€q+1] — Ris a step

function defined as R
Br(G)(t) = rank(Hy(G:))

for t € [e;, €;41), where {¢;}7 represents the thresholds for the filtration used. Considering this is a
step function where the function is constant for each interval [e;, €;41), it can be perfectly represented

by a vector of size 1 x g as 3(G) = [3(1) B(2) B(3) ... B(q)].

Then, with the threshold set {/3;}7_, for the second filtering function g, B; = B(PD(Gi, 9)) will be

a vector of size 1 x n. Then, as Mf@ = 5_; for each 1 <4 < m, MP Betti Summary Mg(G) would be
a 2D-vector (matrix) of size m x n. In particular, each entry Mg = [m,;] is just the Betti number
of the corresponding clique complex in the bifiltration {@]} ie,miy; =0 (QA,]) This matrix Mg
is also called bigraded Betti numbers in the literature, and computationally much faster than other
vectorizations [58, [51]].

B.5 MP Vectorization with Other Filtrations

In our paper, other than the simple bifiltration explained in Section] we also used the following two
filtrations. In the Vietoris-Rips filtration, we use graph geodesic (VR-filtration) as our natural slicing
direction. The motivation for this choice is that VR-filtration captures fine intrinsic structure of the
graph by using the pairwise distances between the nodes (atoms). With the weight filtration, we can
utilize the bond strength of compounds effectively in our construction.

Vietoris-Rips filtration: Here, we describe our VR construction for 2D multipersistence. The
construction can easily be extended to 3D or higher dimensions (See Appendix . LetG = (V,€)
be a graph, and let f : V — R be a filtering function (e.g., atomic mass, partial charge, bond type,
electron affinity, ionization energy) with threshold sets {«;}7* . Let V; = {v, € V| f(v,) < a4}

This defines a hierarchy V4 C Vo C --- C V,,, = V among the nodes with respect to the function f.
Before constructing simplicial complexes, compute the distances between each node in graph G,
i.e., d(v,,vs) = d,s is the length of the shortest path from v, to v; where each edge has length 1.
Let K = maxd,s. Then, for each 1 < iy < m, define VR-filtration for the vertex set V;, with
the distances d(v,, vs) = dys as described in Section[3.1] i.e., A;y0 € Ajy1 € ... C Ay i (See
Figure[S). This gives m x (K + 1) simplicial complexes {A;;} where 1 <i <mand 0 < j < K.

O

@)
-0
o)

o @) O
Original Graph Complete Graph
v Q
]
S
g o
a
) o
>
]
=2
=
wn

O

O

|
/A

2 3 e
Graph Geodesic

Flgure 5: Vietoris-Rips Filtrations. In this toy example, we give a bifiltration composed of a sublevel (vertical) and a VR filtration
(horizontal) of a simple graph (top box in the first column). In the vertical direction, we apply sublevel filtration by degree function with
thresholds 1, 2, 3 and 4. In the horizontal direction, we apply VR-filtration with respect to graph distance (geodesic length). In the first column,
we have an (gray) edge between two nodes if their graph distance is 1. In the second column, we have an (black) edge between two nodes if their
graph distance is < 2. Blue edges in the third column represent the edges for graph distance 3. Red edges in the last column represent the edges
for graph distance 4.

This is called the bipersistence module. One can imagine increasing sequence of {V;} as vertical
direction, and induced VR-complexes {A;;} as the horizontal direction. In our construction, we fix
the slicing direction as the horizontal direction (VR-direction) in the bipersistence module, and obtain
the persistence diagrams in these slices.

In the toy example in Figure [5] we use a small graph G instead of a real compound to keep the
exposition simple. Our sublevel filtration (vertical direction) comes from the degree function. Degree
of a node is the number of edges incident to it. In the first column, we simply see the single sublevel
filtration of G by the degree function. In each row, we develop VR-filtration of the subgraph by using
the graph distances between the nodes. Here, graph distance between nodes means the length of
the shortest path (geodesic) in the graph where each edge is taken as length 1. Then, in the second
column, we add the edges for the nodes whose graph distance is equal to 2. In the third column, we
add the (blue) edges for the nodes whose graph distance is equal to 3. Finally, in the last column, we
add the (red) edges for the nodes whose graph distance is equal to 4. By construction, all the graphs
in the last column must be a complete graph as there is no more edge to add.

After getting the bifiltration, the following steps are the same as in Section[d In particular, for
each 1 < iy < m, one obtains a single filtration V;;, = A; 0 C A;;1 € ... C A,k in horizontal
direction. This single filtration gives a persistence diagram PD(V;,) as before. Hence, one obtains
m persistence diagrams { PD(V;)}. Again, by applying a vectorization (, one obtains m row vectors
of fixed size r, i.e. F; = ¢((V;)). This induces a 2D-vector M, (a matrix) of size m x (K + 1) as
before.

While computationally more expensive than others, VR-filtration can be very effective for some VS
tasks, as it detects the graph distances between atoms, and size of the topological features [59] 2].
Note that VR-filtration when used for unweighted graphs with graph distance is known as “power
filtration” in the literature. For further details on VR-filtration, see [3}, 27].

Weight filtration For a given weighted graph G = (V, £, V), it is common to use edge weights
W = {w,s € RT | .5 € £} to describe filtration. For example, in our case, one can take bond
strength in the compounds as edge weights. By choosing the threshold set similarly Z = {a; }T* with
a; = min{w,s € W} < ag < ... < ayy = max{wys € W}. Fora; € Z,1et & = {ey5s € V |
wrs < a;}. Let G be a subgraph of G induced by V;. This induces a nested sequence of subgraphs
G1CGC- - CGn=0.

In the case of weighted graphs, one can apply the MP vectorization framework just by replacing
the first filtering (via f) with weight filtering. In particular, let g : V — R be a filtering function
with threshold set {f3;}%_,. Then, one can first apply weight filtering to get Gy C --- C G, = G as
above, and then apply f to each G; to get a bilfiltration {G;;} (m x n resolution). One gets m PDs as
PD(G;, g) and induce the corresponding M,,. Alternatively, one can change the order by applying ¢
first, and get a different filtering G; C Ga c--C G, = G induced by g. Then, apply to edge weight
filtration to any G;, one gets a bifiltration {jS} (n x m resolution) this time. As a result, one gets n
PDs as PD(G;,w) and induce the corresponding M.,. The difference is that in the first case (first
apply weights, then g), the filtering function plays more important role as M, uses PD(G;, g) while
in the second case (first apply g, then apply weights) weights have more important role as M, is
induced by PD(G;,w). Note also that there is a different filtration method for weighted graphs by
applying the following the following VR-complexes method.

In our applications, we used weight filtration to express bond strength in the compounds. Single bond
has weight 1, double bond has weight 2, triple bond has weight 3, and finally aromatic bond has
weight 4 on the edges.

C Further Experimental Results

C.1 Dataset Statistics

Table 3: Summary statistics of the Cleves-Jain dataset.

Target # Training # Test
Samples Samples

<E~"®RmOomTDOoBEg—R" SR S0 A0 TS

O |WWM W WWWERNWWLWRNNDNDEN WD WW
—_
(=)

Decoy

Table 4: Summary statistics of the DUD-E Diverse dataset.

Target Description # Active # Decoy
AMPC beta-lactamase 62 2902
CXCR4 C-X-C chemokine receptor type 4 122 3414
KIF11 kinesin-like protein 1 197 6912
CP3A4 cytochrome P450 3A4 363 11940
GCR glucocorticoid receptor 563 15185
AKT1 serine/threonine-protein kinase Akt-1 423 16576
HIVRT HIV type 1 reverse transcriptase 639 19134
HIVPR HIV type I protease 1395 36278

C.2 Baselines

We compare our methods against the 23 state-of-the-art baselines including USR [8], ROCS [38]],
PS [42], GZD [92]], PH_VS [50], USR + GZD [84], USR + PS [84], USR + ROCS [84], GZD +
PS [84], GZD + ROCS [84], PS + ROCS [84], Findsite [101]], Fragsite [102], Gnina [87]], GOLD-
EATL [96], Glide-EATL [96], CompM [96]], CompScore [[75], CNN [77], DenseFS [44], SIEVE-
Score 98], DeepScore [94]], and RF-Score-VSv3 [98]].

In particular,, we compare our methods against the well-known 3 D-methods Ultrafast Shape Recog-
nition (USR) [8]], shape-based, ligand-centric method (ROCS) [38]], PatchSurfer (PS) [42]], Zernike
(GZD) [92]] and PH_VS [50]] in Cleves-Jain dataset. In Table E], we report the performances of all
these 3D methods with 50 conformations [84] except PH_VS with 1 conformation [S0].

In Table[2] we compare our models against other state-of-the-art VS methods on DUD-E Diverse
dataset. All of these ML methods came in recent years. Among these, CNN [77] uses a convolutional
neural network based framework with GPU-accelerated layer (i.e., MolGridDataLayer) to define a
scoring function for protein-ligand interactions. DenseFS [44] improves the previous model CNN
by a densely connected convolutional neural network architecture. Later, Sieve-Score proposes
an effective scoring function: similarity of interaction energy vector score (SIEVE) [98] where
they extract van der Waals, Coulomb and hydrogen bonding interactions to represent docking
poses for ML. Random Forest Based Protein-ligand Scoring Function (RF-Score) [98]] is another
VS method proposed in the same work. Compscore [[75] uses genetic algorithms to find the best
combination of scoring components. Recently, energy auxiliary terms learning (EATL) [96] proposes
an approach based on the scoring components extracted from the output of the scoring functions
implemented in several popular docking programs like Genetic Optimisation for Ligand Docking
(GOLD) [49], Molecular Operating Environment (MOE) [[L] and Grid-based Ligand Docking with
Energetics (GLIDE) [132] 35]. In the same work, they also combine these 3 methods and produced
comprehensive EATL models, CompF and CompM. DeepScore [94] defines a deep learning based
target specific scoring function. Findsite [101] proposes a threading/structure based method, where
they improved it later with Fragsite [102] by using tree regression ML framework. Finally, Gnina [87]]
is a recently released molecular docking software, which uses deep convolutional networks to score
protein-ligand structures. Note that all methods use 5-fold CV except Findsite-Fragsite (3-fold CV)
and Gnina.

C.3 Model performance across different modalities

Table[5] [6] [7, [§]show detailed ablations of the modalities used in the graph filtration step of ToDD.
The success of each periodic property varies per drug target and trained ML model. However merging
MP fingerprints derived from each one of these domain functions used for graph filtration has always
improved the performance.

Our results also show that MP fingerprints ensure making successful predictions while training few-
labeled data such as Cleves-Jain (with 2-3 labeled compounds per drug target) using a transformer-
based model.

RF shows worse performance than ViT on small-scale dataset such as Cleves-Jain, despite regulariza-
tion by bootstrapping and using pruned, shallow trees. Additionally, RF is more sensitive to the small
variations in the training set, and imbalanced data can hamper its accuracy. In order to effectively
handle the large-scale datasets that have long-tailed distributions, we undersample from the majority
class (decoys). Specifically, while training RF for the binary classification task on the drug targets of
DUD-E Diverse (class distributions are summarized in Table[d), we use 80% of the active compounds
and the same number of randomly chosen decoys for training. Undersampling decoys to avoid heavy
class imbalance achieves better trade-offs between the accuracies of active compounds and decoys.

Table 5: EF 2% values and ROC-AUC scores across different modalities on Cleves-Jain dataset using ToDD-RF.

Target Atomic Mass Partial Charge Bond Type Atomic Mass & Partial Charge All Modalities
a 333 333 333 333 41.7
b 25.0 29.5 31.8 273 25.0
c 19.2 7.7 154 26.9 34.6
d 333 333 41.7 50.0 50.0
e 30.0 30.0 30.0 40.0 40.0
f 25.0 50.0 375 50.0 375
g 30.0 30.0 30.0 30.0 40.0
h 40.0 50.0 30.0 50.0 50.0
i 40.0 40.0 30.0 40.0 40.0
j 17.9 39.3 35.7 28.6 28.6
k 214 214 17.9 35.7 32.1
1 15.0 15.0 15.0 30.0 25.0
m 44.4 50.0 333 50.0 38.9
n 15.0 25.0 10.0 25.0 10.0
0 21.7 20.0 25.0 233 233
p 10.9 8.7 13.0 17.4 26.1
q 45.5 273 227 40.9 40.9
r 429 429 429 39.3 32.1
s 26.7 16.7 20.0 20.0 30.0
t 30.0 50.0 50.0 50.0 50.0
u 333 389 27.8 389 50.0
v 214 28.6 28.6 28.6 28.6
Mean 28.3 31.3 28.3 352 352
ROC-AUC 0.92 0.90 0.88 0.94 0.93

Table 6: EF 2% values and ROC-AUC scores across different modalities on Cleves-Jain dataset using ToDD-
VIiT.

Target Atomic Mass Partial Charge Bond Type Atomic Mass & Partial Charge All Modalities
a 25.0 333 333 333 50.0
b 20.5 6.8 34.1 6.8 34.1
c 11.5 15.4 23.1 7.7 46.2
d 25.0 41.7 50.0 333 50.0
e 40.0 20.0 30.0 20.0 30.0
f 25.0 25.0 37.5 25.0 50.0
g 20.0 30.0 40.0 30.0 50.0
h 40.0 50.0 50.0 50.0 50.0
i 30.0 20.0 20.0 20.0 50.0
j 10.7 14.3 21.4 17.9 21.4
k 214 214 25.0 21.4 393
1 15.0 30.0 30.0 40.0 35.0
m 22.2 44.4 222 44.4 50.0
n 10.0 25.0 15.0 20.0 35.0
o 20.0 16.7 16.7 18.3 20.0
p 26.1 17.4 26.1 15.2 32.6
q 36.4 36.4 50.0 36.4 18.2
r 14.3 17.9 429 21.4 32.1
s 30.0 13.3 233 13.3 333
t 20.0 30.0 50.0 30.0 50.0
u 333 38.9 38.9 333 50.0
v 21.4 28.6 28.6 21.4 42.9
Mean 235 26.2 322 25.4 39.5
ROC-AUC 0.87 0.85 0.86 0.84 0.90

Table 7: EF 1% values and ROC-AUC scores across different modalities on DUD-E Diverse using ToDD-RF.

Atomic Mass Partial Charge Bond Type Atomic Mass & Partial Charge All Modalities
Model EF1% ROC-AUC EF 1% ROC-AUC EF1% ROC-AUC EF 1% ROC-AUC EF 1% ROC-AUC
AMPC 42.9 0.90 429 0.92 28.6 0.84 429 0.84 28.6 0.86
CXCR4 84.6 0.98 76.9 0.99 84.6 0.97 923 0.99 923 0.99
KIF11 55.0 0.96 55.0 0.98 70.0 0.97 70.0 0.98 75.0 0.98
CP3A4 541 0.96 48.6 0.87 40.5 0.93 62.2 0.95 67.6 0.96
GCR 54.4 0.96 439 0.95 57.9 0.97 63.2 0.97 78.9 0.97
AKTI 62.8 0.97 86.0 0.99 79.1 0.98 81.4 0.98 90.7 0.99
HIVRT 53.1 0.90 46.9 0.93 64.1 0.97 54.7 0.91 64.1 0.95
HIVPR 85.0 0.99 86.4 0.99 78.6 0.99 87.9 0.99 92.1 0.99
Mean 61.5 0.95 60.8 0.95 629 0.95 69.3 0.95 73.7 0.96

Table 8: EF 1% values and ROC-AUC scores across different modalities on DUD-E Diverse using ToDD-
ConvNeXt.

Atomic Mass Partial Charge Bond Type Atomic Mass & Partial Charge All Modalities
Model EF1% ROC-AUC EF1% ROC-AUC EF1% ROC-AUC EF 1% ROC-AUC EF1% ROC-AUC
AMPC 30.8 0.90 15.4 0.83 30.8 0.73 38.5 0.92 46.2 0.81
CXCR4 520 0.98 44.0 0.92 32.0 0.94 60.0 0.97 84.0 0.99
KIF11 475 0.96 45.0 0.88 375 0.92 60.0 0.96 72.5 0.97
CP3A4 19.2 0.86 17.8 0.86 15.1 0.86 28.8 0.90 28.8 0.91
GCR 25.7 0.95 30.1 0.95 19.5 0.94 43.4 0.96 46.0 0.97
AKTI1 60.0 091 51.8 091 41.2 0.96 77.6 0.99 81.2 0.98
HIVRT 26.6 0.93 21.9 0.89 17.2 0.94 359 0.94 375 0.95
HIVPR 65.6 0.98 50.9 0.97 45.5 0.94 70.3 0.99 74.6 0.99
Mean 40.9 0.93 34.6 0.90 29.9 0.90 51.8 0.95 58.8 0.95

C.4 Computation Time

See[6.3in the main text for details.

Table 9: Clock time performance to extract Vietoris Rips persistent homology features.

Dataset Atomic Mass Partial Charge Bond Type

Cleves-Jain 00h:03min:21sec O00h:03min: 14sec 00h: 0l min: 13 sec
DUD-E Diverse 06h:10min: 51sec 05h:37min: 12sec 02 h: 14 min: 54 sec

10

C.5 Model performance using Morgan fingerprints

See[6.4]in the main text for details.

Table 10: EF 2% values on Cleves-Jain Dataset using ViT model trained with Morgan fingerprints vs. ToDD
fingerprints.

Target Morgan ToDD
a 25.0 50.0
b 11.4 34.1
c 3.8 46.2
d 50.0 50.0
e 10.0 30.0
f 375 50.0
g 30.0 50.0
h 40.0 50.0
i 20.0 50.0
j 17.9 214
k 14.3 39.3
1 45.0 35.0
m 38.9 50.0
n 15.0 35.0
o 13.3 20.0
p 22 32.6
q 18.2 18.2
r 14.3 32.1
s 10.0 333
t 20.0 50.0
u 27.8 50.0
v 35.7 429
Mean 227 39.5

ROC-AUC 086 090

Table 11: EF 1% values and ROC-AUC scores on DUD-E Diverse dataset using ConvNeXt model trained with
Morgan fingerprints vs. ToDD fingerprints.

Morgan ToDD
Model EF 1% ROC-AUC | EF1% ROC-AUC
AMPC 38.5 0.87 46.2 0.81
CXCR4 48.0 0.97 84.0 0.99
KIF11 57.5 0.95 72.5 0.97
CP3A4 20.5 0.84 28.8 0.91
GCR 46.7 0.94 46.0 0.97
AKT1 60.0 0.98 81.2 0.98
HIVRT 50.0 0.96 375 0.95
HIVPR 61.3 0.98 74.6 0.99
Mean 47.8 0.94 | 588 0.95

D Societal Impact and Limitations

D.1 Societal Impact

We perform in silico experiments and use high-throughput screening to recognize active compounds
that can bind to a drug target of interest, e.g., an enzyme or protein receptor without conducting
research on any human or animal subjects. Our overarching goal is to augment the capabilities of Al
to enhance the in silico virtual screening and drug discovery processes, develop new drugs that have
less side effects but are more effective to cure diseases, and minimize the participation of human and
animal subjects as much as possible to ensure their humane and proper care.

D.2 Limitations

We discuss in detail the computational complexity of our model in[6.3] Our model is versatile and
can be scaled for large libraries by customizing the allocated computational resources. Please note
that the analysis in [C.4] shows the execution time of our computation pipeline when the feature
extraction task is distributed across 8 cores of a single Intel Core i7 CPU. It is possible to parallelize

11

computationally costlier operations such as VR-filtration by allocating more CPU cores on the HPC
platform and optimize array operations (e.g., numpy) via the joblib library. Furthermore, all ToDD
models require substantially fewer computational resources during training compared to current
graph-based models that encode a compound through mining common molecular fragments, a.k.a.,
motifs [47]]. For instance, training a motif based GNN on GuacaMol dataset which has approximately
1.5M drug-like molecules takes 130 hours of GPU time [64]. In contrast, once we generate the
topological fingerprints via Vietoris-Rips filtration, training time of ToDD-ViT and ToDD-ConvNeXt
for each individual drug target takes less than 1 hour on a single GPU (NVIDIA RTX 2080 Ti).

ChecKklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Appendix D]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See
Appendix
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] Given in Appendix[B.1]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Dataset links
are provided. See Section 3

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section[6.1]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? We reported the standard deviation of our experiments
evaluated by 5-fold cross-validation. See Table[T]and 2]in Section[6.2]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes] See Section@]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? They use public-domain-equivalent
license.

(c) Did you include any new assets either in the supplemental material or as a URL?

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

12

