
A Reparametrization-Invariant Sharpness Measure
Based on Information Geometry

Cheongjae Jang
Hanyang University

cjjang@hanyang.ac.kr

Sungyoon Lee
Korea Institute for Advanced Study

sungyoonlee@kias.re.kr

Frank C. Park
Seoul National University

Saige Research
fcp@snu.ac.kr

Yung-Kyun Noh
Hanyang University

Korea Institute for Advanced Study
nohyung@hanyang.ac.kr

Abstract

It has been observed that the generalization performance of neural networks corre-
lates with the sharpness of their loss landscape. Dinh et al. (2017) [8] have observed
that existing formulations of sharpness measures fail to be invariant with respect to
scaling and reparametrization. While some scale-invariant measures have recently
been proposed, reparametrization-invariant measures are still lacking. Moreover,
they often do not provide any theoretical insights into generalization performance
nor lead to practical use to improve the performance. Based on an information
geometric analysis of the neural network parameter space, in this paper we propose
a reparametrization-invariant sharpness measure that captures the change in loss
with respect to changes in the probability distribution modeled by neural networks,
rather than with respect to changes in the parameter values. We reveal some the-
oretical connections of our measure to generalization performance. In particular,
experiments confirm that using our measure as a regularizer in neural network
training significantly improves performance.

1 Introduction

From recent discoveries in deep learning, it has been conjectured that the generalization performance
of neural networks correlates with the sharpness of their loss landscape. In particular, lower general-
ization performance of large-batch training of stochastic gradient descent (SGD) has been attributed
to its convergence to sharper minima [22, 49], and several optimization methods have shown better
generalization performance by actively finding solutions with lower sharpness [7, 19, 4, 43, 12, 24].
Minimum description length (MDL)-based arguments [16, 17] and the generalization upper bound of
the PAC-Bayes theory for neural networks [10] also suggest that the flatter the loss landscape, the
better the generalization performance. Furthermore, in [21, 32], measures based on the sharpness
concept show better performance in predicting the generalization performance of models among
various generalization measures considered in the past including the margin [5] and norm [34, 33].

Various measures for sharpness and flatness have been proposed in the literature. Hochreiter &
Schmidhuber (1997) [17] propose the concept of ‘flat minima,’ in which the flatness of a minimum
is interpreted as the volume of the connected region in the parameter space over which the loss has
approximately similar values. Similarly, the sharpness has often been measured by the maximum loss
value (inside a Euclidean ball) near the minimum [22] or by the spectral norm of the Hessian at the
minimum [49].

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

The above definitions of sharpness have some notable critical flaws. Dinh et al. (2017) [8] point out
that certain parameter scalings (e.g., for neural networks with ReLU activation functions [31]) and
reparametrizations may have no effect on the model output or overall generalization performance,
and yet lead to wildly different values of sharpness.1 Other sharpness measures have been proposed
to address the lack of scale-invariance [26, 46, 40, 39], but these measures fail to be invariant with
respect to reparametrizations; Section 5 of [8] offers several nonlinear reparametrization examples.
The connections between sharpness and generalization performance also remain elusive.

In this paper we address the lack of scale- and reparametrization-invariance of existing sharpness
measures, as well as the problem that they often do not explain the generalization performance of deep
learning networks nor lead to practical use to improve the performance. Our approach rests on the
observation and insight that sharpness should be measured taking into proper account the geometry
of the underlying parameter space. For this purpose we draw upon tools from information geometry,
paying attention to the fact that in most classification problems, probabilistic classification models
are parametrized in terms of neural networks. In information geometry, the Fisher information matrix
(FIM) serves as a natural Riemannian metric for the parameter space [3] and allows for measuring
the change in probability density with respect to changes in the parameter values.

The eigenspectra of the FIM of a neural network are observed to have a small number of positive
outliers (the number is usually equated with the number of classes) and a bulk consisting of small
eigenvalues [41, 37, 36, 48, 14]. This observation indicates that the number of principal varying
components of the probability densities modeled by neural networks is significantly lower compared
to the number of parameters. Therefore, identically weighting every possible parameter change
direction in the parameter space – that is, applying Euclidean geometry – can be problematic, since it
places too much weight on parameter change directions that are meaningless with respect to changes
in the probabilistic model, or equivalently, not enough weight is placed along meaningful directions.

We argue that one should consider these implications and use the change in probabilistic models as a
‘ruler’ when defining a sharpness measure of neural network loss landscapes that does not depend on
how the model is parametrized.

Building on the above geometric analysis of the neural network parameter space, in this paper we
propose a new sharpness measure based on information geometry. This measure is by definition
reparametrization-invariant. Additionally, we show that this sharpness measure simultaneously satis-
fies the scale-invariance for neural networks with ReLU activation functions, since it is invariant for
parameter transforms that do not change the model output. Hence our measure is free from all the
reparametrization- and scale-variance issues of previous sharpness measures raised by [8].

As a second contribution of this paper, we also show that our geometric sharpness measure sheds
an important insight on generalization performance. As detailed in Section 3, when the FIM is
replaced with the Hessian in our measure, the measure is in a form similar to Takeuchi’s information
criterion (TIC), which quantifies the asymptotic bias of the log-likelihood value (usually the negative
loss) evaluated at the maximum likelihood estimates hence corresponding to the expectation of the
generalization gap [44]. TIC for neural networks has empirically shown a strong correlation with
the generalization gap [45]. One can apply the same argument to our measure since the Hessian can
be approximated by the FIM under mild conditions for deep neural networks [28]. In addition, we
show that our measure can be linked to generalization in another geometrical way. The measure
is associated with a margin defined in an information geometric sense, enabling the interpretation
that a smaller sharpness measure indicates larger margins. We also demonstrate experimentally that
using our measure as a regularizer to train neural networks can significantly improve generalization
performance.

Our contributions can be summarized as follows:

• We provide an information geometric analysis of the neural network parameter space by
investigating the eigensubspace of the Fisher information matrix (FIM) of neural networks.

• We propose a reparametrization- and scale-invariant sharpness measure based on information
geometry that is free from the problems of existing sharpness measures posed by [8], and
discuss the relation between the measure and generalization performance.

1In this paper, unlike other works where parameter scalings are often referred to as (linear) reparametrizations,
following [8], it is called a reparametrization to represent a model on a different parameter space obtained by
applying a (nonlinear) bijection to the original parameters.

2

• We use the proposed measure as a regularizer when training neural networks, and demon-
strate improved generalization performance.

We provide an information geometric analysis of the neural network parameter space in Section 2.
Building on this analysis, Section 3 presents our reparametrization-invariant sharpness measure
based on information geometry and connects the proposed measure to generalization. In Section 4,
we perform numerical experiments using our measure as a regularizer to improve generalization
performance in neural network training.

2 An information geometric analysis of the neural network parameter space

In this paper, we focus on the probabilistic classification models parametrized by neural networks. Let
x ∈ RD denote data, and y ∈ {1, . . . , C} denote class labels with C as the number of classes. Let
p(x, y) and p(y|x; θ) respectively denote the data generating distribution and the parametric model of
the probability density of classes given data. Here the parameter θ ∈ Rm is the set of all the weight
and bias parameters of neural networks. We consider a neural network as a function f(·; θ) : RD →
RC , x 7→ f(x; θ) = (f1(x; θ), . . . , fC(x; θ))

⊤, where fj(·; θ) : RD → R is a function that returns
the j-th logit for j = 1, . . . , C. Our parametric model is then represented as p(y|x; θ) = exp(fy(x))∑

j exp(fj(x))
,

and we denote the negative log-likelihood by l(y, f(x; θ)) = − log p(y|x; θ).
Suppose data {(x1, y1), . . . , (xN , yN)} are drawn i.i.d. from the data generating distribution p(x, y).
The cross-entropy loss, our training objective function throughout the paper, can be written as
follows:2

L(θ) = 1

N

N∑
i=1

li(θ), (1)

where li(θ) = l(yi, f(xi; θ)) = − log p(yi|xi; θ).

2.1 The Fisher information matrix (FIM)

The Fisher information matrix (FIM) for the family of probability density functions p(x, y; θ) =
p(x)p(y|x; θ) parametrized by the neural network parameters θ is defined as

F (θ) = Ep(x)

[
Ep(y|x;θ)

[(
∂l

∂θ

)⊤(
∂l

∂θ

)]]
= Ep(x)

[
J(x)⊤Ep(y|x;θ)

[(
∂l

∂f

)⊤(
∂l

∂f

)]
J(x)

]

=
1

N

N∑
i=1

J⊤
i

(
diag(pi)− pip

⊤
i

)
Ji, (2)

where the dependence of l(y, f(x; θ)) to y, f(x; θ) is omitted for simplicity and J(x) = ∂f
∂θ (x) ∈

RC×m is the Jacobian of the logits with respect to the parameters. In deriving (2), the expectation
with respect to p(x) is approximated by the finite sum over data points x1, . . . , xN drawn i.i.d. from

p(x), Ji = J(xi), and we use the fact that Ep(y|xi;θ)

[(
∂l
∂f

)⊤ (
∂l
∂f

)]
= diag(pi) − pip

⊤
i , where

pi = (p(1|xi; θ), . . . , p(C|xi; θ))
⊤ ∈ RC is the model’s prediction on the probability that xi belongs

to each class and diag(pi) ∈ RC×C is a diagonal matrix whose (j, j) entry is (pi)j .

In this paper, among many of the important properties and applications of the FIM (e.g., being the
Cramer-Rao lower bound of estimator variances in estimation theory and statistics), we focus on the
fact that the FIM can serve as a metric to measure the distance between the parametric probability
density models in information geometry. Differential geometrically speaking, the FIM acts as a natural
Riemannian metric on the statistical manifold, a space where the family of probability densities
modeled with smoothly varying parameters θ ∈ Rm is gathered.3 The FIM makes it possible to

2We discuss the applicability of our measure to the square loss in Appendix F.
3Note that the family of probabilistic models from neural networks is usually not a manifold in a mathemati-

cally rigorous sense due to the inherent singularities in the neural network parameter space (see Section 12.2 of
[3]), but this fact is not crucial for our discussion.

3

5 10 15 20
0

10

20

30

40

Ei
ge

nv
al

ue
s

(a) Top 20 eigenvalues of
F (θ)

2 0 2

1

0

1

(b) Perturbed decision
boundaries from ∆θ1

2 0 2

1

0

1

(c) Perturbed decision
boundaries from ∆θ2

2 0 2

1

0

1

(d) Perturbed decision
boundaries from ∆θ10

Figure 1: A synthetic three-class classification example. For (b)-(d), the black, red, and blue lines
correspond to decision boundaries of the neural network with the trained parameter values, and pa-
rameter values perturbed along the k-th eigenvector ∆θk ∈ Rm (associated with the k-th eigenvalue)
of F (θ) with steps of 0.5 and -0.5, respectively.

measure geometric quantities such as length, angle, and volume on the manifold. (We refer the reader
to [6, 11] for the backgrounds on the Riemannian manifolds and differential geometry, and [3, 35, 28]
for those on the information geometry and the Fisher information matrix.) Note that when the FIM is
not full-rank, e.g., in the case of overparameterized neural networks with m ≫ N , it can be used as a
pseudo metric.

The FIM is closely related to the KL-divergence, which is frequently used as an information theoretic
measure of discrepancy between probability density functions. The KL-divergence between two
probability density functions with infinitesimal parameter difference dθ ∈ Rm can be approximated
as

KL(p(x, y; θ + dθ)||p(x, y; θ)) ≈ 1

2
dθ⊤F (θ)dθ. (3)

2.2 An analysis of the eigensubspace of the FIM

This section discusses the characteristics of the eigensubspace of FIM of neural networks. In the
analysis of the eigenspectra of deep neural network Hessians of [37], the FIM in (2) has been
decomposed as follows:

F (θ) =
1

N

N∑
i=1

J⊤
i

(
diag(pi)− pip

⊤
i

)
Ji =

1

N

N∑
i=1

J⊤
i M⊤

i MiJi, (4)

where Mi = diag(
√
pi)
(
I − 1p⊤i

)
∈ RC×C ,

√
pi = (

√
(pi)1, . . . ,

√
(pi)C)

⊤ ∈ RC , and 1 =

(1, . . . , 1)⊤ ∈ RC is a vector whose elements are all one.

According to the decomposition, the FIM can be thought of as a non-centralized second moment of
the (modified) logit gradients, i.e., each row of MiJi ∈ RC×m whose j-th row vector is represented
as

(MiJi)
⊤
j: =

√
(pi)j ·

(Ji,j)
⊤ −

C∑
j′=1

(pi)j′(Ji,j′)
⊤

 ∈ Rm, (5)

where Ji,j ∈ R1×m is the j-th row of Ji. It has been observed that these logit gradients form a kind
of hierarchical structure after sufficient training. In the observation from [36], the gradients of the
c′ ̸= c-th logit calculated from the data in class c are gathered to form a cluster. A matrix obtained
from averaging the outer products of the averaged logit gradients belonging to each cluster is then
attributed to the outliers of the eigenspectra, and the outliers of the eigenvalues appear as much as the
number of classes. That is, the principal eigenvalues of the FIM (and possibly the eigenvectors) can
be closely connected with distinguishing each class c from the rest of the c′ ̸= c classes (as can be
implied from averaging (5) for j ̸= c and by assuming (pi)c ≈ 1). This becomes more evident in
Appendix A, which assumes the prediction is balanced as (pi)c′ = ϵ for all c′ ̸= c with ϵ ≪ 1.

In order to more intuitively understand the characteristics of the eigensubspace of FIM implied from
the above analysis, we provide a classification example for two-dimensional synthetic data generated
from mixtures of three Gaussians in Figure 1. We trained a three-layer fully connected neural network
with 70-dimensional hidden units (the number of parameters = 5,393).

4

Figure 1 (a) shows the top twenty eigenvalues of the FIM of the trained neural network. Note that
there are few outliers among the eigenvalues in the entire 5,393-dimensional parameter space, with
the remainder being almost 0. The eigenvalues indicate the rate of change of the probability density
(modeled by the neural network) measured by the KL-divergence for a unit change of parameter
values along the corresponding eigenvectors. The existence of a few outliers means that the density
change mainly occurs in only a few specific directions and that the amount of change in probability
density can vary significantly according to the direction of change in parameter values.

This fact can also be observed in decision boundaries obtained from neural networks with the
parameter values perturbed along some eigenvectors shown in Figure 1 (b-d). When perturbing
the values along the principal eigenvectors, a significant change appears in the decision boundary,
increasing or decreasing the margin of certain classes. On the other hand, for eigenvectors with small
eigenvalues, there is almost no change in the decision boundary according to the same level of change
in parameter values (in the Euclidean sense).

These examples imply that it would be more meaningful to reflect the different influences on the
probabilistic model according to the change direction when we measure the quantities concerning
changes in the parameter values, e.g., the sharpness of the loss landscape. By reflecting on these
implications and using the unit change in probability distribution modeled by neural networks as our
‘ruler’ to measure the sharpness, that is, applying the information geometry, the following section
presents a sharpness measure that does not rely on how the model is parametrized.

3 An information geometric sharpness measure

Reflecting the above analysis, we define an information geometric sharpness (IGS) measure as
follows:

IGS(θ) =
1

N

N∑
i=1

(
∂li
∂θ

)
F (θ)†

(
∂li
∂θ

)⊤

, (6)

where F (θ)† ∈ Rm×m is the pseudo-inverse of F (θ) and li = l(yi, f(xi; θ)) is the cross-entropy
loss evaluated at the i-th data (xi, yi).

Our measure evaluates the squared norm of the loss gradients calculated at each data point using the
(pseudo-inverse of) FIM and averages them for all data points.4 Since

(
∂li
∂θ

)⊤ ∈ Rm belongs to the
span of the eigenvectors of F (θ) with non-zero eigenvalues, our sharpness measure is well-defined in
the sense that there are not any components of

(
∂li
∂θ

)
neglected in measuring its information geometric

norm (we elaborate on this in Appendix B).

Our sharpness measure in (6) is an intrinsic quantity, i.e., coordinate-invariant (in differential geomet-
ric terms). To see why, observe that under a local coordinate transformation (or a reparametrization)
ϕ : Rm → Rm, θ 7→ θ′ = ϕ(θ), i.e., the model is now represented with respect to a different
parameter θ′ as f̃(·; θ′) = f(·;ϕ−1(θ′)) = f(·; θ), F and

(
∂li
∂θ

)
transform according to the following

rules: (i) F 7→ F ′ = Φ−⊤FΦ−1, where Φ = ∂ϕ
∂θ ∈ Rm×m; (ii)

(
∂li
∂θ

)
7→
(
∂li
∂θ′

)
=
(
∂li
∂θ

)
Φ−1, where

it can be verified that the
(
∂li
∂θ

)
F (θ)†

(
∂li
∂θ

)⊤
remains the same. Since the above measure gives the

same value regardless of which parametrization (e.g., θ or θ′) the statistical model is parametrized, it
is free from the reparametrization-variance issues raised in [8].

We can also define other reparametrization-invariant measures by measuring the information geomet-
ric norm of the gradients of the entire loss or the mini-batch losses. For mini-batches of size b, the
corresponding measure can be defined as follows:

IGSb(θ) = Ep(B)

(1

b

∑
xi∈B

∂li
∂θ

)
F (θ)†

(
1

b

∑
xi∈B

∂li
∂θ

)⊤
 , (7)

where Ep(B) [·] denotes the expectation with respect to some distribution p(B) of mini-batches
B ⊂ {x1, . . . , xN} of size |B| = b. We discuss the relation between (6) and (7) in Appendix C. Note

4The reason for defining the sharpness measure as in (6) will be evident in Section 3.3 where we develop the
relationship between our measure and the generalization.

5

that this definition can be linked to the concept of m-sharpness, which measures the sharpness of the
loss landscape by averaging the sharpness of mini-batch losses and shows a better correlation to the
generalization as the batch size reduces [12].

3.1 Transformation invariance

Neural networks composed of activation functions such as ReLU and leaky ReLU possess scale-
invariant properties. In the case of layer-wise scaling, for consecutive layers of linear transforms and
ReLU, e.g., f(x; {W1, . . . ,WL}) = WL · ReLU(WL−1 · · ·ReLU(W1x)), where Wl ∈ Rdl×dl−1

for l = 1, . . . , L with d0 = D and dL = C, if each weight Wl is multiplied by a constant cl > 0 and
the constants satisfy

∏L
l=1 cl = 1, there is no change in the outputs of the neural network under the

same input values. A similar concept includes the node-wise scaling, multiplying weights entering a
node (or a hidden variable in neural networks) by a positive constant and dividing weights out of the
node by the same constant.

These kinds of weight scaling can be viewed as a transformation (or a mapping between identical
parameter spaces) that ensures that the neural network model maintains the same probability density
function, i.e., remains equivalent. If a transformation is differentiable and locally invertible without
changing the probability density function that the neural network parameter models for all parameters
on a given neighborhood U ⊆ Rm of θ, our measures defined in (6) and (7) become invariant with
respect to such a transformation. This fact can be expressed as the following proposition:

Proposition 3.1. Suppose there exist open subsets U, V ⊆ Rm and an invertible and locally
differentiable transformation g : U → V that satisfies f(x; θ) = f(x; g(θ)) for all x ∈ RD and
θ ∈ U with g(U) ⊆ V . The information geometric sharpness measures in (6) and (7) are invariant
to such a transformation, i.e., IGS(θ) = IGS(g(θ)) (or IGSb(θ) = IGSb(g(θ))) for all θ ∈ U .

The proof of Proposition 3.1 is provided in Appendix D.1.

Since the layer-wise and node-wise scalings considered for neural networks with ReLU satisfy
the assumptions of Proposition 3.1, our measures in (6) and (7) are invariant to such scalings.
Proposition 3.1 is more general than the scale-invariance, and Appendix D.2 provides examples of
transformations other than parameter scalings that satisfy the assumptions in the proposition.

3.2 A comparison to some previous sharpness measures

IGS Tr(H) Fisher
-Rao

Rangamani
et al.

Petzka
et al.

10 4

10 2

100

102

104

Sh
ar

pn
es

s(
re

.)
Sh

ar
pn

es
s(

or
i.)

Figure 2: The ratio of sharpness measures evalu-
ated for the reparametrized models to those for the
original models (Sharpness (re.)

Sharpness (ori.)). Note that the y-axis
is in the log scale. For the nonlinear reparametriza-
tion, we use η = g(θ) = (|θ− θ̂|2+b)a(θ− θ̂)+ η̂
considered in [8] with several choices of (a, b),
which are represented by different colors.

After [8] pointed out the critical scale- and
reparametrization-variance issues in the sharp-
ness measures considered in [17, 22, 49], var-
ious scale-invariant sharpness measures have
been proposed that suit to neural networks with
activation functions satisfying the non-negative
homogeneity conditions (i.e., σ(a ·x) = a ·σ(x)
for a > 0) such as ReLU [40, 39, 46, 26]. The
measure presented in [40] is based on the ge-
ometry of the quotient manifold obtained from
an equivalence class of neural networks, estab-
lishing the scale-invariance depending on the
considered equivalence types. The work in [39]
considers a layer-wise flatness measure for neu-
ral networks and additionally explores the con-
ditions for the measure to explain the generaliza-
tion well. Also, a scale-invariant sharpness measure based on the PAC-Bayes theory is developed in
[46]. The Fisher-Rao norm is proposed as a capacity measure for neural networks in [26] and defined
as θ⊤F (θ)θ, which is scale-invariant.

However, the above measures do not satisfy the invariance to general nonlinear reparametrizations,
hence solving the problem raised by [8] only partially. That is, for a nonlinear reparametrization
θ 7→ η = g(θ), the measures evaluated on the reparametrized model f̃(·; η) = f(·; g−1(η)) = f(·; θ)
(with respect to η) can arbitrarily vary from those evaluated on the original model f(·; θ) (with respect
to θ). In Figure 2, we empirically demonstrate the existence of this problem in conventional sharpness

6

measures such as the trace of the Hessian, the measures of [26], [40], and [39] (respectively denoted
as Tr(H), Fisher-Rao, Rangamani et al., and Petzka et al. on the x-axis of the figure; see Appendix G.1
for details). We can observe that the magnitudes of these measures can vary significantly.

Compared with the previous measures, only our measure (denoted as IGS on the x-axis of Figure 2)
is invariant to the considered reparametrizations. These experiments empirically demonstrate that our
measure satisfies the reparametrization-invariance, hence providing a solution that properly resolves
the issues posed by [8].

3.3 Connections to the generalization

3.3.1 Connections to Takeuchi’s information criterion (TIC)

Our measures can be linked to generalization in different aspects. When we train parametric models
via the maximum likelihood estimation (this is equivalent to minimizing the negative log-likelihood of
(1)), the obtained maximum likelihood estimate is asymptotically unbiased, guaranteed theoretically
by the asymptotic normality. However, the log-likelihood value (or the negative loss) evaluated at the
obtained estimate does not enjoy such a property.

The well-known Akaike’s information criterion (AIC) in the model selection literature calculates
this bias under the assumption that the parametric model contains the actual data distribution [1].
Takeuchi’s information criterion (TIC) is a generalized form of the AIC by considering the case of
misspecified models, i.e., the parametric models do not contain the actual data distribution [44, 9, 45].

The bias b(θ̂) of the log-likelihood value evaluated at the maximum likelihood estimate is defined as
follows:

b(θ̂) = ED

 1

|D|
∑

(xi,yi)∈D

log p(xi, yi; θ̂(D))− Ep(x,y)

[
log p(x, y; θ̂(D))

] , (8)

where D = {(x1, y1), . . . , (xN , yN)} is the set of N training data with (xi, yi) ∼ p(x, y) and θ̂(D)
denotes the maximum likelihood estimate obtained from using D [9]. Since our loss is the negative
log-likelihood, the first and second terms inside ED[·] correspond to the negative training and test
losses, respectively. Consequently, the bias in (8) becomes the expectation of the parametric model’s
generalization gap (i.e., test loss – training loss).

TIC calculates this bias under asymptotic assumptions, i.e., in the limit N → ∞, as follows [9]:

TIC = lim
N→∞

b(θ̂) =
1

N
Tr(H(θ0)

−1C(θ0)), (9)

where θ0 ∈ Rm is a local maximum of the expected log-likelihood, H(θ0) ∈ Rm×m is the Hessian

of the (expected) loss, and C(θ0) = Ep(x,y)

[(
∂l(y,f(x;θ))

∂θ

)⊤ (
∂l(y,f(x;θ))

∂θ

)]∣∣∣∣
θ=θ0

∈ Rm×m is the

non-centered covariance of the loss gradients. Here both H(θ0) and C(θ0) are evaluated using the
data generating distribution p(x, y).

The formulation in (9) is very similar to our information geometric sharpness measure when evaluated
at a local minimum θ̂ ∈ Rm of the loss in (1). Compared to TIC, our measure in (6) contains the FIM
instead of the Hessian, and the expectation for C(θ) is taken with respect to the empirical distribution
rather than the true distribution. After a model is sufficiently trained, the Hessian can be approximated
to the FIM [36, 28], indicating that our sharpness measure is closely related to TIC.

It has been observed that TIC predicts the generalization gap of neural network models well when the
expectation with respect to p(x, y) is approximated by a finite sum of the integrands over the test data
[45]. These findings are also confirmed by experiments using our measures. In Figure 3, compared
to the other sharpness measures (labeled the same as in Figure 2), we can observe that our measure
correlates better with the generalization gap. The experimental details are provided in Appendix G.2.

7

0.0275

0.0350

0.0425

M
NI

ST

IGS Tr(H) Fisher-Rao Rangamani et al. Petzka et al.

0 1
2.5
2.7
2.9
3.1

CI
FA

R-
10

0 1 0 1 0 1 0 1

R=0.660 R=0.608 R=0.366 R=0.565 R=0.570

R=0.610 R=0.544 R=0.233 R=0.538 R=0.555
0.0 0.2 0.4 0.6 0.8 1.0

Normalized sharpness measures

0.0

0.2

0.4

0.6

0.8

1.0

Ge
ne

ra
liz

at
io

n
ga

p

Figure 3: Plots for various sharpness measures (normalized to
be in [0,1]) vs. the generalization gap. The top and bottom rows
are obtained using MNIST and CIFAR-10 data sets, respectively.
In each subplot, we provide the correlation coefficient between
the corresponding measure and the generalization gap.

lBCE(x, z; θ) = log 2

l εBCE(x, z; θ + i,k∆θk) = log 2

x

εθ → θ + i,k∆θk

xi

Figure 4: Change in the decision
boundary according to the pertur-
bation in parameter values θ →
θ + ϵi,k∆θk.

3.3.2 Connections to the margin

Our measure can also be linked to generalization in terms of margin. Unlike the usual definition of
the margin as the distance from the decision boundary to its closest data, we devise a similar concept
developed in the parametric model space rather than the input space.

Given a model parameter value, if we perturb the value so that the model’s decision boundary passes
through the location of a nearby data as shown in Figure 4, the difference between the initial and the
perturbed parameter values would correspond to a sort of margin defined in the model parameter
space. Since the parameter space dimension is high, we can perturb the model parameter value in
various directions. Considering the perturbations of parameter values along the eigenvectors of the
FIM results in an interesting connection between this margin and our sharpness measure. We now
formalize this relationship for the binary classification case, while that for the multi-class case is
derived in Appendix E.

We define the binary cross-entropy loss as li(θ) = lBCE(xi, zi; θ) = −zi log p(xi; θ) − (1 −
zi) log(1 − p(xi; θ)), where zi ∈ {0, 1} denotes the binary class label for an input xi ∈ RD and
p(xi; θ) denotes the model’s prediction on the probability that xi belongs to class one. The condition
for xi to lie on the decision boundary is p(xi) =

1
2 , which is equal to li(θ) = log 2 regardless of the

zi value.

Suppose we perturb the neural network parameter value from θ to θ + ϵi,k∆θk, where ∆θk ∈ Rm

is the k-th eigenvector of the FIM associated with the k-th eigenvalue λk and ϵi,k is a scalar. For
the decision boundary of the perturbed model to lie on xi, the scalar ϵi,k should satisfy log 2 =

li(θ + ϵi,k∆θk) ≈ li(θ) + ϵi,k
(
∂li
∂θ

)
∆θk, where we apply the first-order Taylor expansion by

assuming small ϵi,k. The scalar ϵi,k can then be approximated as ϵi,k ≈ log 2−li(θ)(
∂li
∂θ

)
∆θk

.

A sort of margin can be derived in an information geometric sense by computing the squared norm of
the perturbation vector ϵi,k∆θk using the inner product based on the FIM as follows:

ϵ2i,k∆θ⊤k F (θ)∆θk = ϵ2i,kλk ≈ λk

(
log 2− li(θ)(

∂li
∂θ

)
∆θk

)2

. (10)

The summation over k = 1, . . . ,m′ (with m′ as the largest k with non-zero λk) of the reciprocal of
these squared norms (hence weighing more on small ϵ2i,k values which would reduce the error from
approximations) can then be related to our sharpness measure as follows:

m′∑
k=1

1

ϵ2i,kλk
≈

m′∑
k=1

1

λk

((
∂li
∂θ

)
∆θk

log 2− li(θ)

)2

=

(
∂li
∂θ

)
F (θ)†

(
∂li
∂θ

)⊤
(log 2− li(θ))2

, (11)

where we have used F (θ)† =
∑m′

k=1
1
λk

∆θk∆θ⊤k in deriving the last identity. Note that our sharpness
measure at each data (xi, yi) appears in the numerator of (11). This indicates that the smaller our
sharpness measure, the larger the squared norms (ϵ2i,kλk) in the LHS, which means that the margin
becomes larger in an information geometric sense.

8

(a) Decision boundary
from SGD

(b) Decision boundary
from SGD with regular-
ization

0 4k 8k 12k 16k 20k
Iterations

0

1

2

3

Lo
ss

Train
Test
Poison

(c) Loss values from
SGD

0 4k 8k 12k 16k 20k
Iterations

0

1

2

3

Lo
ss

Train
Test
Poison

(d) Loss values from
SGD with regularization

Figure 5: A synthetic three-class classification example trained using SGD with and without regular-
ization under the effect of poison data. The loss values are smoothed for better visualization.

4 Using the sharpness measure as a regularizer to train neural networks

We now apply our sharpness measure as a regularizer to train neural networks to see if regularizing
the measure can improve the generalization performance. The corresponding loss function is written
as

L(θ) = 1

N

N∑
i=1

li(θ) + ρ · IGS(θ), (12)

where ρ is a coefficient for the regularization term. We consider a toy example and then consider
image classification tasks involving MNIST and CIFAR-10/100 data sets. We also provide some
tractable and possibly efficient ways to regularize our sharpness measure. All the experiments have
been performed using the PyTorch library [38].

4.1 A toy example

We first apply our regularizer to a toy example. In [18], they have trained neural networks on
poison data with the wrong labels to hamper the generalization performance and make the loss
landscape extremely sharp while fitting all the training data. We follow this experimental setting and
check whether the obtained solution can avoid the undesirable generalization performance and loss
landscapes when applying our regularizer (calculated on the training data). The experimental details,
as well as how the IGS is approximated for this example, are provided in Appendix G.3.

The experimental results are shown in Figure 5. The results from SGD without regularization show
very irregular decision boundaries with tiny margins, whereas relatively soft boundaries with larger
margins appear when our regularizer is used, especially around the training data. Applying our
regularizer also shows a lower generalization gap, i.e., the difference between the training and test
losses, than the SGD without regularization.

4.2 MNIST and CIFAR-10/100

To check the effect of the regularizer in more realistic settings, we apply our regularizer to the classifi-
cation of MNIST and CIFAR-10/100 data sets. For this experiment, we regularize the mini-batch IGS
defined in (7). For an efficient implementation of our regularizer, the following approximation on
perturbed loss functions with a perturbation δ = ρF (θ)†

(
∂l
∂θ

)⊤ ∈ Rm (with a small ρ > 0) is useful:

l(θ + δ) ≈ l(θ) +

(
∂l

∂θ

)
δ ≈ l(θ) + ρ ·

(
∂l

∂θ

)
F (θ)†

(
∂l

∂θ

)⊤

. (13)

Note that for l = 1
b

∑
xi∈B li with a mini-batch B of size |B| = b, minimizing (13) becomes

minimizing a stochastic version of (12) (with IGSb(θ)), where the stochasticity comes from sampling
a mini-batch B. Therefore we minimize (13) in our experiments with ρ as a tunable hyperparameter.
To obtain δ, we resort to an EKFAC-based approximation for the natural gradients [13] as detailed in
Appendix G.4.1.

A three-layer fully connected neural network (3FCN) is used for the experiments using MNIST data,
and various convolutional neural networks such as VGG [42], ResNet [15], and WideResNet [50]
are used for CIFAR-10/100 experiments, with data augmentation, cosine annealing [27], and label

9

Table 1: Averages and standard errors of the test classification accuracies for SGD, GR, SAM, ASAM,
and SGD with our regularization method on MNIST, CIFAR-10, and CIFAR-100 data sets.

DATA SET MODEL SGD GR SAM ASAM OURS

MNIST 3FCN 98.13± 0.05 98.20 ± 0.01 98.62 ± 0.01 98.65 ± 0.07 98.65 ± 0.03

CIFAR-10
VGG11-BN 92.75 ± 0.11 93.13 ± 0.14 93.61 ± 0.08 93.78 ± 0.13 93.81 ± 0.06
RESNET-56 94.08 ± 0.17 94.40 ± 0.23 95.22 ± 0.11 95.36 ± 0.06 94.96 ± 0.01
WRN-16-8 95.98 ± 0.03 96.15 ± 0.10 96.70 ± 0.14 97.03 ± 0.06 96.57 ± 0.10

CIFAR-100
VGG11-BN 72.25 ± 0.17 73.05 ± 0.32 73.69 ± 0.20 73.61 ± 0.18 74.24 ± 0.22
RESNET-56 73.14 ± 0.10 74.67 ± 0.25 75.90 ± 0.25 75.87 ± 0.27 76.07 ± 0.11
WRN-16-8 80.55 ± 0.33 81.13 ± 0.06 82.20 ± 0.11 82.38 ± 0.09 82.44 ± 0.29

smoothing [30] methods additionally applied. For comparison, we consider the gradient regularization
(GR) method [4, 43], sharpness-aware minimization (SAM) method [12], and the adaptive SAM
(ASAM) method [24], an extension of SAM to involve the scale-invariance. The detailed experimental
settings are explained in Appendix G.4.2.

We provide the averages and standard errors of the test classification accuracies obtained from three
runs of each method in Table 1. As can be seen from the table, one can confirm that the generalization
performance of SGD is significantly improved with our regularizer. Furthermore, our method shows
better performance than the GR method and a comparable performance improvement with the SAM
and ASAM methods.

5 Conclusion

Various empirical results observed from running deep learning algorithms such as SGD have suggested
that minima with a flatter loss landscape tend to show better generalization performance. However,
the previous definitions of sharpness/flatness have faced a severe dependence on reparametrizations
or parameter scalings that do not change the model output and the generalization performance [8].

In this paper, based on an information geometric analysis of the neural network parameter space, we
have proposed an information geometric sharpness measure which is reparametrization- and scale-
invariant, making it free from the issues posed by [8]. We have also discussed the connection of the
measure to generalization. In addition, a regularizer that reduces the suggested sharpness measure is
proposed, showing a significant improvement in generalization performance under practical settings.

Unlike many other sharpness measures, the Fisher information matrix (FIM) plays a crucial role in
our measure. Since it can be computationally demanding to calculate the FIM and our sharpness
measure for large-scale neural networks, more efficient evaluation methods should be developed to
apply our measure to such networks. Concerning the regularization of our measure during training,
exploring better ways to reduce the time complexity and increase generalization performance is left
for future work. Furthermore, analyzing the generalization properties of models obtained from deep
learning algorithms such as SGD or natural gradient descent [2, 28] using our measure would be
another intriguing future work.

Acknowledgments and Disclosure of Funding

C. Jang and Y.-K. Noh were supported by IITP Artificial Intelligence Graduate School Program
for Hanyang University funded by MSIT (Grant No. 2020-0-01373). S. Lee was supported by a
KIAS Individual Grant (AP083601) via the Center for AI and Natural Sciences at Korea Institute
for Advanced Study. F. C. Park was supported in part by SRRC NRF grant 2016R1A5A1938472,
IITP-MSIT grant 2022-0-00480 (Training and Inference Methods for Goal-Oriented AI Agents), SNU-
AIIS, SNU-IAMD, and the SNU Institute for Engineering Research. Y.-K. Noh was partly supported
by NRF/MSIT (Grant No. 2018R1A5A7059549, 2021M3E5D2A01019545) and IITP/MSIT (Grant
No. IITP-2021-0-02068).

10

References
[1] Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control

19(6), 716–723 (1974)

[2] Amari, S.I.: Natural gradient works efficiently in learning. Neural computation 10(2), 251–276 (1998)

[3] Amari, S.i.: Information geometry and its applications, vol. 194. Springer (2016)

[4] Barrett, D.G., Dherin, B.: Implicit gradient regularization. arXiv preprint arXiv:2009.11162 (2020)

[5] Bartlett, P.L., Foster, D.J., Telgarsky, M.J.: Spectrally-normalized margin bounds for neural networks.
Advances in Neural Information Processing Systems 30, 6240–6249 (2017)

[6] Boothby, W.M.: An introduction to differentiable manifolds and Riemannian geometry, Revised, vol. 120.
Gulf Professional Publishing (2003)

[7] Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Baldassi, C., Borgs, C., Chayes, J., Sagun, L.,
Zecchina, R.: Entropy-sgd: Biasing gradient descent into wide valleys. Journal of Statistical Mechanics:
Theory and Experiment 2019(12), 124018 (2019)

[8] Dinh, L., Pascanu, R., Bengio, S., Bengio, Y.: Sharp minima can generalize for deep nets. In: International
Conference on Machine Learning, pp. 1019–1028. PMLR (2017)

[9] Dixon, M., Ward, T.: Takeuchi’s information criteria as a form of regularization. arXiv preprint
arXiv:1803.04947 (2018)

[10] Dziugaite, G.K., Roy, D.M.: Computing nonvacuous generalization bounds for deep (stochastic) neural
networks with many more parameters than training data. arXiv preprint arXiv:1703.11008 (2017)

[11] Fomenko, A., Novikov, S., Dubrovin, B.: Modern Geometry-Methods and Applications, Part I: The
Geometry of Surfaces, Transformation Groups, and Fields. Springer, Berlin (1992)

[12] Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B.: Sharpness-aware minimization for efficiently improving
generalization. arXiv preprint arXiv:2010.01412 (2020)

[13] George, T., Laurent, C., Bouthillier, X., Ballas, N., Vincent, P.: Fast approximate natural gradient descent
in a kronecker factored eigenbasis. Advances in Neural Information Processing Systems 31 (2018)

[14] Ghorbani, B., Krishnan, S., Xiao, Y.: An investigation into neural net optimization via hessian eigenvalue
density. In: International Conference on Machine Learning, pp. 2232–2241. PMLR (2019)

[15] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016)

[16] Hinton, G.E., Van Camp, D.: Keeping the neural networks simple by minimizing the description length of
the weights. In: Proceedings of the sixth annual conference on Computational learning theory, pp. 5–13
(1993)

[17] Hochreiter, S., Schmidhuber, J.: Flat minima. Neural computation 9(1), 1–42 (1997)

[18] Huang, W.R., Emam, Z., Goldblum, M., Fowl, L., Terry, J.K., Huang, F., Goldstein, T.: Understanding
generalization through visualizations (2020)

[19] Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., Wilson, A.G.: Averaging weights leads to wider
optima and better generalization. In: 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI
2018, pp. 876–885. Association For Uncertainty in Artificial Intelligence (AUAI) (2018)

[20] Jastrzebski, S., Arpit, D., Astrand, O., Kerg, G.B., Wang, H., Xiong, C., Socher, R., Cho, K., Geras,
K.J.: Catastrophic fisher explosion: Early phase fisher matrix impacts generalization. In: International
Conference on Machine Learning, pp. 4772–4784. PMLR (2021)

[21] Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., Bengio, S.: Fantastic generalization measures and
where to find them. In: International Conference on Learning Representations (2019)

[22] Keskar, N.S., Nocedal, J., Tang, P.T.P., Mudigere, D., Smelyanskiy, M.: On large-batch training for
deep learning: Generalization gap and sharp minima. In: 5th International Conference on Learning
Representations, ICLR 2017 (2017)

[23] Kunstner, F., Hennig, P., Balles, L.: Limitations of the empirical fisher approximation for natural gradient
descent. Advances in neural information processing systems 32 (2019)

[24] Kwon, J., Kim, J., Park, H., Choi, I.K.: Asam: Adaptive sharpness-aware minimization for scale-invariant
learning of deep neural networks. arXiv preprint arXiv:2102.11600 (2021)

[25] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11), 2278–2324 (1998)

[26] Liang, T., Poggio, T., Rakhlin, A., Stokes, J.: Fisher-rao metric, geometry, and complexity of neural
networks. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 888–896.
PMLR (2019)

11

[27] Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983 (2016)

[28] Martens, J.: New insights and perspectives on the natural gradient method. Journal of Machine Learning
Research 21, 1–76 (2020)

[29] Martens, J., Grosse, R.: Optimizing neural networks with kronecker-factored approximate curvature. arXiv
preprint arXiv:1503.05671 (2015)

[30] Müller, R., Kornblith, S., Hinton, G.: When does label smoothing help? arXiv preprint arXiv:1906.02629
(2019)

[31] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Icml (2010)

[32] Neyshabur, B., Bhojanapalli, S., Mcallester, D., Srebro, N.: Exploring generalization in deep learning.
Advances in Neural Information Processing Systems 30, 5947–5956 (2017)

[33] Neyshabur, B., Salakhutdinov, R., Srebro, N.: Path-sgd: path-normalized optimization in deep neural
networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems-
Volume 2, pp. 2422–2430 (2015)

[34] Neyshabur, B., Tomioka, R., Srebro, N.: Norm-based capacity control in neural networks. In: Conference
on Learning Theory, pp. 1376–1401. PMLR (2015)

[35] Nielsen, F.: An elementary introduction to information geometry. Entropy 22(10), 1100 (2020)

[36] Papyan, V.: The full spectrum of deepnet hessians at scale: Dynamics with sgd training and sample size.
arXiv preprint arXiv:1811.07062 (2018)

[37] Papyan, V.: Measurements of three-level hierarchical structure in the outliers in the spectrum of deepnet
hessians. In: International Conference on Machine Learning, pp. 5012–5021. PMLR (2019)

[38] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L.,
Lerer, A.: Automatic differentiation in pytorch (2017)

[39] Petzka, H., Kamp, M., Adilova, L., Sminchisescu, C., Boley, M.: Relative flatness and generalization.
Advances in Neural Information Processing Systems 34 (2021)

[40] Rangamani, A., Nguyen, N.H., Kumar, A., Phan, D., Chin, S.P., Tran, T.D.: A scale invariant measure of
flatness for deep network minima. In: ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1680–1684. IEEE (2021)

[41] Sagun, L., Evci, U., Guney, V.U., Dauphin, Y., Bottou, L.: Empirical analysis of the hessian of over-
parametrized neural networks. arXiv preprint arXiv:1706.04454 (2017)

[42] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556 (2014)

[43] Smith, S.L., Dherin, B., Barrett, D.G., De, S.: On the origin of implicit regularization in stochastic gradient
descent. arXiv preprint arXiv:2101.12176 (2021)

[44] Takeuchi, K.: The distribution of information statistics and the criterion of goodness of fit of models.
Mathematical Science 153, 12–18 (1976)

[45] Thomas, V., Pedregosa, F., Merriënboer, B., Manzagol, P.A., Bengio, Y., Le Roux, N.: On the interplay
between noise and curvature and its effect on optimization and generalization. In: International Conference
on Artificial Intelligence and Statistics, pp. 3503–3513. PMLR (2020)

[46] Tsuzuku, Y., Sato, I., Sugiyama, M.: Normalized flat minima: Exploring scale invariant definition of
flat minima for neural networks using pac-bayesian analysis. In: International Conference on Machine
Learning, pp. 9636–9647. PMLR (2020)

[47] Wu, J., Hu, W., Xiong, H., Huan, J., Braverman, V., Zhu, Z.: On the noisy gradient descent that generalizes
as sgd. In: International Conference on Machine Learning, pp. 10367–10376. PMLR (2020)

[48] Yao, Z., Gholami, A., Keutzer, K., Mahoney, M.W.: Pyhessian: Neural networks through the lens of the
hessian. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 581–590. IEEE (2020)

[49] Yao, Z., Gholami, A., Lei, Q., Keutzer, K., Mahoney, M.W.: Hessian-based analysis of large batch training
and robustness to adversaries. Advances in Neural Information Processing Systems 31 (2018)

[50] Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] The need to consider information geometry in mea-
suring sharpness is discussed in Section 2; the definition of our sharpness measure,
its reparametrization-invariance, and its connection to generalization are explained in
Section 3; and the experiments to use our measure as a regularizer in neural network
training are performed in Section 4.

(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] We have read the ethics review guidelines and checked that our paper
conforms to them.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3.1.
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix D.1.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See supplemen-
tal materials.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix G.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Tables 1 and 2.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix G.4.2.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix G.
(b) Did you mention the license of the assets? [Yes] See Appendix G.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See supplemental materials.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

Appendix

A The Fisher information matrix and class margins

As mentioned in Section 2.2 of the manuscript, [37] suggested a hierarchy of the logit gradients based
on the following decomposition of the Fisher information matrix:

1

N

N∑
i=1

J⊤
i

(
diag(pi)− pip

⊤
i

)
Ji =

1

N

N∑
i=1

J⊤
i M⊤

i MiJi, (14)

where Mi = diag(
√
pi)
(
I − 1p⊤i

)
∈ RC×C ,

√
pi = (

√
(pi)1, . . . ,

√
(pi)C) ∈ RC , and 1 =

(1, . . . , 1) ∈ RC is a vector whose elements are all one.

According to the proposed hierarchy, the dominant component of the FIM attributing the outliers of
the eigenspectra turns out to be

G = (C − 1)

C∑
c=1

Nc

N
δcδ

⊤
c , (15)

where Nc is the number of data belonging to class c. Here the vector δc ∈ Rm is defined as

δc =
1

Nc · (C − 1)

∑
c′ ̸=c

∑
i∈Ic

δi,c′ , (16)

where δi,j ∈ Rm is the j-th row vector of the matrix MiJi ∈ RC×m (also defined in (5)) and
Ic = {i ∈ {1, . . . , N}|yi = c} is the set of indices for data in class c.

The dominant component of FIM in (15) implies that the FIM can be related to the difference between
the c-th component and c′ ̸= c-th components in the logit derivatives. This relation can be seen more
evidently using some assumptions on the predicted probability pi.

Assuming the prediction for the classes c′ ̸= c is balanced, i.e., (pi)c′ , the c′-th component of pi for
c′ ̸= c, are all equal to a constant ϵ ≪ 1, we can approximate δi,c′ and δc as follows:

δi,c′ =
√
ϵ · (Ji,c′ − Ji,c)

⊤
+ o(

√
ϵ), (17)

δc =
√
ϵ ·

 1

Nc

∑
i∈Ic

 1

C − 1

∑
c′ ̸=c

Ji,c′ − Ji,c

⊤
+ o(

√
ϵ), (18)

where Ji,j ∈ R1×m denotes the j-th row of the logit derivative Ji ∈ RC×m. In this case, δc can be
interpreted as the gradient of the differences in the averaged logit values that can discriminate class c
from the other classes c′ ̸= c. Since the dominant component of the FIM is insisted to be the G term
in (15), we conjecture that the eigensubspace of the FIM can be related to the class margins as long
as the hierarchy from [37] is valid. Similar derivations can be found in [36].

B On the well-definedness of IGS

From (2), the Fisher information matrix is written as

F (θ) =
1

N

N∑
i=1

J⊤
i

(
diag(pi)− pip

⊤
i

)
Ji, (19)

where Ji =
(

∂f
∂θ (x)

)∣∣∣
x=xi

∈ RC×m and pi = (p(1|xi; θ), . . . , p(C|xi; θ)) ∈ RC is the model’s

prediction on the probability that xi belongs to each class.

The FIM is positive semi-definite when the number of parameters is very large, e.g., for the over-
parametrized models with m ≫ N . Therefore, we need to verify if our definition of information
geometric measure in (6) involving the pseudo-inverse of F (θ) is well-defined in the sense that there

14

are not any components of
(
∂li
∂θ

)
neglected in measuring the information geometric norm by (6). For

this purpose, we characterize the null space of F (θ) and compare it to that of the loss derivative(
∂li
∂θ

)
∈ R1×m.

From (19) the null space of F (θ), Null(F (θ)) = N1 ∪N2, where N1 and N2 are defined as

N1 = {θ̇ ∈ Rm | Jiθ̇ = 0, ∀i ∈ {1, . . . , N}}, (20)

N2 = {θ̇ ∈ Rm | Jiθ̇ = c · (1, . . . , 1)⊤, c ∈ R, ∀i ∈ {1, . . . , N}}. (21)

Note that the condition for N2 comes from the fact that the matrix
(
diag(pi)− pip

⊤
i

)
∈ RC×C in

(19) possesses the vector (1, . . . , 1)⊤ ∈ RC as its eigenvector with the eigenvalue of zero.

For θ̇ ∈ Null(F (θ)), we can easily show that
(
∂li
∂θ

)
θ̇ = 0 for all i = 1, . . . , N , since

(
∂li
∂θ

)
= −(e⊤yi

−∑
j(pi)je

⊤
j)Jiθ̇ = 0 for both the cases of θ̇ ∈ N1 and θ̇ ∈ N2. Therefore, Null(F (θ)) ⊂ Null(

(
∂li
∂θ

)
)

holds, and we can say that the vector
(
∂li
∂θ

)⊤ ∈ Rm belongs to the span of the eigenvectors of F (θ)
with non-zero eigenvalues for all i = 1, . . . , N . Hence our information geometric measure in (6)
does not neglect any components in

(
∂li
∂θ

)
.

C On the relationship between IGS and mini-batch IGS

To obtain the relationship between IGS in (6) and mini-batch IGS in (7), we express them as follows:

IGS(θ) =
1

N

N∑
i=1

(
∂li
∂θ

)
F (θ)†

(
∂li
∂θ

)⊤

= Tr
(
F (θ)†S(θ)

)
, (22)

IGSb(θ) = EB

(1

b

∑
xi∈B

∂li
∂θ

)
F (θ)†

(
1

b

∑
xi∈B

∂li
∂θ

)⊤
 = Tr

(
F (θ)†Sb(θ)

)
, (23)

where S(θ) = 1
N

∑N
i=1

(
∂li
∂θ

)⊤ (∂li
∂θ

)
∈ Rm×m is the second moment of the (individual) loss

gradients and Sb(θ) = EB

[(
1
b

∑
xi∈B

∂li
∂θ

)⊤ (1
b

∑
xi∈B

∂li
∂θ

)]
∈ Rm×m is that of the mini-batch

loss gradients with a batch size of b.

For our purpose, the relationship between the covariance of loss gradients and that of mini-batch
loss gradients is useful. The relationship is established in [47] as Cb(θ) =

γb,N

b C(θ), where
C(θ), Cb(θ) ∈ Rm×m are respectively the covariance of the (individual) loss gradients and mini-
batch loss gradients (with a batch size of b), and γb,N = N−b

N−1 if mini-batches are sampled
without replacement and 1 if sampled with replacement. From the relations between the covari-
ances and second moments given as C(θ) = S(θ) − SN (θ) and Cb(θ) = Sb(θ) − SN (θ) with

SN (θ) =
(

1
N

∑N
i=1

∂li
∂θ

)⊤ (
1
N

∑N
i=1

∂li
∂θ

)
∈ Rm×m, we can relate S(θ) and Sb(θ) as follows:

Sb(θ) = Cb(θ) + SN (θ) =
γb,N
b

C(θ) + SN (θ) (24)

=
γb,N
b

S(θ) + (1− γb,N
b

)SN (θ). (25)

By applying (25) to (23), we can obtain the relationship between IGS and mini-batch IGS as follows:

IGSb(θ) =
γb,N
b

Tr
(
F (θ)†S(θ)

)
+ (1− γb,N

b
)Tr
(
F (θ)†SN (θ)

)
(26)

=
γb,N
b

IGS(θ) + (1− γb,N
b

)IGSN (θ). (27)

By defining other information geometric sharpness measures as IGS-C(θ) ≡ IGS(θ)− IGSN (θ) and
IGSb-C(θ) ≡ IGSb(θ)− IGSN (θ), which can be considered as replacing the second moments with
covariances in (22) and (23), the relationship between them becomes as follows:

IGSb-C(θ) =
γb,N
b

IGS-C(θ). (28)

15

D On the transformation invariance of IGS

D.1 Proof of Proposition 3.1

Proof. To prove IGS(θ) = IGS(g(θ)) (or IGSb(θ) = IGSb(g(θ))) for all θ ∈ U , we have to show
whether the following equality holds for any θ ∈ U and i, j ∈ {1, . . . , N}:(

∂li
∂θ

)
F (θ)†

(
∂lj
∂θ

)⊤

=

(
∂li

∂g(θ)

)
F (g(θ))†

(
∂lj

∂g(θ)

)⊤

. (29)

By differentiating f(x; θ) = f(x; g(θ)) with respect to θ, we get
(

∂f
∂θ

)
=
(

∂f
∂g(θ)

)(
∂g(θ)
∂θ

)
, where(

∂g(θ)
∂θ

)
∈ Rm×m is invertible by the assumption. Applying this identity to the definition of the

Fisher information matrix gives the transformation rule of F (θ) =
(

∂g(θ)
∂θ

)⊤
F (g(θ))

(
∂g(θ)
∂θ

)
.

Furthermore, from the chain rule,
(
∂li
∂θ

)
=
(

∂li
∂g(θ)

)(
∂g(θ)
∂θ

)
. Combining these two identities and

using the fact that
(

∂g(θ)
∂θ

)
is invertible and (AMA⊤)† = A−⊤M†A−1 for an invertible matrix

A ∈ Rm×m and any M ∈ Rm×m give the desired (29).

D.2 Other transformation examples

We provide several examples of transformations that satisfy the assumption of Proposition 3.1 as
follows:

• For the fully-connected neural networks, the network function remains the same if we apply
identical permutations for the i-th layer weights row-wisely and the i+ 1-th layer weights
column-wisely. (For convolutional neural networks, applying permutations channel-wisely
would maintain the network function the same.)

• For the fully-connected neural networks, when we apply odd functions (i.e., ϕ(−u) =
−ϕ(u)) as an activation function, the network function remains the same if we apply
identical sign change to some rows of the i-th layer weights and corresponding columns of
the i+ 1-th layer weights.

• As a bit more complicated nonlinear example, consider a neural network with two-
dimensional input x = (x1, x2), three-dimensional hidden layer, and one-dimensional
output. Consider s(x) = x2 as the (element-wise) nonlinear activation function to apply.
Denote by W (1) ∈ R3×2 the input-to-hidden weights and by W (2) ∈ R1×3 the hidden-to-
output weights. The network function then becomes

f(x;W (1),W (2)) = W (2) · s(W (1)x) =

3∑
i=1

W
(2)
1i (W

(1)
i1 x1 +W

(1)
i2 x2)

2,

where Wij is the (i, j) entry of W .
Set another network with the same architecture as

f̃(x; W̃ (1), W̃ (2)) = W̃ (2) · s(W̃ (1)x) =

3∑
i=1

W̃
(2)
1i (W̃

(1)
i1 x1 + W̃

(1)
i2 x2)

2,

using weights W̃ (1) ∈ R3×2, W̃ (2) ∈ R1×3.
The condition for the two networks modeling identical function can be expressed as follows:

3∑
i=1

W
(2)
1i (W

(1)
i1 x1 +W

(1)
i2 x2)

2 =

3∑
i=1

W̃
(2)
1i (W̃

(1)
i1 x1 + W̃

(1)
i2 x2)

2 for all x ∈ R2.

16

If we rearrange the above for each coefficient of x2
1, x1x2, x

2
2, we obtain

3∑
i=1

W
(2)
1i (W

(1)
i1)2 =

3∑
i=1

W̃
(2)
1i (W̃

(1)
i1)2, (30)

3∑
i=1

W
(2)
1i W

(1)
i1 W

(1)
i2 =

3∑
i=1

W̃
(2)
1i W̃

(1)
i1 W̃

(1)
i2 , (31)

3∑
i=1

W
(2)
1i (W

(1)
i2)2 =

3∑
i=1

W̃
(2)
1i (W̃

(1)
i2)2. (32)

For the set of W (1),W (2), W̃ (1), W̃ (2) that satisfy above equations, the two network func-
tions f(x;W (1),W (2)) and f̃(x; W̃ (1), W̃ (2)) become identical.
Consider finding W̃ (2) for given W (1),W (2), and W̃ (1) = ϕ1(W

(1)) for a bijective nonlin-
ear function ϕ : R3×2 → R3×2. Since there are three equations, i.e., (30), (31), and (32),
and three variables of (W̃ (2)

11 , W̃
(2)
12 , W̃

(2)
13) in W̃ (2), we can find the solution of W̃ (2) and

represent it as W̃ (2) = ϕ2(W
(1),W (2)).

We can then figure out that two different weight configurations can model identical network
functions, with a nonlinear relationship between each other given as W̃ (1) = ϕ1(W

(1)) and
W̃ (2) = ϕ2(W

(1),W (2)).
Even if the input or output dimension increases, if the hidden variable dimension increases
appropriately, we can find mappings between weights similarly that can model identical
neural network functions.

E An information geometric margin for multi-class problems

An information geometric margin can also be formulated in the multi-class classification case similarly
as done in Section 3.3. For a data point (xi, yi) of class yi = c, we consider the decision boundary
between class c and class c′ for all c′ ̸= c. The condition for a point x ∈ RD to lie on this decision
boundary between classes c and c′ is given as fc(x; θ) = fc′(x; θ), where fj(·; θ) : RD → R is
the j-th logit function (or the j-th output of the neural network). Again, we consider perturbing the
parameter values along the eigenvectors of the Fisher information matrix to make the data (xi, yi) lie
on this decision boundary.

Suppose we perturb the parameter value from θ to θ + ϵi,k,c′∆θk, where ∆θk is the k-th eigenvector
(associated with the k-th eigenvalue λk) and ϵi,k,c′ is a scalar. To make the data (xi, yi) lie on the
decision boundary, the perturbation step size ϵi,k,c′ should satisfy the following:

fi,c(θ + ϵi,k,c′∆θk) = fi,c′(θ + ϵi,k,c′∆θk), (33)
where fi,j(θ) ∈ R is the fj(xi; θ).

From the first-order Taylor expansion assuming small ϵi,k,c′ , the following approximations hold:
fi,c(θ) + ϵi,k,c′Ji,c∆θk ≈ fi,c′(θ) + ϵi,k,c′Ji,c′∆θk, (34)

ϵi,k,c′ ≈
fi,c(θ)− fi,c′(θ)

(Ji,c′ − Ji,c)∆θk
, (35)

fi,c(θ)− fi,c′(θ)

ϵi,k,c′
≈ (Ji,c′ − Ji,c)∆θk, (36)

where Ji,j =
(

∂fi,j
∂θ

)
∈ R1×m. Note that ϵi,k,c′ can have different signs for different c′s according

to the sign of the (Ji,c′ − Ji,c)∆θk term.

Considering the weighted sum of (36) with the weights of the probability pi,c′ , i.e., the probability
of xi being class c′ predicted from the model, we can approximate the directional derivative of the
cross-entropy loss using ϵi,k,c′ as follows:∑

c′ ̸=c

pi,c′

(
fi,c(θ)− fi,c′(θ)

ϵi,k,c′

)
≈

∑
c′ ̸=c

pi,c′Ji,c′ − (1− pi,c)Ji,c

∆θk =

(
∂li
∂θ

)
∆θk, (37)

17

where we have used
(
∂li
∂θ

)
= −(e⊤yi

−∑j pi,je
⊤
j)Ji ∈ R1×m.

Our sharpness measure can then be related to the (signed) norm of the perturbation vector
√
λkϵi,k,c′

as follows:(
∂li
∂θ

)
F †(θ)

(
∂li
∂θ

)⊤

=

m′∑
k=1

1

λk

((
∂li
∂θ

)
∆θk

)2

≈
m′∑
k=1

∑
c′ ̸=c

pi,c′

(
fi,c(θ)− fi,c′(θ)√

λkϵi,k,c′

)2

,

(38)
where the last approximation comes from applying (37). Therefore as in the binary classification case,
we can observe that the smaller our sharpness measure, the larger the magnitude of the margin, i.e.,
the (signed) norm

√
λkϵi,k,c′ of the perturbation vector, in the information geometric sense.

F Adaptability of IGS to the square loss

Our measure can be defined for the square loss by considering the log-likelihood for a Gaussian,
i.e., li(θ) = l(yi, f(xi; θ)) = − log p(yi|xi; θ) =

1
2 (yi − f(xi; θ))

2 + const. in (1) for p(y|x; θ) =
C exp(− 1

2 (y − f(x; θ))2) with C as a normalization constant. The corresponding reparametrization-
and scale-invariance properties, as well as the connections with generalization in terms of TIC and
margin, can all be seen as well.

More specifically, the invariance properties are satisfied by definition. Since we do not assume any
specific form of the likelihood during the derivation of TIC, the TIC can be well-defined for the
square loss [9], and the link between our measure and the TIC comes again from the fact that the FIM
and the Hessian are approximately equal when the neural network is sufficiently trained for the square
loss [28]. In terms of our definition of margin, if we let li = 1

2 (zi − f(xi; θ))
2 (zi ∈ {0, 1}) and set

the condition for data lying on the decision boundary as f(x; θ) = 1
2 , we can show the connection of

the measure to the margin without much difficulty according to a discussion similar to Section 3.3.2.

G Experimental details

G.1 Reparametrization invariance

We examine the reparametrization-invariance of the IGS and compare it to other sharpness measures
such as the trace of the Hessian, the spectral norm (or the top eigenvalue) of the Hessian, the
Fisher-Rao norm [26], the Rangamani et al.’s measure [40], and the Petzka et al.’s measure [39].5

We consider a two-layer fully connected neural network with 20-dimensional hidden units and ReLU
activation functions for this experiment. The neural network is trained on two-dimensional synthetic
data generated from mixtures of three Gaussians via SGD with a learning rate of 0.1 and a batch size
of 40 until the training loss gets lower than 5e-3. After training ten neural networks initialized with
different random seeds, we obtain reparametrized neural networks for each of them by considering an
element-wise nonlinear reparametrization η = g(θ) = (|θ− θ̂|2+b)a(θ− θ̂)+ η̂, considered in Figure
5 in Section 5 of [8]. We consider several pairs of (a, b) for a ∈ {−0.5, 0.5} and b ∈ {0.01, 0.1, 1}
in defining g(θ), with θ̂ set as the obtained parameter and η̂ sampled from the standard normal
distribution. The above sharpness measures are then calculated for both the original models (with
respect to θ) and their reparametrized ones f̃(·; η) = f(·; g−1(η)) = f(·; θ) (with respect to η).

In Figure 6, we plot the sharpness measures calculated for the original models on the x-axis and
the logarithm of those for the reparametrized ones on the y-axis. Points with the same x-axis values
correspond to reparametrizations from the identical original model with different choices of (a, b).
The solid lines (y = log10(x)) denote the case in which the sharpness measures evaluated for the
original model and the reparameterized model are the same. From the figure, we can observe that
only the IGS is invariant to the considered reparametrizations, while the other measures including
the scale-invariant ones can be arbitrarily varied in their magnitudes significantly. These figures are
merged into a single figure in Figure 2 of the manuscript, reporting the ratio of the sharpness measures
evaluated for the reparameterized models to those evaluated for the original models.

5To evaluate the latter two sharpness measures we use the codes in the following URL:
https://github.com/kampmichael/RelativeFlatnessAndGeneralization (Apache License 2.0).

18

0.28 0.30 0.32 0.34
IGS (ori.)

4
3
2
1
0
1
2
3

lo
g1

0
IG

S
(re

.)

(a) IGS

0.190 0.195 0.200 0.205 0.210
trace H (ori.)

4
3
2
1
0
1
2
3

lo
g1

0
tra

ce
 H

 (r
e.

)

(b) Tr(H)

0.110 0.115 0.120
H spectral (ori.)

4
3
2
1
0
1
2
3

lo
g1

0
H

sp
ec

tra
l (

re
.)

(c) Spectral norm of H

0.46 0.47 0.48 0.49 0.50
Fisher-Rao (ori.)

4
3
2
1
0
1
2
3

lo
g1

0
Fi

sh
er

-R
ao

 (r
e.

)

(d) Fisher-Rao norm

1.25 1.35 1.45 1.55
Rangamani et al. (ori.)

3
2
1
0
1
2
3
4

lo
g1

0
Ra

ng
am

an
i e

t a
l.

(re
.)

(e) Rangamani et al.’s mea-
sure

0.8 1.0 1.2 1.4 1.6
Petzka et al. (ori.)

3
2
1
0
1
2
3
4

lo
g1

0
Pe

tz
ka

 e
t a

l.
(re

.)

(f) Petzka et al.’s measure

Figure 6: Sharpness measures evaluated for the original models vs. the logarithm (to base 10) of
sharpness measures for the reparametrized models. We consider nonlinear reparametrizations of
η = g(θ) = (|θ − θ̂|2 + b)a(θ − θ̂) + η̂ considered in [8] with several choices of (a, b), which are
represented by different colors. The solid lines (y = log10(x)) denote the case of reparametrization-
invariance.

G.2 Correlations of the IGS and other sharpness measures to the generalization gap

To investigate the correlations of the IGS and other sharpness measures to the generalization perfor-
mances, we experiment using LeNet-5 [25] trained on MNIST and CIFAR-10 data sets via SGD.
To obtain models possessing different generalization performances for MNIST data sets, we train
the models via SGD with learning rates in {0.002, 0.005, 0.01, 0.02, 0.05, 0.1} and batch sizes in
{64, 128, 256, 512, 1024}, and the training is terminated when the training loss becomes lower than
0.01. For CIFAR-10 data sets, we use learning rates in {0.001, 0.002, 0.005, 0.01, 0.02, 0.05} and
the identical batch sizes to the above, and the training is terminated when the training loss gets lower
than 0.1. All the experiments are performed for two different random seeds, and only the models with
loss converged in a specified number of iterations are considered.

For the trained models, we compute the IGS and other sharpness measures such as the trace of
the Hessian, the Fisher-Rao norm [26], the Rangamani et al.’s measure [40], and the Petzka et al.’s
measure [39] similarly as explained in Appendix G.1. (When calculating our measure, we consider
the expectation taken with respect to the data distribution (similarly to [45]), which is approximated
by a finite sum of the integrands over the test data.) In Figure 3, the sharpness values are normalized
to be in [0,1]. We can observe that the IGS has better correlation with the generalization gap, i.e., the
difference between the train and test losses, than other sharpness measures in the figure.

In calculating the IGS, a crucial difference to the experiments in [45] is that we use LeNet-5, of which
the number of parameters exceeds 60,000. Therefore, it is difficult to compute the exact values of
IGS for the obtained models. Here we briefly explain how the IGS is evaluated in our experiments.

We first obtain the top-m′ eigenvalues/eigenvectors of the FIM numerically via the power iteration,
using subsampled data points {x1, . . . , xNs

} (with Ns = 1, 024 in our experiments) from the data
set as explained in Appendix G.5.1. The dimension m′ of eigensubspace to consider (for the pseudo-
inverse of the approximated FIM) is chosen to be the least number that makes the sum of top-m′

eigenvalues exceed 95% of Tr(F (θ)).

To further reduce the computational costs, the mini-batch IGS in (7) is computed from mini-batch
gradients (with a batch size of 128) obtained by iterating for an epoch as follows:

IGSb(θ) ≈
1

|B|
∑
B∈B

m′∑
k=1

1

λk

((
1

b

∑
xi∈B

∂li
∂θ

)
∆θk

)2

,

19

where B is the considered set of mini-batches. We then convert the mini-batch IGS to IGS using (27).
We perform these procedures for five different subsamples to approximate the FIM, and average the
obtained IGS values.

G.3 Regularization experiments – a toy example

G.3.1 A finite difference-based approximation of IGS

Consider the following eigendecomposition of the Fisher information matrix

F (θ) =

m′∑
k=1

λk∆θk∆θ⊤k , (39)

where λk, ∆θk are respectively the k-th eigenvalue and eigenvector of F (θ), and m′ is the largest
index of non-zero λk. The sharpness measure is then approximated as follows:

IGS(θ) =
1

N

N∑
i=1

(
∂li
∂θ

) m′∑
k=1

1

λk
∆θk∆θ⊤k

(∂li
∂θ

)⊤

(40)

=
1

N

N∑
i=1

m′∑
k=1

(
1√
λk

(
∂li
∂θ

)
∆θk

)2

(41)

≈ 1

N · α2

N∑
i=1

Eϵ


li(θ + α

m′∑
k=1

ϵk√
λk

∆θk)− li(θ)

2
 , (42)

where Eϵ[·] denotes the expectation with respect to an m′-dimensional vector ϵ = (ϵ1, . . . , ϵm′) ∼
N(0, I) in (42), and the first-order approximation is used to derive (42) with α > 0 as a small scalar.

To avoid possible numerical instabilities stemming from the varying scales of the eigenvalues, we can
consider following regularizer using a fixed amount of perturbation from θ in the first li(·)-term in
(42):

IGS(θ) ≈ 1

N · α2

N∑
i=1

Eϵ

[
∥vϵ∥2

(
li(θ + α

vϵ
∥vϵ∥

)− li(θ)

)2
]
, (43)

where vϵ ≡
∑m′

k=1
ϵk√
λk+η

∆θk is a perturbation vector with η ≥ 0 included for numerical stability.

G.3.2 Data sets, models, and hyperparameters

For the toy examples in Section 4.1, we consider classifying two-dimensional synthetic data generated
from mixtures of three Gaussians. As shown in Figure 7, we assign distinct labels to each Gaussian
for training data. Test data are labeled analogously to the training data. For poison data, we assign
labels different from training and test data to each Gaussian by randomly choosing labels for each
data among the other two labels. We sample 60 data for each training, test, and poison data.

1 0 11

0

1

(a) Training data

1 0 11

0

1

(b) Test data

1 0 11

0

1

(c) Poison data

Figure 7: Data used in the experiments in Section 4.1.

A six-layer fully connected neural network with 100-dimensional hidden units and hyperbolic tangent
(Tanh) activation functions is used for the experiments. We use a learning rate of 0.1 and a batch size

20

of 30 for both SGD with and without regularization. The hyperparameters for regularization are set
as α = 0.5, ρ̃ = ρ/α2 = 2.0, and η = 0.01. We use the top three eigenvalues and eigenvectors (i.e.,
m′ = 3 for vϵ in (43)) obtained from the PyHessian library [48]6 to approximate the regularization
term as in (43) and update them every 20 iterations. We refer the reader to Appendix G.5.1 for
additional details of the eigendecomposition.

For a better interpretation of the loss trajectory, we have smoothed the trajectory by averaging 20
consecutive loss values in Figures 5 (c) and (d).

G.4 Regularization experiments – MNIST and CIFAR-10/100

G.4.1 Approximations of the natural gradients

As mentioned in Section 4.2, it is required to approximate the natural gradient F (θ)†
(
∂l
∂θ

)⊤ ∈ Rm

in (13) to regularize the mini-batch IGS. In this experiment, we consider some approximations
based on the eigenvalue-corrected Kronecker factorization (EKFAC) method [13]7 to efficiently
calculate the FIM and its (pseudo-)inverse. (We provide a brief explanation of the EKFAC method
in Appendix G.5.2.) We devise three different methods for the approximation; the methods differ in
detail from each other in terms of which labels are used to approximate the FIM or to calculate

(
∂l
∂θ

)
in the EKFAC method. The methods are classified as follows:

• When approximating F (θ) in [20], they use sampled labels according to the probabilistic
model that the neural network models with current parameter values. We follow this idea
and use sampled labels to approximate F (θ) and the original labels for

(
∂l
∂θ

)
in our first

method denoted as Ours 1 in Table 2.
• The second method uses original labels for both F (θ) and

(
∂l
∂θ

)
and is denoted as Ours 2 in

Table 2. This method can be considered as utilizing the empirical Fisher discussed in [23].

• The third method uses sampled labels for both F (θ) and
(
∂l
∂θ

)
and is denoted as Ours 3 in

Table 2. (The results from this method are reported in Table 1, and the method is denoted as
Ours in the table.)

Table 2 reports the averages and standard errors of the test classification accuracies obtained from
three runs of all of our regularization methods as well as SGD, GR, SAM, and ASAM methods. All
of our methods show superior performance to SGD, and the third method (Ours 3) shows the best
performance among them for most of the considered settings. The experimental details are provided
in the next section.

Table 2: Averages and standard errors of the test classification accuracies for SGD, GR, SAM, ASAM,
and SGD with our regularization methods on MNIST, CIFAR-10, and CIFAR-100 data sets.

DATA SET MODEL SGD GR SAM ASAM OURS 1 OURS 2 OURS 3

MNIST 3FCN 98.13± 0.05 98.20± 0.01 98.62 ± 0.01 98.65 ± 0.07 98.52 ± 0.05 98.56 ± 0.02 98.65 ± 0.03

CIFAR-10

VGG11-BN 92.75 ± 0.11 93.13 ± 0.14 93.61 ± 0.08 93.78 ± 0.13 93.67 ± 0.10 93.74 ± 0.09 93.81 ± 0.06

RESNET-20 92.68 ± 0.20 93.05 ± 0.21 93.46 ± 0.11 93.65 ± 0.20 93.42 ± 0.11 93.31 ± 0.03 93.40 ± 0.16

RESNET-56 94.08 ± 0.17 94.40 ± 0.23 95.22 ± 0.11 95.36 ± 0.06 95.08 ± 0.26 95.05 ± 0.08 94.96 ± 0.01

WRN-16-4 95.37 ± 0.16 95.43 ± 0.11 96.19 ± 0.12 96.37 ± 0.18 95.98 ± 0.04 96.04 ± 0.04 96.01 ± 0.10

WRN-16-8 95.98 ± 0.03 96.15 ± 0.10 96.70 ± 0.14 97.03 ± 0.06 96.67 ± 0.08 96.64 ± 0.02 96.57 ± 0.10

CIFAR-100

VGG11-BN 72.25 ± 0.17 73.05 ± 0.32 73.69 ± 0.20 73.61 ± 0.18 73.69 ± 0.16 73.64 ± 0.39 74.24 ± 0.22

RESNET-20 69.01 ± 0.54 70.00 ± 0.27 70.57 ± 0.30 70.82 ± 0.23 70.75 ± 0.14 70.40 ± 0.58 70.63 ± 0.26

RESNET-56 73.14 ± 0.10 74.67 ± 0.25 75.90 ± 0.25 75.87 ± 0.27 75.98 ± 0.25 75.91 ± 0.13 76.07 ± 0.11

WRN-16-4 77.18 ± 0.36 78.02 ± 0.21 79.64 ± 0.13 79.97 ± 0.11 79.70 ± 0.10 79.57 ± 0.13 79.97 ± 0.07

WRN-16-8 80.55 ± 0.33 81.13 ± 0.06 82.20 ± 0.11 82.38 ± 0.09 81.95 ± 0.03 81.92 ± 0.42 82.44 ± 0.29

G.4.2 Models and hyperparameters

For the experiments using MNIST data, a three-layer fully connected neural network with 200-
dimensional hidden units and ReLU activation functions is used. The neural network is trained with a
learning rate of 0.1 and a batch size of 128 for 200 epochs.

6URL: https://github.com/amirgholami/PyHessian (MIT license).
7URL: https://github.com/Thrandis/EKFAC-pytorch (MIT License).

21

For CIFAR-10/100 experiments, convolutional neural networks such as VGG [42], ResNet [15],
and WideResNet [50] are used. The neural networks are trained with a batch size of 128 and a
weight decay coefficient of 5e-4 for 200 epochs. We additionally apply data augmentation and label
smoothing [30] methods, and the learning rates are scheduled according to the cosine annealing
method [27] with the maximum learning rate of 0.1 and 10 epochs to warm up.

In approximating the natural gradient using the EKFAC method [13], we set the (Kronecker-factored)
eigenbasis update frequency of 100 and 500 for the MNIST and CIFAR-10/100 experiments, respec-
tively. We also apply the running average option in correcting the scaling of natural gradients. The
hyperparameters for our regularization method are chosen among ρ ∈ {0.01, 0.02, 0.03, 0.05, 0.1}
for the MNIST experiments and ρ ∈ {0.001, 0.002, 0.003, 0.005, 0.01, 0.02} for the CIFAR-10/100
experiments. To provide the sensitivity to the hyperparameter ρ of our method (the thrid one proposed
in Appendix G.4.1), we have depicted the results under various choices of ρ in Figure 8. We consider
the regularization coefficient ρ ∈ {5e− 4, 0.001, 0.002, 0.003, 0.005, 0.01, 0.02, 0.03, 0.05} for the
squared gradient norm in the GR method [43]. We consider ρ ∈ {0.05, 0.1, 0.2, 0.3, 0.5, 1.0} for
the SAM method [12], and consider ρ ∈ {0.3, 0.5, 1.0, 2.0, 3.0, 5.0} and η = 0.01 for the ASAM
method [24], where the hyperparameters ρ and η are defined as in [12, 24].8 We report the results
obtained from hyperparameters showing the best test accuracy in Tables 1 and 2, where the results
are averaged over trials from three different random seeds. Due to the space constraints, in Table 1 of
the manuscript, we report only the results from VGG11-BN, ResNet-56, and WRN-16-8 for CIFAR-
10/100 experiments and only the third method among the methods introduced in Appendix G.4.1.

1.6 1.4 1.2 1.0
log10()

0.980

0.982

0.984

0.986

0.988

0.990

Te
st

 a
cc

ur
ac

y

Ours
SGD

(a) MNIST

2.6 2.4 2.2 2.0
log10()

0.925

0.930

0.935

0.940

Te
st

 a
cc

ur
ac

y

Ours
SGD

(b) CIFAR-10 (VGG11-BN)

2.6 2.4 2.2 2.0
log10()

0.940

0.945

0.950

Te
st

 a
cc

ur
ac

y
Ours
SGD

(c) CIFAR-10 (ResNet-56)

2.6 2.4 2.2 2.0
log10()

0.958

0.960

0.962

0.964

0.966

0.968

Te
st

 a
cc

ur
ac

y

Ours
SGD

(d) CIFAR-10 (WRN-16-8)

2.4 2.2 2.0 1.8
log10()

0.71

0.72

0.73

0.74

0.75

Te
st

 a
cc

ur
ac

y

Ours
SGD

(e) CIFAR-100 (VGG11-BN)

2.6 2.4 2.2 2.0
log10()

0.73

0.74

0.75

0.76

Te
st

 a
cc

ur
ac

y

Ours
SGD

(f) CIFAR-100 (ResNet-56)

2.6 2.4 2.2 2.0 1.8
log10()

0.80

0.81

0.82

0.83

Te
st

 a
cc

ur
ac

y

Ours
SGD

(g) CIFAR-100 (WRN-16-8)

Figure 8: Test accuracies according to varying ρ.

Under our experimental settings, elapsed times per epoch (in seconds) during training for
SGD/GR/SAM/ASAM/Ours are 1.68/3.50/3.60/3.85/5.70 in MNIST experiments. For CIFAR-10/100
experiments, those are 5.95/24.7/14.8/16.1/40.1 for VGG11-BN, 25.7/98.3/63.7/68.3/66.9 for ResNet-
56, and 24.2/145/47.8/48.0/80.7 for WRN-16-8. Most of the experiments have been performed using
NVIDIA Tesla V100 GPUs.

Note that in our regularization method, the process of finding the natural gradient in δ =

ρF (θ)†
(
∂l
∂θ

)⊤
in (13) is added once every iteration compared to vanilla SGD. Therefore, addi-

tional time complexity depends on the details of methods to obtain the natural gradients, i.e., the
EKFAC method (see Appendix G.5.2).

G.5 Details for the eigendecomposition of the FIM

Several approximations have been used in our experiments for the eigendecomposition (required to
get the pseudo-inverse) of the FIM. The computations in Sections 3.3.1 and 4.1 are based on the
power iteration, and those in Section 4.2 are based on the EKFAC method. In this section, we explain
some details of these approximations.

8URLs: https://github.com/SamsungLabs/ASAM (Apache License 2.0), https://github.com/davda54/sam
(MIT license).

22

G.5.1 The power iteration

In Section 4.1, we utilize the functions of the PyHessian library [48], which are based on the power
iteration (see Algorithm 2 in [48]), to obtain the top few eigenvalues/eigenvectors of the Hessian,
i.e., λk and ∆θk in (39). (Note that we can consider the eigenvalues/eigenvectors of the Hessian here
since we can approximate the Hessian to the FIM.)

In Section 3.3.1 and Appendix G.2, to obtain the eigenvalues/eigenvectors of the FIM we first
subsample Ns data points {x1, . . . , xNs} from the data set. We then calculate the Jacobian of
the loss for the sampled labels with respect to the parameters, i.e., J̃ = ∂l̃

∂θ ∈ RNs×m, where
l̃ = (l(ỹ1, f(x1; θ)), . . . , l(ỹNs , f(xNs ; θ))) ∈ RNs and the labels ỹi are sampled according to the
probabilistic model p(y|xi; θ) that the neural network models for i = 1, . . . , Ns as discussed in [20].
The FIM can then be approximated as F (θ) ≈ 1

Ns
J̃⊤J̃ , and its top-m′ eigenvalues/eigenvectors

are numerically obtained via the power iteration in Algorithm 1. Note that the time complexity of
the multiplication F (θ)v ≈ 1

Ns
J̃⊤(J̃v) in line 5 of Algorithm 1 is O(Nsm

2), where v ∈ Rm is an
approximation of the eigenvector during the iteration.

Algorithm 1 Power Iteration for the Computation of Top Eigenvalues/Eigenvectors of the FIM

Input: The Jacobian of the loss for sampled labels with respect to parameters J̃ = ∂l̃
∂θ ∈ RNs×m,

the dimension of top eigenvalues/eigenvectors to compute m′, the number of iterations Niter.
Initialize: The top eigenvalue vector λ = 0 ∈ Rm′

, the top eigenvector matrix V = 0 ∈ Rm×m′
.

Iteration:
1: for k = 1, . . . ,m′ do
2: Draw a random vector v ∈ Rm from N(0, I).
3: for i = 1, . . . , Niter do
4: Project v to the orthogonal complement of V and normalize, v = (I−V V ⊤)v

∥(I−V V ⊤)v∥ .

5: Compute F (θ)v ≈ 1
Ns

J̃⊤(J̃v) and reset v, v = F (θ)v.
6: end for
7: Project v to the orthogonal complement of V and normalize, v = (I−V V ⊤)v

∥(I−V V ⊤)v∥ .
8: Update the top eigenvector matrix V , set Vk = v ∈ Rm, where Vk is the k-th column of V .
9: Update the top eigenvalue vector λ, set λk = v⊤F (θ)v, where λk is the k-th element of λ.

10: end for
Output: The top eigenvalues/eigenvectors λ ∈ Rm′

, V ∈ Rm×m′
.

In implementing the power iteration, we handle matrices of size Ns×m with m as the neural network
parameter size. Since memory usage is proportional to the network size, additional approximations
may be needed to handle larger neural networks.

G.5.2 The EKFAC method

The Kronecker factorization (KFAC) method is developed to efficiently implement the natural
gradient descent algorithm [29]. The method approximates the FIM as layer-wise block-diagonal and
efficiently performs eigendecomposition via Kronecker factorization for each block. The eigenvalue-
corrected KFAC (EKFAC) method additionally performs an eigenvalue correction step to make the
decomposition based on the Kronecker-factored eigenbasis closer to the FIM [13]. (Compared to the
power iteration, these methods are based on stronger approximations and may be more inaccurate,
but we can apply them to larger neural networks.)

The time complexity of the EKFAC method (for obtaining δ = ρF (θ)†
(
∂l
∂θ

)⊤
in (13)) becomes the

addition of that for computing gradient
(
∂l
∂θ

)⊤
, that for solving layer-wise eigenvalue problems to

obtain F (θ)†, and that for the multiplication of F (θ)† with
(
∂l
∂θ

)⊤
. Due to the Kronecker factorization,

the time complexity for solving the eigenvalue problems per layer becomes O(d3), where d denotes
the typical layer input and output node sizes. (Note that in the EKFAC method, the eigenvalue
problem is usually solved per several tens or hundreds of iteration steps.) After that, F (θ)† is
not obtained explicitly but considered in the decomposed form, i.e., F (θ)† = US−1U⊤ for the

23

eigendecomposition of F (θ) = USU⊤. The multiplication of F (θ)† with
(
∂l
∂θ

)⊤
is done layer-

wisely and efficiently by using the mixed Kronecker matrix-vector product with complexity O(d3)
per layer [13].

The final complexity for the EKFAC method is O(bLd2) + O(Ld3), where O(bLd2) is that for
computing gradient (hence that for SGD), L is the number of layers, and b is the mini-batch size. For
a more detailed analysis of the coefficients of each term, we refer the reader to Section 8 of [29].

24

	Introduction
	An information geometric analysis of the neural network parameter space
	The Fisher information matrix (FIM)
	An analysis of the eigensubspace of the FIM

	An information geometric sharpness measure
	Transformation invariance
	A comparison to some previous sharpness measures
	Connections to the generalization
	Connections to Takeuchi's information criterion (TIC)
	Connections to the margin

	Using the sharpness measure as a regularizer to train neural networks
	A toy example
	MNIST and CIFAR-10/100

	Conclusion
	The Fisher information matrix and class margins
	On the well-definedness of IGS
	On the relationship between IGS and mini-batch IGS
	On the transformation invariance of IGS
	Proof of Proposition 3.1
	Other transformation examples

	An information geometric margin for multi-class problems
	Adaptability of IGS to the square loss
	Experimental details
	Reparametrization invariance
	Correlations of the IGS and other sharpness measures to the generalization gap
	Regularization experiments – a toy example
	A finite difference-based approximation of IGS
	Data sets, models, and hyperparameters

	Regularization experiments – MNIST and CIFAR-10/100
	Approximations of the natural gradients
	Models and hyperparameters

	Details for the eigendecomposition of the FIM
	The power iteration
	The EKFAC method

