
Appendix for Power and limitations of single-qubit native quantum neural
networks

A Detailed Proofs

A.1 Proof of Lemma 1

Lemma 1 There exist θ = (θ0, θ1, . . . , θL) ∈ RL+1 such that

UYZY
θ,L(x) =

[
P (x) −Q(x)
Q∗(x) P ∗(x)

]
(S1)

if and only if real Laurent polynomials P,Q ∈ R[eix/2, e−ix/2] satisfy

1. deg(P ) ≤ L and deg(Q) ≤ L,

2. P and Q have parity L mod 2,

3. ∀x ∈ R, |P (x)|2 + |Q(x)|2 = 1.

Proof First we prove the forward direction, i.e. Eq. (S1) implies the three conditions, by induction
on L. For the base case, if L = 0, then RY (θ0) gives P = cos(θ0/2) and Q = sin(θ0/2), which
clearly satisfies the conditions.

For the induction step, suppose Eq. (S1) satisfies the three conditions. Then[
P −Q
Q∗ P ∗

]
RZ(x)RY (θk) (S2)

=

[
P −Q
Q∗ P ∗

] [
cos(θk/2)e

−ix/2 − sin(θk/2)e
−ix/2

sin(θk/2)e
ix/2 cos(θk/2)e

ix/2

]
(S3)

=

[
cos θk

2 e
−ix/2P − sin θk

2 e
ix/2Q − sin θk

2 e
−ix/2P − cos θk

2 e
ix/2Q

cos θk
2 e

−ix/2Q∗ + sin θk
2 e

ix/2P ∗ cos θk
2 e

ix/2P ∗ − sin θk
2 e

−ix/2Q∗

]
(S4)

=

[
P̄ −Q̄
Q̄∗ P̄ ∗

]
(S5)

where

P̄ = cos
θk
2
e−ix/2P − sin

θk
2
eix/2Q, (S6)

Q̄ = sin
θk
2
e−ix/2P + cos

θk
2
eix/2Q (S7)

clearly satisfy the first condition: deg(P̄ ) ≤ L + 1 and deg(Q̄) ≤ L + 1. They also satisfy the
second condition since multiplying by e−ix/2 or eix/2 alters the parity. The third condition follows
from unitarity.

Next we show the reverse by induction on L that the three conditions suffice to construct the QNN in
Eq. (S1). For the base case, we have L = 0 and deg(P ) = deg(Q) = 0. Note that P and Q are real
polynomials, i.e. the coefficients must be real numbers, so condition 3 implies that P = cos(θ0/2)
and Q = sin(θ0/2) for some θ0 ∈ R. Thus the matrix[

P −Q,
Q∗ P ∗

]
(S8)

can be written as a QNN UYZY
θ,0 (x) = RY (θ0).

For the induction step, suppose Laurent polynomials P and Q satisfy the three conditions for some
L > 0. We first observe that condition 3 implies

|P |2 + |Q|2 = PP ∗ +QQ∗ = 1, (S9)
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where PP ∗ + QQ∗ is a Laurent polynomial of eix/2 with parity 2n (mod 2) ≡ 0. We denote
d := max(deg(P ),deg(Q)), then d ≤ L by the first condition. Since Eq. (S9) holds for all x ∈ R,
the leading coefficients must satisfy pdp−d + qdq−d = 0 so they cancel. We choose θk ∈ R so that

cos
θk
2
pd + sin

θk
2
qd = 0, (S10)

− sin
θk
2
p−d + cos

θk
2
q−d = 0. (S11)

Now we briefly argue that there always exists a θk satisfies equations above. If all pd, p−d, qd, q−d

are not 0, simply let tan θk
2 = −pd

qd
. Then consider the case of zero coefficients. Since d =

max(deg(P ),deg(Q)), at most two of pd, p−d, qd, q−d could be 0. The fact pdp−d + qdq−d = 0
implies that one of pd, p−d is 0 if and only if one of qd, q−d is 0. If pd = qd = 0 (or p−d = q−d = 0),
pick θk so that tan θk

2 = q−d

p−d
(or tan θk

2 = −pd

qd
). If pd = q−d = 0 (or p−d = qd = 0), pick θk so

that sin θk
2 = 0 (or cos θk

2 = 0).

Next, for the θk that satisfies Eq. (S10) and Eq. (S11) simultaneously, we consider[
P −Q
Q∗ P ∗

]
R†

Y (θk)R
†
Z(x) (S12)

=

[
cos θk

2 e
ix/2P + sin θk

2 e
ix/2Q − cos θk

2 e
−ix/2Q+ sin θk

2 e
−ix/2P

cos θk
2 e

ix/2Q∗ − sin θk
2 e

ix/2P ∗ cos θk
2 e

−ix/2P ∗ + sin θk
2 e

−ix/2Q

]
(S13)

=

[
P̂ −Q̂
Q̂∗ P̂ ∗

]
(S14)

where

P̂ = cos
θk
2
eix/2P + sin

θk
2
eix/2Q, (S15)

Q̂ = cos
θk
2
e−ix/2Q− sin

θk
2
e−ix/2P. (S16)

Since P,Q ∈ R[eix/2, e−ix/2] are Laurent polynomials with degree at most d, P̂ ∈ R[eix/2, e−ix/2]

might appear to be a Laurent polynomial with degree d+ 1. In fact it has degree deg(P̂ ) ≤ d− 1,
because the coefficient of (eix/2)d+1 term in P̂ is cos θk

2 pd + sin θk
2 qd = 0 by the choice of

θk, and the coefficient of (eix/2)d term is 0 by condition 2. Similarly, Q̂ has leading coefficient
cos θk

2 q−d− sin θk
2 p−d = 0 and has degree deg(Q̂) ≤ d−1. Since d ≤ L, we have deg(P̂ ) ≤ L−1

and deg(Q̂) ≤ L− 1, hence condition 1 is satisfied. From the parity of P and Q, it is easy to see that
P̂ and Q̂ have parity L− 1 mod 2, thus condition 2 is satisfied. Condition 3 follows from unitarity.
By the induction hypothesis, Eq. (S14) can be written as a QNN in the form of UYZY

θ,L−1(x), and
therefore the matrix [

P −Q
Q∗ P ∗

]
(S17)

can be written as a QNN in the form of UYZY
θ,L(x). ■

We note that the above proof is in a similar spirit of the proof of quantum signal processing [33–35].

A.2 Proof of Proposition 2

We first restate the following lemma that was shown in Refs. [32, 34, 40].

Lemma S1 ([32, 34, 40]) SupposeA(x) ∈ R[eix, e−ix] is a real-valued Laurent polynomial with de-
greeL that satisfiesA(x) ≥ 0 for x ∈ R, then there exists a Laurent polynomial P ∈ R[eix/2, e−ix/2]
with deg(P ) = L and parity L mod 2 such that PP ∗ = A.

Note that the Laurent polynomial P in Lemma S1 could be computed via root finding. Then we are
ready to prove Proposition 2 as follows.
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Proposition 2 For any even square-integrable function f : [−π, π] → R and for all ϵ > 0, there
exists a QNN UYZY

θ,L(x) such that |ψ(x)⟩ = UYZY
θ,L(x) |0⟩ satisfies

∥ ⟨ψ(x)|Z|ψ(x)⟩ − αf(x)∥ ≤ ϵ (S18)

for some normalizing constant α.

Proof First, according to the Riesz–Fischer theorem [41], the Fourier series of any even square-
integrable function f(x) converges to f(x) in the norm of L2, i.e.

lim
K→∞

∥fK(x)− f(x)∥ = 0, (S19)

where fK(x) is the K-term partial Fourier series of f(x). For any ϵ > 0, there exists a K ∈ N+ such
that

∥fK(x)− f(x)∥ ≤ ϵ, (S20)

where fK(x) is the K-term partial Fourier series of even function f(x). Note that we can always
multiply f(x) and fK(x) by some constant α, without loss of generality, we assume |fK(x)| ≤ 1
for all x ∈ R. Since f(x) is an even function, the partial Fourier series fK(x) only contains cosine
terms, i.e. fK(x) ∈ R[eix, e−ix]. Then FK(x) := 1+fK(x)

2 is a Laurent polynomial in R[eix, e−ix]
with degree K such that 0 ≤ FK(x) ≤ 1 for x ∈ R.

By Lemma S1, there exists a Laurent polynomial P ∈ R[eix/2, e−ix/2] with degree K and parity
K mod 2 such that PP ∗ = FK(x). Notice that |P (x)| ≤ 1 for all x ∈ R since |P (x)|2 = FK(x) ≤
1. By Lemma 1, there exists a QNN UYZY

θ,K(x) such that

UYZY
θ,K(x) =

[
P (x) −Q(x)
Q∗(x) P ∗(x)

]
. (S21)

Let |ψ(x)⟩ = UYZY
θ,K(x) |0⟩, we have

⟨ψ(x)|Z|ψ(x)⟩ = PP ∗ −QQ∗ = 2PP ∗ − 1 = 2FK(x)− 1 = fK(x). (S22)

It follows from Eq. (S20) that

∥ ⟨ψ(x)|Z|ψ(x)⟩ − f(x)∥ ≤ ϵ. (S23)

■

A.3 Proof of Lemma 3

Lemma 3 There exist θ = (θ0, θ1, . . . , θL) ∈ RL+1 and ϕ = (φ, ϕ0, ϕ1, . . . , ϕL) ∈ RL+2 such
that

UWZW
θ,ϕ,L(x) =

[
P (x) −Q(x)
Q∗(x) P ∗(x)

]
(S24)

if and only if Laurent polynomials P,Q ∈ C[eix/2, e−ix/2] satisfy

1. deg(P ) ≤ L and deg(Q) ≤ L,

2. P and Q have parity L mod 2,

3. ∀x ∈ R, |P (x)|2 + |Q(x)|2 = 1.

Proof The entire proof is similar as the proof of Lemma 1, and the only difference is that the
coefficients of Laurent polynomials could be complex rather than real. First we prove the forward
direction by induction on L. For the base case, if L = 0, then UWZW

θ,ϕ,L(x) = RZ(φ)RY (θ0)RZ(ϕ0)

gives P = e−i(φ+ϕ0)/2 cos(θ0/2) and Q = e−i(φ−ϕ0)/2 sin(θ0/2), which clearly satisfies the three
conditions.
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For the induction step, suppose Eq. (S24) satisfies the three conditions. Then[
P −Q
Q∗ P ∗

]
RZ(x)RY (θk)RZ(ϕk) (S25)

=

[
P −Q
Q∗ P ∗

] [
cos θk

2 e
−i

ϕk
2 e−i x

2 − sin θk
2 e

i
ϕk
2 e−i x

2

sin θk
2 e

−i
ϕk
2 ei

x
2 cos θk

2 e
i
ϕk
2 ei

x
2

]
(S26)

=

[
cos θk

2 e
−i

ϕk
2 e−i x

2 P − sin θk
2 e

−i
ϕk
2 ei

x
2Q − sin θk

2 e
i
ϕk
2 e−i x

2 P − cos θk
2 e

i
ϕk
2 ei

x
2Q

cos θk
2 e

−i
ϕk
2 e−i x

2Q∗ + sin θk
2 e

−i
ϕk
2 ei

x
2 P ∗ cos θk

2 e
i
ϕk
2 ei

x
2 P ∗ − sin θk

2 e
i
ϕk
2 e−i x

2Q∗

]
(S27)

=

[
P̄ −Q̄
Q̄∗ P̄ ∗

]
(S28)

where

P̄ = cos
θk
2
e−i

ϕk
2 e−i x

2 P − sin
θk
2
e−i

ϕk
2 ei

x
2Q, (S29)

Q̄ = sin
θk
2
ei

ϕk
2 e−i x

2 P + cos
θk
2
ei

ϕk
2 ei

x
2Q (S30)

clearly satisfy the first condition: deg(P̄ ) ≤ L + 1 and deg(Q̄) ≤ L + 1. They also satisfy the
second condition since multiplying by e−ix/2 or eix/2 alters the parity. The third condition is satisfied
because of unitarity.

Next we show the backward direction by induction on L that the three conditions suffice to construct
the QNN in Eq. (S24). First we consider the base case of L = 0, we have deg(P ) = deg(Q) = 0,
the above condition implies that P = e−i(φ+ϕ0)/2 cos(θ0/2) and Q = e−i(φ−ϕ0)/2 sin(θ0/2) for
some φ, θ0, ϕ0 ∈ R. Thus the matrix [

P −Q,
Q∗ P ∗

]
(S31)

can be written as a QNN UWZW
θ,ϕ,L(x) = RZ(φ)RY (θ0)RZ(ϕ0).

For the induction step, suppose Laurent polynomials P and Q satisfy the three conditions for some
L > 0. We first observe that condition 3 implies

|P |2 + |Q|2 = PP ∗ +QQ∗ = 1, (S32)

where PP ∗ +QQ∗ is a Laurent polynomial of eix/2 with parity 2n (mod 2) ≡ 0. Since Eq. (S32)
holds for all x ∈ R, the leading coefficients must satisfy pdp∗−d+qdq

∗
−d = 0 and p∗dp−d+q

∗
dq−d = 0,

where d := max(deg(P ),deg(Q)). By the first condition, we have d ≤ L. We choose θk, ϕk ∈ R
so that

cos
θk
2
ei

ϕk
2 pd + sin

θk
2
e−i

ϕk
2 qd = 0, (S33)

− sin
θk
2
ei

ϕk
2 p−d + cos

θk
2
e−i

ϕk
2 q−d = 0. (S34)

Now we briefly argue that there always exists θk and ϕk satisfy equations above. If all pd, p−d, qd, q−d

are not zero, simply let tan
(
θk
2

)
e−iϕk = −pd

qd
. Then consider the case of zero coefficients. Since

deg(P ) = deg(Q) = d, at most two of pd, p−d, qd, q−d could be 0. The fact pdp∗−d + qdq
∗
−d = 0

implies that one of one of pd, p−d is 0 if and only if one of qd, q−d is 0. If pd = qd = 0 (or
p−d = q−d = 0), pick θk and ϕk so that tan ( θk2 )eiϕk = q−d

p−d
. If pd = q−d = 0 or (p−d = qd = 0),

pick θk so that sin ( θk2 ) = 0 (or cos ( θk2 ) = 0).
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Next, for the θk that we pick, consider[
P −Q
Q∗ P ∗

]
W †(θk, ϕk)R

†
Z(x) (S35)

=

[
ei

ϕk
2 cos θk

2 e
i x
2 P + e−i

ϕk
2 sin θk

2 e
i x
2Q ei

ϕk
2 sin θk

2 e
−i x

2 P − e−i
ϕk
2 cos θk

2 e
−i x

2Q

ei
ϕk
2 cos θk

2 e
i x
2Q∗ − e−i

ϕk
2 sin θk

2 e
i x
2 P ∗ e−i

ϕk
2 cos θk

2 e
−i x

2 P ∗ + ei
ϕk
2 sin θk

2 e
−i x

2Q∗

]
(S36)

=

[
P̂ −Q̂
Q̂∗ P̂ ∗

]
(S37)

where

P̂ = ei
ϕk
2 cos

θk
2
ei

x
2 P + e−i

ϕk
2 sin

θk
2
ei

x
2Q, (S38)

Q̂ = e−i
ϕk
2 cos

θk
2
e−i x

2Q− ei
ϕk
2 sin

θk
2
e−i x

2 P. (S39)

Since P,Q ∈ C[eix/2, e−ix/2] are Laurent polynomials with degree at most d, P̂ ∈ R[eix/2, e−ix/2]

might appear to be a Laurent polynomial with degree at most d+ 1. In fact it has degree deg(P̂ ) ≤
d− 1, because the coefficient of (ei

x
2 )d+1 term in P̂ is cos θk

2 e
i
ϕk
2 pd + sin θk

2 e
−i

ϕk
2 qd = 0 by the

selected θk and ϕk, and the coefficients of (e
ix
2 )d term is 0 by condition 2. Similarly, Q̂ has leading

coefficient − sin θk
2 e

i
ϕk
2 p−d + cos θk

2 e
−i

ϕk
2 q−d = 0 and has degree deg(Q̂) ≤ d− 1. Since d ≤ L,

we have deg(P̂ ) ≤ L− 1 and deg(Q̂) ≤ L− 1, hence condition 1 is satisfied. From the parity of P
and Q, it is easy to see that P̂ and Q̂ have parity L−1 mod 2, thus condition 2 is satisfied. Condition
3 follows from unitarity. Thus by the induction hypothesis, Eq. (S37) can be written as a QNN in the
form of UWZW

θ,ϕ,L−1(x), and therefore the matrix[
P −Q
Q∗ P ∗

]
(S40)

can be written as a QNN in the form of UWZW
θ,ϕ,L(x). ■

A.4 Proof of Theorem 4

We first restate the following lemma that was proved in Refs. [36, 37].

Lemma S2 ([36, 37]) SupposeA(x) ∈ C[eix, e−ix] is a real-valued Laurent polynomial with degree
L that satisfies A(x) ≥ 0 for all x ∈ R, then there exists a Laurent polynomial P ∈ C[eix/2, e−ix/2]
with deg(P ) = L and parity L mod 2 such that PP ∗ = A.

Lemma S2 is a generalized version of Lemma S1, which extends the coefficients to complex numbers.
Similarly, the Laurent polynomial P in Lemma S2 could be computed via root finding. Now we
prove Theorem 4 as follows.

Theorem 4 (Univariate approximation properties of single-qubit QNNs.) For any univariate
square-integrable function f : [−π, π] → R and for all ϵ > 0, there exists a QNN UWZW

θ,ϕ,L(x)

such that |ψ(x)⟩ = UWZW
θ,ϕ,L(x) |0⟩ satisfies

∥ ⟨ψ(x)|Z|ψ(x)⟩ − αf(x)∥ ≤ ϵ (S41)

for some normalizing constant α.

Proof Similar as in the proof of Proposition 2, we use the Riesz–Fischer theorem [41] that the
Fourier series of any square-integrable function f(x) converges to f(x) in the norm of L2. For any
ϵ > 0, there exists a K ∈ N+ such that

∥fK(x)− f(x)∥ ≤ ϵ, (S42)
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where fK(x) is the K-term truncated Fourier series of f(x). Note that we can always multiply f(x)
and fK(x) by some constant α, without loss of generality, we assume |fK(x)| ≤ 1 for all x ∈ R.
Since f(x) is a general square-integrable function, the partial Fourier series fK(x) is a complex
Laurent polynomial with degree K in C[eix, e−ix]. Then FK(x) := 1+fK(x)

2 is a Laurent polynomial
in C[eix, e−ix] with degree K such that 0 ≤ FK(x) ≤ 1 for all x ∈ R.

By Lemma S2, there exists a Laurent polynomial P ∈ C[eix/2, e−ix/2] with degree K and parity
K mod 2 such that PP ∗ = FK(x). Notice that |P (x)| ≤ 1 for all x ∈ R since |P (x)|2 = FK(x) ≤
1. By Lemma 3, there exists a QNN UWZW

θ,ϕ,K(x) such that

UWZW
θ,ϕ,K(x) =

[
P (x) −Q(x)
Q∗(x) P ∗(x)

]
. (S43)

Let |ψ(x)⟩ = UWZW
θ,ϕ,K(x) |0⟩, we have

⟨ψ(x)|Z|ψ(x)⟩ = PP ∗ −QQ∗ = 2PP ∗ − 1 = 2FK(x)− 1 = fK(x). (S44)

It follows from Eq. (S42) that

∥ ⟨ψ(x)|Z|ψ(x)⟩ − f(x)∥ ≤ ϵ. (S45)

■

B Limitations on representing multivariate Fourier series

In this section, we show that if the single-qubit native QNN is written in the form of a K-truncated
multivariate Fourier series, it has a rich Fourier frequency set Ω, but it cannot meet the requirements
of the corresponding Fourier coefficients set CΩ due to the curse of dimensionality. Specifically, let
x := (x(1), x(2), . . . , x(d)) ∈ Rd and the single-qubit native QNN is defined as follows:

Uθ,L(x) = U3(θ0, ϕ0, λ0)

L∏
j=1

RZ(xj)U3(θj , ϕj , λj), (S46)

where xj is a one-dimensional data of x, i.e., xj ∈ {x(m) | m = 1, · · · , d}. The quantum circuit is
shown in Fig. S1.

|0⟩ U3(θL, ϕL, λL) RZ(xL) · · · U3(θ0, ϕ0, λ0)

Figure S1: Circuit of Uθ,L(x), where the trainable block is composed of U3(·), and the encoding
block is RZ(·). Note that there is no restriction on the encoding order of x(m).

Without loss of generality, assume that each one-dimensional data x(m) is uploaded the same number
of times, denoted by K, then we have Kd = L. Further, we write Vj := U3(θj , ϕj , λj) for short, that
is

Uθ,L(x) = V0

L∏
j=1

[
e−ixjλ0 0

0 e−ixjλ1

]
Vj , (S47)

where λ0 = 1
2 and λ1 = − 1

2 . More generally, we have

Uθ,L(x) =

1∑
j1,··· ,jL=0

e−i(λj1
x1+···+λjL

xL) V0 |j1⟩⟨j1|V1 · · · |jL⟩⟨jL|VL. (S48)

Next, we reformulate the above equation using x(m) instead of xj . We denote Im ⊂ {1, · · · , L} as
the index set of encoding block RZ(x

(m)) and I ′m = {λjk | k ∈ Im}, then

Uθ,L(x) =
∑

j∈{0,1}L

e−i(Λ
(1)
j x(1)+···+Λ

(d)
j x(d)) V0 |j1⟩⟨j1|V1 · · · |jL⟩⟨jL|VL, (S49)
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where j is bit-strings composed of jl, l = 1, · · · , L and Λ
(m)
j =

∑
λ, λ ∈ I ′m. Further, for the initial

state |0⟩ and some observable M , we have

fθ,L(x) = ⟨0|U†
θ,L(x)MUθ,L(x) |0⟩ =

∑
ω∈Ω

cωe
iω·x, (S50)

where Ω = {hj,k := (Λ
(1)
k − Λ

(1)
j , · · · ,Λ(d)

k − Λ
(d)
j ) | j, k ∈ {0, 1}L}. We consider the m-th

dimension,

Λ
(m)
k − Λ

(m)
j = {(λk1

+ · · ·+ λkK
)− (λj1 + · · ·+ λjK ) | λk1

· · ·λkK
, λj1 · · ·λjK ∈ I ′m}.

(S51)

Since λ = ± 1
2 , for all λ ∈ I ′m, we can derive

{Λ(m)
k − Λ

(m)
j | j, k ∈ {0, 1}L} = {−K, · · · , 0, · · · ,K}. (S52)

Then the Fourier frequency spectrum is Ω = {−K, · · · , 0, · · · ,K}d. For the Fourier coefficient set
CΩ = {cω | ω ∈ Ω}, we have

cω =
∑

j,k∈{0,1}L,ω=hj,k

Cj,k, (S53)

and

Cj,k = ⟨0|V †
L |kL⟩⟨kL|V †

L−1 · · · |k1⟩⟨k1|V
†
1MV1 |j1⟩⟨j1| · · ·VL−1 |jL⟩⟨jL|VL |0⟩ . (S54)

If the number of truncation terms K is fixed, as the dimension d increases, the degrees of freedom of
the set CΩ increase with O(d), so it cannot represent any exponential size Fourier coefficients set.
Thus for all θ ∈ R3(L+1), the Eq. (S50) cannot express an arbitrary k-truncated multivariate Fourier
series.

C Extension to multi-qubit QNNs

We have already shown that single-qubit native QNNs are able to approximate any univariate function
but possibly could not approximate arbitrary multivariate functions by Fourier series in Section 3
and Section 4. To address this limitation, research into the extension approach of single-qubit native
QNNs is crucial. For classical NNs, a common approach toward overcoming such limitations is to
increase the width or depth of the networks. We conjecture that QNNs have similar characteristics.
We hereby provide a multi-qubit extension strategy as shown in Fig. S2, called Parallel-Entanglement,
introducing quantum entanglement by multi-qubit gates such as CNOT gates. Similar to classical
NNs in which different neurons are connected by trainable parameters to form deep NNs, QNNs can
establish the connection between different qubits through quantum entanglement.

|0⟩ U3(·) • · · · RZ(x
(1)) · · · U3(·) • · · ·

|0⟩ U3(·) • · · · RZ(x
(2)) · · · U3(·) • · · ·

|0⟩ U3(·) · · · RZ(x
(3)) · · · U3(·) · · ·

...
...

...
|0⟩ U3(·) • · · · RZ(x

(d)) · · · U3(·) • · · ·

Figure S2: The Parallel-Entanglement model of d qubits and L layers. Each layer consists of a
trainable block and an encoding block in the dashed box. Each trainable block is composed of
repeated sub-blocks of U3 rotation gates and CNOT gates, as shown in the dotted box. The number
of sub-blocks in each trainable block is denoted by Dtr. The encoding block is a d-tensor of
RZ(x

(m)) gates for a d-dimensional data x := (x(1), . . . , x(d)).

We numerically show that the multi-qubit extension as shown in Fig. S2 could improve the expressivity
of single-qubit QNNs. Consider the same bivariate function f(x, y) = (x2+y−1.5π)2+(x+y2−π)2

21



used in Section 5.2, we use a two-qubit QNN of L = 10 and Dtr = 3 to approximate the target
function f(x, y) with the same training setting. The experimental results are shown in Fig. S3.
Compared with the approximation results of single-qubit QNNs in Fig. 6, we can see that the two-
qubit QNN has stronger expressive power than single-qubit models. Moreover, we could build the
universal trainable block (UTB) using a universal two-qubit quantum gate [42, 43] consisting of
U3 and CNOT gates. Specifically, a two-qubit universal trainable block can express any two-qubit
unitary matrix. Using a two-qubit QNN with UTBs yields a better approximation result which is
shown in Fig. S4. From the numerical results, we could see that the multi-qubit extension could
potentially overcome the limitations of single-qubit QNNs on approximating multivariate functions
as illustrated in Section 4.

(a) Target function. (b) Approximation result. (c) Training loss.

Figure S3: Panel (a) is the plot of target function f(x, y). Panel (b) shows the approximation result
of a two-qubit QNN of L = 10 and Dtr = 3. Panel (c) is the plot of training loss during the
optimization.

(a) Approximation result. (b) Training loss.

Figure S4: Panel (a) shows the approximation result of a two-qubit QNN of L = 10 with UTB. Panel
(b) is the plot of training loss during the optimization.

We further illustrate the ability of Parallel-Entanglement models to address practical problems through
experiments on the classification task. The public benchmark data sets are used to demonstrate the
capabilities of Parallel-Entanglement models to tackle classification tasks.

The performance of the Parallel-Entanglement model on classifying Iris [44], Breast Cancer [45], and
HTRU2 [46] data sets are summarized in Table 1. Specifically, 100 pieces of data are sampled from
the dataset, with 80% of them serving as the training set and 20% serving as the test set. We use the
Adam optimizer with a learning rate of 0.1 and a batch size of 40 to train the multi-qubit QNNs. In
order to reduce the effect of randomness, the results of classification accuracy are averaged over 10
independent training instances.

The Iris data set contains 3 different classes, each class only has four attributes. Obviously, the
4-qubit model easily obtains an average accuracy of over 99% with only 1 layer on Iris data. The
HTRU2 data set only has two categories, and each example has 8 attributes. As a result, an 8-
qubit QNN is required to complete this task. The average accuracy for binary classification with
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Table 1: The performance of the Parallel-Entanglement model.
Dataset # of qubits L Dtr # of parameters Average accuracy

Iris 4 1 1 16 0.990± 0.01

HTRU2 8 1 1 32 0.910± 0.09
3 1 64 0.970± 0.03
3 2 128 0.980± 0.02

Breast Cancer 4 1 1 16 0.780± 0.06
3 1 32 0.840± 0.02
3 2 64 0.845± 0.04

1 layer achieves above 91%. We can see that adding the number of layers to 3 and the depth of
each layer to 2 increases the average accuracy to 98%. Since the Breast Cancer data contains 30
features for binary classification, the principal component analysis (PCA) is used to reduce feature
dimension. Here the numerical results of a 4-qubit model are given to illustrate the power of the QNN.
Compared to the model using complete information, the QNN model does not perform perfectly. But
increasing the number of layers and the depth may improve the test accuracy. Based on the finding of
the preceding experiments, it is clear that the Parallel-Entanglement model is capable of handling
practical classification problems.

23


