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Abstract

AI-empowered drug recommendation has become an important task in healthcare
research areas, which offers an additional perspective to assist human doctors with
more accurate and more efficient drug prescriptions. Generally, drug recommen-
dation is based on patients’ diagnosis results in the electronic health records. We
assume that there are three key factors to be addressed in drug recommendation: 1)
elimination of recommendation bias due to limitations of observable information,
2) better utilization of historical health condition and 3) coordination of multiple
drugs to control safety. To this end, we propose DrugRec, a causal inference
based drug recommendation model. The causal graphical model can identify and
deconfound the recommendation bias with front-door adjustment. Meanwhile,
we model the multi-visit in the causal graph to characterize a patient’s historical
health conditions. Finally, we model the drug-drug interactions (DDIs) as the
propositional satisfiability (SAT) problem, and solving the SAT problem can help
better coordinate the recommendation. Comprehensive experiment results show
that our proposed model achieves state-of-the-art performance on the widely used
datasets MIMIC-III and MIMIC-IV, demonstrating the effectiveness and safety of
our method.

1 Introduction

The digitization of healthcare track records with diagnosis, procedure, and prescriptions has become
an inevitable trend rising. Advanced AI can process large-scale electronic health records (EHRs)
and biomedical knowledge graphs (BioKGs) with the massive data available. With the continuous
progress of medical digitization, the advances in deep learning technologies for processing can assist
doctors and researchers in making accurate and efficient medical decisions [26, 18]. More specifically,
the goal of the drug recommendation task is to recommend appropriate medication combinations
based on a patient’s disease conditions. Existing drug recommendation methods model a patient
based on his/her diagnoses and procedures in health records from actual hospital visits and then
determine which drugs to recommend [27, 25]. The information on BioKGs is also widely used in the
drug recommendation process to avoid the negative effect of drug-drug interactions (DDIs) [17, 28].

Despite the promising achievements of previous methods, we argue that three essential factors
should be considered in a drug recommendation model. First, general recommendation systems
often suffer from recommendation bias issues [1] (e.g., conformity bias, exposure bias, popularity
bias, selection bias, etc.), which also happens in drug recommendations but is not handled well
in previous works. Sometimes the diagnostic information in EHRs is insufficient to describe the
patient’s health condition, leading to a recommendation bias due to the limitations of observable
information. Second, the patient’s historical clinic records are critical for recommending drugs
effectively. When recommending drugs, the model should consider both the current visit and previous
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visits, since ignoring them could lead to a lower recommendation accuracy. Finally, the negative
drug-drug interactions (DDI) is also a critical issue in drug recommendation models. When multiple
drugs are recommended together, the system needs to control DDIs for drug safety.

Considering these key factors, we propose a novel drug recommendation causal graphical model,
which is shown in Figure 1. The patient’s potential disease information is considered as the confounder
(C). Due to the existence of the confounder, general drug recommendation leads to recommenda-
tion bias due to ignoring the existence of the confounder. We debias the confounding defects by
identifying the causal effect of the treatment variable symptom (S) on the outcome variable (Y ).
Identifying the effect can take into account the existence of the confounder in modeling to eliminate
the recommendation bias. Specifically, we intervene on the symptom and identify the deconfounded
causal effect of symptom on drug prescriptions with front-door adjustment [5]. As a result, we can
obtain debiased drug recommendation results by maximizing the average treatment effect (ATE) of
intervention. Moreover, in order to extend the method to the multi-visit scenario, we propose two
modeling schemes to leverage the historical records for current drug prescribing. Therefore, we
can successfully identify the multi-visit causal effect for more accurate recommendation. Finally,
we model the DDI problem as the propositional satisfiability (SAT) problem where the selection of
each drug is represented as a boolean variable and the relations are represented as boolean operators.
Although the SAT is NP-complete [3, 12], we note the DDI problem can be modelled as a particular
case, i.e., 2-SAT problem, which can be solved in polynomial time [10]. Since the trivial solution
(i.e., recommend no drugs) always exists, we propose a heuristic method to extract non-trivial 2-SAT
solution that optimize the recommendation probability from the causal graph.

Our overall technical contributions in this work are summarized as follows:

• We construct a drug recommendation causal graphical model for this task and leverage the
front-door adjustment to alleviate the invisible recommendation bias.

• We propose two modeling schemes that extend the graphical model to the multi-visit scenario
to better model a patient’s historical health condition.

• We model the DDI with the 2-SAT problem to coordinate the recommendation and improve
the recommendation safety. We also propose a heuristic method to extract non-trival solution
to 2-SAT to optimize the recommendation probability from causal graph.

We conduct extensive experiments on the widely used benchmark datasets MIMIC-III and MIMIC-IV
to evaluate the recommendation quality and the DDI rate. We significantly (p<0.01) advance the
state-of-the-art results of Jaccard score, PRAUC, and F1-score, demonstrating the effectiveness of
our method. The significant drop in DDI Rate shows that our method better considers drug safety.

2 Related Work

Drug Recommendation. Drug recommendation is a promising research area in recent years.
For example, Gong et al. [6] construct a high-quality heterogeneous graph and decomposes the
medicine recommendation into a link prediction process. Zhang et al. [30] decompose treatment
recommendation task into a sequential decision-making process and adopt a multi-instance multi-
label learning framework. Shang et al. [16] pre-train the records of single-visit patient’s records and
fine-tune on the multi-visit records. Choi et al. [2] employ a two-level neural attention model that
detects influential past visits and significant clinical variables. Le et al. [11] present a new memory
augmented neural network model to model sequential records. Shang et al. [17] utilize memory
augmented neural networks and store historical records as references for future prediction. Yang et al.
[27] first focus on the medication changes using recurrent residual learning . Yang et al. [28] propose
a DDI-controllable drug recommendation model to leverage molecule structures and model DDIs
more effectively. Wu et al. [25] introduces a novel copy-or-predict mechanism to generate medicines.
We conduct a novel causal graoh for drug recommendation treating the recommendation bias as a
confounder, and make debiased recommendations by identifying the causal effect.

Causal Recommendation. Causal inference has been widely used in machine learning based
recommendation systems. The confounding effect is the typical pattern for considering causality
in recommendation systems. Wang et al. [22] employ deconfounding techniques to learn real
interests affected by unobserved confounders. The recommender estimates a substitute for the
unobserved confounders by fitting exposure data. Sato et al. [15] treat the features of the user
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and item as confounders and reweight training samples to account for confounding. Many existing
methods construct causal graphs and then apply causal inference techniques to mitigate confounding
bias by incorporating confounders into data generation, including item popularity [29, 23, 7], user
selection [21, 22], and ranking positions [13]. We are the first to design a novel causal graph for
drug recommendation from the logic of drug prescribing of human doctors, which eliminates the
recommendation bias due to limitations of observable information.

3 Preliminary

3.1 Problem Formulation

Longitudinal EHR data has the patient-visit hierarchical structure and the whole data for all pa-
tients can be represented as X = {X(1),X(2), . . . ,X(N)}, where N is the total number of pa-
tients. A specific patient j can be represented as a sequence of multivariate visits: X(j) =

[x
(j)
1 ,x

(j)
2 , . . . ,x

(j)
Tj

], where Tj is the number of visits of patient j. For the t-th visit of patient

j, x(j)
t = [s

(j)
t ,d

(j)
t ,p

(j)
t ,m

(j)
t ], where s

(j)
t ∈ {0, 1}|S|, d(j)

t ∈ {0, 1}|D|, p(j)
t ∈ {0, 1}|P| and

m
(j)
t ∈ {0, 1}|M| are multi-hot symptoms, diagnoses, procedures, and medication vectors, respec-

tively. The S, D, P and M are the overall symptom, diagnosis, procedure, and medication sets,
while | · | denotes the cardinality of the set. We will omit the trivial superscript j whenever there is no
ambiguity in discussing different visits within the same patient. Meanwhile, we also need to consider
the side effect relations in the DDI graph before determining the final drug combinations. We use the
symmetric binary adjacency matrix A ∈ {0, 1}|M|×|M| to represent the DDI graph, where Auv = 1
if and only if the u-th and v-th drug has harmful interactions.

The objective of drug recommendation task is to predict the probabilities ŷt ∈ [0, 1]|M| of each
drug to recommend, given all the patient’s previous visits (x1,x2, . . . ,xt−1), current visit inputs
(st,dt,pt) at time t, and the DDI graph A.

3.2 Causal View of Drug Recommendation

Figure 1: The causal graph of drug recommenda-
tion. The variables represent: C: confounder, D:
diagnosis, P: procedure, R: patient visit represen-
tation, S: symptom, M: medication, Y: recommen-
dation probability. The dotted arrows and circles
represent latent variable and links.

To address the problem that observed informa-
tion is often incomplete and insufficient to de-
scribe the actual health condition, we propose
a debiased drug recommendation method based
on causal inference techniques. As shown in
Figure 1, it is consistent with the logic of doc-
tors diagnosing diseases based on symptoms and
prescribing drugs based on all the information.
we introduce an unobservable confounder as the
patient’s potential disease information, which
acts directly on both symptoms (S) and drug
prescriptions (Y ), affecting the results of drug
recommendation. In the causal view, the condi-
tional probability P (y|s,m) considered by gen-
eral models cannot reflect the actual causal ef-
fect of symptoms on drug prescribing. We inter-
vene on the treatment variable S, and the inter-
vention probability P (y|do(s),m) determines
the effect of S on Y . Next, the key to iden-
tifying the causal effect is how to remove the
do-operator so that P (y|do(s),m) can be calcu-
lated. Here we treat D, P and R as mediators, which exactly satisfies the conditions of the front-door
criterion [5]. The front-door criterion provides a sufficient condition for identifiability when the
confounder is unobservable. The causal effect P (y|do(s),m) is thus identifiable with front-door
adjustment [5], which can be formulated as Equation (1). See Appendix A for details of causal
analysis.

P (y|do(s),m) =
∑
r∈R

∑
d∈D

∑
p∈P

P (d|s)P (p|s)P (r|s, d, p)
∑
s′∈S

P (y|s′, r,m)P (s′)

≜
∑
s′∈S

f(s′, r(s, ds, ps),m)P (s′).
(1)
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Denote ds and ps as symptom-affected representations of the diagnosis and procedure, respectively.
We set P (d|s) = 1 if and only if d = ds; otherwise P (d|s) = 0, and P (p|s) as the same. The patient
visit representation is written as r(s, ds, ps) under the representations s, ds, ps, and P (r|s, ds, ps) = 1
holds if and only if r = r(s, ds, ps); otherwise P (r|s, ds, ps) = 0. The objective of previous
methods that ignore modeling the unobserved confounder is to learn a scoring function of the form
f(r(d, p),m) or f(r(s, ds, ps),m). In contrast, our scoring function f is related to the representation
of each symptom s′. The eventual probability is a weighted sum of the scoring functions according to
different symptoms. We can finally estimate ŷ ∈ [0, 1]|M|, the predicted recommendation probability
for each drug, by Equation (1). Since the cardinality of the symptom set |S| is large, it is untrackable
to traverse all the symptoms to calculate the above probability. Instead, we conduct a sample set Ŝ
with ks symptoms. The probability P (s′) can be estimated by the frequency P̂ (s′) for symptom s′ in
the original EHRs.

4 Our method

4.1 Multi-Visit Causal Drug Recommendation

The causal graph in Figure 1 is based on a single visit of a patient. Considering the critical impact of
a patient’s historical health condition on current drug recommendations, we extend the single-visit
causal effect to the multi-visit scenario. We propose two modeling schemes for the multi-visit causal
drug recommendation. The DrugRec-a aggregates all the historical visits and express them as one
causal graph, while the DrugRec-k models the impact of past k visits before the current visit.

DrugRec-a. A core issue of the previous single-visit scenario is that the causal effects of each
visit are calculated separately without any interaction between them. Considering that variables
like S, D, P and Y have sequential effects, the DrugRec-a method integrates all previous variable
representations of t− 1 visits into a single representation at time t using an aggregation function agg.
Therefore, it can be uniformly handled that the lengths of historical visits vary at different time points.
For instance, we denote the integrated symptom representation as St−1 = agg([S1, . . . , St−1]), and
other integrated representations Dt−1, P t−1, Y t−1 can be derived in the same way. Therefore, we
can compress all previous t− 1 visits into one causal graph. Every time the model makes decisions
for the current drug prescription, the connection between the historical causal graph and the current
causal graph is crucial. We link the two causal graphs together by adding several paths between
them. Specifically, we link the paths St−1 → St, Dt−1 → Dt, P t−1 → Pt and Y t−1 → Yt for later
joint analysis. Similar to the single-visit scenario, the multi-visit causal effect is now extended to a
joint intervention probability P (yt, yt−1|do(st), do(st−1),m) for the historical and current patient
health conditions. Historical and current diagnoses, procedures and patient visit representations can
still serve as mediators, as all pathways from treatment variables (St−1, St) to outcome variables
(Y t−1, Yt) pass through them. Thus, the overall linked causal graph still satisfies the conditions of
the front-door criterion. More specifically, the causal effect P (yt, yt−1|do(st), do(st−1),m) can be
identifiable and formulated as

P (yt, yt91|do (st) , do (st91) ,m) =
∑

s′t91∈S

f
(
s′t91, r

(
st91, dt91,st91 , pt91,st91

)
,m

)
P (s′t91)

·
∑
rt∈R

∑
dt∈D

∑
pt∈P

P
(
dt|dt91, st

)
P (pt|pt91, st)P (rt|st, dt, pt)

·
∑
s′t∈S

P (yt|yt91, s′t, rt,m)P (s′t|s′t91) . (2)

We rearrange the Equation (2) and decompose it into the following two parts, corresponding to the
patient’s historical and current visit.

P (yt, yt91|do (st) , do (st91) ,m) ≜
∑

s′t91∈S

f
(
s′t91, r

(
st91, dt91,st91 , pt91,st91

)
,m

)
P
(
s′t91

)
·
∑
s′t∈S

f̃
(
yt91, s

′
t, r

(
s̃t, d̃t,st , p̃t,st

)
,m

)
P
(
s′t|s′t91

)
,

(3)
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where P (dt|dt−1, st) = 1 ⇔ dt = g(dt−1, s̃t) ≜ d̃t,st ; otherwise the value is zero, and
P (pt|pt−1, st) as the same. An update function g is used to derive the updated symptom representa-
tion s̃t and the current symptom-affected representations d̃t,st and p̃t,st . The eventual probability can
be reduced to the product of the weighted sum of two scoring functions. The sum with the scoring
function f is exactly the same as Equation (1), modeling the historical health conditions like a single
visit. The current drug prescribing that we actually focus on is determined by another scoring function
f̃ . Different from f considering a single visit, the function f̃ can leverage historical information since
it is also related to previous recommendation results yt−1. Each symptom s′t is sampled from the
symptom sample set Ŝ through the conditional distribution P (s′t|s′t−1). The condition probability can
be estimated as P̂ (s′t|s′t−1), the ratio of the co-occurrence frequency of s′t and s′t−1 to the frequency
of s′t. We can eventually obtain the current drug recommendation results ŷt by estimating f̃ in
Equation (3). The details of network implementation for estimation is available in Section 4.3.

DrugRec-k. We propose another solution that extends drug recommendation to multi-visit scenario.
An intuitive assumption is that for all historical visits of a patient, the more recent visit has a more
significant effect on current drug prescriptions. Therefore, DrugRec-k only models information from
the past k visits to make the drug prescription of current visit more accurate. This implies the need
to characterize the connections between the k historical causal graphs and the current causal graph.
Taking the symptom variable as an example, for the current t-th visit, we consider the effect of the
symptom representations St−k, St−k+1, · · · , St−1 on St. When k = 0, the problem degenerates into
the single-visit scenario. In order to model how the k historical symptom representations affect the
current symptom representation, we make connections between each of the k historical causal graphs
and the current causal graph. Specifically, the k paths St−k → St, St−k+1 → St, · · · , St−1 → St
are added to connect the historical representations with the current representation. For other variables
Dt, Pt and Yt at time t, such k paths need to be linked in the same way. Based on the experience
in DrugRec-a, the multi-visit causal effect we consider here is the joint intervention probability
P (yt, yt−1, · · · , yt−k|do(st), do(st−1), · · · , do(st−k) ,m). The causal effect in the overall causal
graph connected by k+1 graphs can still be identifiable without breaking the conditions of front-door
criterion, which is given by

P (yt, yt−1, · · · , yt−k|do(st), do(st−1), · · · , do(st−k) ,m)

=

k∏
κ=1

∑
s′t−κ∈S

f
(
s′t−κ, r(st−κ, dt−κ,st−κ , pt−κ,st−κ),m

)
P
(
s′t−κ

)
·
∑
rt∈R

∑
dt∈D

∑
pt∈P

P (dt|dt−1, · · · , dt−k, st)P (pt|pt−1, · · · , pt−k, st)P (rt|st, dt, pt)

·
∑
s′t∈S

P
(
yt|yt−1, · · · , yt−k, s

′
t, rt,m

)
P
(
s′t|s′t−1, · · · , s′t−k

)
. (4)

We rearrange the Equation (4) and decompose it into the following two parts, corresponding to the
patient’s historical and current visit.

P (yt, yt−1, · · · , yt−k|do(st), do(st−1), · · · , do(st−k) ,m)

≜
k∏

κ=1

∑
s′t−κ∈S

f
(
s′t−κ, r(st−κ, dt−κ,st−κ , pt−κ,st−κ),m

)
P
(
s′t−κ

)
∑
s′t∈S

f̃
(
ỹt−k, s

′
t, r

(
s̃t, d̃t,st , p̃t,st

)
,m

)
P
(
s′t|s′t−1, · · · , s′t−k

)
, (5)

where P (dt|dt−1, · · · , dt−k, st) = 1 ⇔ dt = g′(dt−1, · · · , dt−k, s̃t) ≜ d̃t,st ; otherwise the value is
zero, and P (pt|pt−1, · · · , pt−k, st) as the same. The updated symptom representations s̃t and current
symptom-affected representations d̃t,st and p̃t,st can be derived by an update function g′. Here
the historical and current recommendation decisions are also decomposable. The historical health
conditions are modeled like k single-visit scenarios. While for the current visit, the scoring function
f̃ is based on the aggregation of previous recommendation results ỹt−k = agg(yt−1, · · · , yt−k),
slightly different from DrugRec-a. In addition, the s′t is sampled by the estimated conditional
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Figure 2: The model overview of DrugRec-k with the four modules : (a) Input Representation; (b)
Update Network; (c) Scoring Network; and (d) Controllable DDI with 2-SAT.

distribution P̂ (s′t|s′t−1, · · · , s′t−k), which is the ratio of the corresponding co-occurrence frequency
to the frequency of s′t. The current drug recommendation results ŷt can be obtained by estimating f̃
in Equation (5). The implementation details for estimation are available in Section 4.3.

4.2 Controllable DDI with 2-SAT

Another important issue in drug recommendation is coordinating multiple drugs, which differs from
general recommendation systems. Significantly, the side effects of recommended drug combinations
can threaten patient safety. Based on the information of paired drugs with harmful interactions
stored in the DDI graph, previous methods mainly penalize the recommendation of DDI pairs by a
DDI-related loss. However, there is no mature solution to handle DDIs at the inference stage. Here
we propose a method that models the DDI as propositional satisfiability (SAT) problem. Specifically,
we regard whether or not to retain a drug i in the candidate set as a boolean variable that mi. Then the
DDI beetween drug i and j is represented as (¬mi ∨ ¬mj). The DDI SAT problem is formulated by
the conjunctions of all such clauses based on the drugs recommended by the causal graphical model.
Taking the Figure 2(d) as an example, m1 represents to keep the first drug, while ¬m1 represents not
to keep it, m2, m3, and m4 as the same. The DDIs limit the coexistence of certain drugs, which can
be formulated as (¬m1 ∨ ¬m2) ∧ (¬m2 ∨ ¬m4) ∧ (¬m3 ∨ ¬m4).

Since every clause only has two literals, this is a 2-SAT problem that can be solved in polynomial
time. Following [10], we first convert ¬mi∨¬mj to the implicative normal form mi ⇒ ¬mj ,mj ⇒
¬mi. Then we construct a directed graph with two nodes mi and ¬mi for each drug i and add
the edges corresponding to the implications. Next, we find all strongly connected components
(SCCs) of this graph using Tarjan’s Algorithm [19], and then sort these SCCs in topological order.
Although we can find a solution with any topological order, finding the best order is still an NP-hard
problem. Therefore, we propose a heuristic method that enhance the topological sorting with the
recommendation probability. When sorting the SCCs, we always select the SCC with no in-bond
and the lowest probability, which is P (mi) for mi and 1 − P (mi) for ¬mi. This modification is
critical for our method because the trivial solution (i.e., recommend no drugs) always exists, and our
goal is to find a solution with a more significant likelihood. The rest step is identical with [10] that
selecting mi or ¬mi by the one that comes later in the sorted SCCs. Since we let the nodes with
lower probability come first, we are more likely to choose the drugs with a higher probability.
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4.3 Model Implementation

In this section, we implement the the update function and scoring function through the neural network
and introduce the training objective of our model. The model overview of DrugRec-k is illustrated in
Figure 2. The architecture of DrugRec-a is similar, and a few differences will be described later.

Input Representation. For the drugs, we first obtain the SMILES2 string of each drug in the data
preprocessing. Next, we extract all the drug representations with the molecule pre-trained transformer
model [31] and freeze the representation matrix as ψ(m). For the diagnosis and procedure, previous
work used multi-hot embedding of ICD-9 or ICD-10 codes3, without guarantee that similar diagnoses
and procedures will have similar representations. Instead, we convert the ICD codes to corresponding
text descriptions in the dictionary tables and extract the symptoms from the clinical notes. Then we
employ two-layer transformer encoders to encode the symptom, diagnosis, and procedure texts. We
denote the output representations of transformer encoders as st, dt and pt at time t. Next, for the
multi-visit scenario, the implementation for the two modeling schemes is slightly different on update
network and scoring network.

Update Network. DrugRec-k employs an attention mechanism followed by subsequent Multilayer
Perceptrons (MLPs) as three separate update functions gs, gd and gp. The updated representations
s̃t, d̃t,st and p̃t,st can be formulated as Equations (6)-(8). The implementation detail of attention
mechanism can be shown in Appendix B.

s̃t = gs(st−1, · · · , st−k) = Attn(st, st−1, · · · , st−k)st , (6)

d̃t,st = gd(dt−1, · · · , dt−k, s̃t) = MLP([Attn(dt, dt−1, · · · , dt−k)dt , s̃t]), (7)
p̃t,st = gp(pt−1, · · · , pt−k, s̃t) = MLP([Attn(pt, pt−1, · · · , pt−k)pt , s̃t]). (8)

While DrugRec-a uses an average aggregate function for the past t− 1 representations to obtain st−1,
dt−1, pt−1, yt−1. Then its updated representations s̃t, d̃t,st and p̃t,st can be derived by three new
update functions g′s, g′d and g′p, as shown in Equations (9)-(11).

s̃t = g′s(st−1) = Attn(st, st−1)st , (9)

d̃t,st = g′d(dt−1, s̃t) = MLP([Attn(dt, dt−1)dt , s̃t]), (10)

p̃t,st = g′p(pt−1, s̃t) = MLP([Attn(pt, pt−1)pt , s̃t]). (11)

Next, we concatenate the above representations and use a two-layer MLP to obtain the current patient
visit representations as rt = MLP([s̃t, d̃t,st , p̃t,st ]).

Scoring Network. For the current t-th visit, we conduct a sample set with ks symptoms according
to the estimation of the corresponding conditional probability mentioned in Section 4.1, denoted as
Ŝt. For each sampled symptom representation s′t ∈ Ŝt, a two-layer MLP is introduced as scoring
functions f̃ . Together with previously obtained drug representation matrix ψ(m), the patient visit
representation rt and previous recommendation results, the final output of scoring function f̃t is given
by

f̃t =

{
σ(MLP([yt−1, s

′
t, rt]) · ψ(m)), for DrugRec-a,

σ(MLP([agg(yt−k, · · · ,yt−1), s
′
t, rt]) · ψ(m)), for DrugRec-k.

(12)

where σ(·) represents the sigmoid function, and agg represents the average aggregation. Therefore,
the predicted recommendation probabilities ŷt ∈ [0, 1]|M| can be formulated as Equation (13), the
weighted sum for f̃t.

ŷt =



∑
s′t∈Ŝt

f̃t · P̂ (s′t|s′t−1), for DrugRec-a,

∑
s′t∈Ŝt

f̃t · P̂
(
s′t|s′t−1, · · · , s′t−k

)
, for DrugRec-k.

(13)

2Simplified molecular input line entry specification [24].
3A code list for the international classification of diseases (ICD), ninth or tenth revision [4].
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Training Objective. During the training process, we divide all the medications into positive and
negative cases according to ground truth in records. Correspondingly, we can obtain ŷ

(+)
t and ŷ

(−)
t .

Based on the causal theory, we maximize the average treatment effect (ATE) between the intervention
with the observed symptoms do(st) and the intervention without any symptoms do(s0). The ATE
measures the difference in average outcomes between the observed symptoms and no symptom. We
replace the st with s0 = 0, and then recalculate the updated representations and scoring outputs by
Equations (6)-(13), resulting in ŷ

(+)
0 . Since the outcome variable Y follows a Bernoulli distribution,

we can estimate the ATE among the positive cases as τt = ŷ
(+)
t − ŷ

(+)
0 . For all the N patients in the

records, the ATE-derived loss function can be formulated as

Late = −
N∑

j=1

Tj∑
t=1

log
(
σ(τ

(j)
t )

)
(14)

We also employ the following loss functions used in such previous works [27, 28]. We compute the
binary cross-entropy (BCE) loss Lbce between prediction and ground-truth m

(j)
t . The multi-label

hinge loss Lmul is also introduced to ensure that the difference between the predicted probabilities of
positive samples and those of a negative samples is at least 1 margin. In order to control the safety of
the drug combination, the occurrence of DDIs needs to be penalized by the DDI loss Lddi.

In addition to the DDI loss, we hope to improve the accuracy of drug pair recommendations for better
multiple drug coordination. Thus, we expand the single drug label m(j)

t ∈ {0, 1}|M| to the drug pair
label m̃(j)

t ∈ {0, 1}
|M|(|M|−1)

2 and add the BCE loss for the drug pair Lpair. The equations of the
above four loss functions are available in Appendix B. The overall training loss is then formulated
as Equation (15), where ωate, ωmul, ωpair, ωddi, γ are the hyper-parameters for controlling the loss
weight. We also set a DDI acceptance rate γ to compare with the current DDI rate to determine
whether to include Lddi in the loss. The training process is shown in Algorithm 1 in Appendix B.

L =

{Lbce + ωateLate + ωmulLmul ++ωpairLpair + ωddiLddi, DDI > γ

Lbce + ωateLate + ωmulLmul ++ωpairLpair, DDI ≤ γ
(15)

5 Experiments

Data Processing. We use the real-world EHRs obtained from publicly available MIMIC-III [9]
and MIMIC-IV [8]. The DDI relations are obtained from TWOSIDES [20], and we convert the
drug coding from NDC to ATC third level for integration with MIMIC. In addition to following
the data processing methods of [28], we extract textual contents for the diagnosis and procedure by
converting their ICD codes to corresponding text descriptions in the dictionary tables. We also obtain
the symptom information from clinical notes. We further remove those patients who only had a single
visit record or failed to extract any symptoms.4 The datasets statistics are in Appendix C.

Baselines and Metrics. Under the exactly same data splits, we compare our method with the
mainstream baselines. The baselines include instance-based methods: LR, ECC [14], LEAP [30]
and longitudinal-based methods: RETAIN [2], GAMENet [17], MICRON [27], SafeDrug [28],
COGNet [25] . Following the previous works [28, 25], we measure the model with standard
effectiveness metrics: Jaccard Similarity Score (Jaccard), Precision Recall AUC (PRAUC) and F1
score (F1). DDI Rate and number of drugs are also included, lower is better. The baseline and metric
details are available in Appendix C.

Main Results. Table 1 show the experimental results of all methods on MIMIC-III and MIMIC-
IV. Instance-based methods (LR, ECC and LEAP) perform poorly without considering historical
records. RETAIN and GAMENet outperform instance-based methods on the effectiveness metrics,
yet improve DDI Rate exceeding the ground-truth. The DDI Rate of MICRON and SafeDrug is lower
than other baselines, as they are specially designed with controllable DDI loss. COGNet performs
best among baselines in terms of effectiveness metrics, but its number of recommended drugs is
too large, and the DDI Rate is also a bit high. Our DrugRec outperforms all the baselines, where
DrugRec-k performs better than DrugRec-a. This means that simply compressing the representation
of all previous visits cannot obtain the best performance. The highest effectiveness metrics show that

4The code and data are available at https://github.com/ssshddd/DrugRec.
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Table 1: Experimental results on MIMIC-III / MIMIC-IV. Ground-truth DDI Rate is 0.0754 / 0.0713.

Model Jaccard F1 PRAUC DDI Rate Avg. # of Drugs
LR 0.4896 / 0.3844 0.6491 / 0.5379 0.7568 / 0.6568 0.0774 / 0.0645 17.4894 / 9.3892
ECC 0.4799 / 0.3680 0.6390 / 0.5173 0.7572 / 0.6541 0.0760 / 0.0648 16.8464 / 8.7081

LEAP 0.4465 / 0.3653 0.6097 / 0.5201 0.6490 / 0.5314 0.0657 / 0.0570 19.0166 / 12.5083
RETAIN 0.4780 / 0.3903 0.6397 / 0.5471 0.7601 / 0.6563 0.0814 / 0.0618 18.9820 / 10.0435
GAMENet 0.5039 / 0.3957 0.6609 / 0.5525 0.7632 / 0.6479 0.0832 / 0.0757 26.1520 / 17.5848
MICRON 0.5076 / 0.4009 0.6634 / 0.5545 0.7685 / 0.6584 0.0612 / 0.0605 18.0141 / 11.1404
SafeDrug 0.5090 / 0.4082 0.6664 / 0.5651 0.7647 / 0.6495 0.0658 / 0.0553 20.4243 / 12.6161
COGNet 0.5134 / 0.4131 0.6706 / 0.5660 0.7677 / 0.6460 0.0784 / 0.0596 24.1675 / 19.3966

DrugRec-a 0.5196 / 0.4162 0.6756 / 0.5690 0.7680 / 0.6507 0.0606 / 0.0401 23.7549 / 13.7241
DrugRec-k 0.5220 / 0.4194 0.6771 / 0.5713 0.7720 / 0.6558 0.0597 / 0.0396 22.0006 / 13.4880

Table 2: Ablation study for DrugRec on MIMIC-III dataset.

Model Jaccard F1 PRAUC DDI Rate Avg. # of Drugs
DrugRec (w/o sypt.) 0.5092 ± 0.0044 0.6662 ± 0.0040 0.7612 ± 0.0042 0.0600 ± 0.0009 21.9129 ± 0.1289
DrugRec (w/o Late) 0.5142 ± 0.0041 0.6710 ± 0.0036 0.7673 ± 0.0041 0.0597 ± 0.0006 21.8849 ± 0.1655
DrugRec (single) 0.5167 ± 0.0044 0.6730 ± 0.0039 0.7667 ± 0.0040 0.0600 ± 0.0006 22.2260 ± 0.1243
DrugRec (w/o sat) 0.5240 ± 0.0034 0.6787 ± 0.0035 0.7674 ± 0.0045 0.0774 ± 0.0008 23.9584 ± 0.2013

DrugRec 0.5220 ± 0.0034 0.6771 ± 0.0031 0.7720 ± 0.0036 0.0597 ± 0.0006 22.0006 ± 0.1604

our multi-visit causal drug recommendation can indeed make drug recommendation more accurate,
and the lowest average DDI Rate indicates that our controllable DDI with 2-SAT works. To test the
significance and robustness of our metrics, we conduct a two-sample T-test on each metric between
our method and each baseline. The results in Table 1 are obtained through 10 rounds of bootstrapping
sampling on the test set, and the standard deviation with p-values are reported in Appendix C. Our
method performs best significantly on both effectiveness metrics and DDI Rate, with all p-values
below 0.01 for each metric in each baseline.

Ablation Study. In order to verify the effectiveness of the individual components (symptom
information, causal view for drug recommendation, multi-visit causal drug recommendation and
controllable DDI with 2-SAT ) in our model, we design different model variants for ablation analysis
in Table 2. We have the following four model variants. 1) DrugRec (w/o sypt.) is implemented
without applying any symptom information. This general discriminative model is equivalent to
removing both C and S from the graph in Figure 1, and its performance is the poorest in comparison.
2) When we add the symptom information to DrugRec (w/o sypt.) and obtain DrugRec (w/o Late), all
the metric results are better than before. It indicates that utilizing the necessary symptom information
will significantly help the effectiveness of drug recommendations. 3) DrugRec (single) models
the single-visit causal effect in the recommendation with the causal view of drug recommendation.
The metric results of Jaccard and F1 have improved compared to the previous model. However,
compared to the full model, DrugRec (single) performs worse on all metrics since it ignores the
patient’s historical health condition. Overall, it demonstrates the effectiveness of the causal view for
drug recommendation and multi-visit causal drug recommendation. 4) DrugRec (w/o sat) removes
the module of controllable DDI with 2-SAT. The DDI Rate and the number of drugs are significantly
larger than all the model variants. This confirms that our 2-SAT algorithm is indeed effective for
controlling DDI Rate.

Multi-Visit Analysis for DrugRec-k. To further investigate the impact of the different number
of past visits for DrugRec-k, we conduct a comparative experiment with different values of k on
MIMIC-III. We consider the case where k takes values from 0 to 3, and k = 0 corresponds to the
single-visit scenario. Table 3 shows the results of effectiveness metrics for different k. The model
performance of DrugRec-k is optimal when k = 2. All effectiveness metrics increase as k increases
from 0 to 2, and drop a little when k = 3. Since the value of k is related to the assumption of the
impact of the patient’s past health condition on the current drug prescribing, we analyze the above
results from two perspectives. On the one hand, it suggests that too old information recorded in the
historical visits may not be instructive or even misleading for the current prescribing. The most useful
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historical information is in the last two visits. On the other hand, the average visits for all patients in
MIMIC-III is 2.59, with very few patients having over 3 visits. This also shows that the k should not
be too high.

Table 3: Study of different k for DrugRec-k.
k Jacarrd F1 PRAUC

0 0.5167 0.6730 0.7667
1 0.5203 0.6764 0.7685
2 0.5220 0.6771 0.7720
3 0.5210 0.6765 0.7711

For further analysis and discussion, some supple-
mentary experiments are also performed, which are
detailed in Appendix D.

6 Conclusion

This work focuses on three essential aspects of the
drug recommendation task and proposes novel mod-
els to enhance them. We first design a causal graph-
ical model for the drug recommendation task and
deconfound the effect of the invisible recommenda-
tion bias with front-door adjustment. To better model
a patient’s historical health condition, we further characterize two modeling schemes that extend the
causal graph to the multi-visit scenario. We also propose a novel 2-SAT algorithm to coordinate mul-
tiple drugs with DDIs. Comprehensive experimental results on MIMIC-III/IV datasets show that our
method significantly outperforms all baselines on the effectiveness metrics and successfully controls
harmful DDI relations. We hope this method could help improve the efficiency and accuracy of the
real-world drug prescribing process in hospital and benefit the public health as well as well-being.
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