
Supplementary Material

A Evaluation Metrics

The maximum forgetting metricMf and the final discovery metricMd are proposed for evalua-
tion.Mf measures the capability to maintain the performance on the known categories, which is the
lower the better.Md measures the ability to discover novel categories, which is the higher the better.
To evaluate the performance of the clustering assignments, we follow the standard practise [1, 2]
to adopt clustering accuracy. First, an optimal permutation h∗ that matches the cluster assignments
y∗i with the ground truth label yi is obtained by solving the following optimization problem using
Hungarian algorithm [3]:
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where M t
known and M t

novel denote the number of known category samples and novel category samples
from Dt

test, respectively. The yi,known and yi,novel denote the label of the known samples and category
samples, respectively. Then, the maximum forgettingMf and final discoveryMd can be obtained
by

Mf = max
t
{ACC0

known − ACCt
known}, (A.4)

Md = ACCT
novel. (A.5)

The importance ofMf andMd are different. First, Mf should be sufficiently low, otherwise a
model forgetting the previous learned tasks is not practically useful in the real world applications.
Second, the model should improveMd as much as possible on the condition of lowMf .

B Illustration of the GM Framework

During the growing phase, the novel data is detected by the novelty detection process, and the
corresponding features are extracted by the dynamic branch. The cluster head is used to assign
pseudo labels for the novel data. During the merging phase, the exemplar set is updated with the sifted
novel data as well as the pseudo labels, and the static branch is unified with the dynamic branch. For
testing, the features are extracted by the dynamic branch, and the predictions are provided according
to distances to the prototypes.
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Figure B1: The illustration of the GM Framework.

C Exemplar Set Construction

After the initial pre-training stage, the exemplar set is initialized, following iCaRL [4]. Denote
Pk = {pk,i}i as the exemplar set of the k-th class. Then pk,i is selected by solving the following
optimization problem,

pk,i ←− argmin
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where N0
k denotes the number of samples belong to the k-th class.

D Scenarios Details

We formulate four different scenarios for experiments as follows:

Class Incremental Scenario (CI): the data are only drawn from the novel categories, i.e., Ct ∩ (Ct−1 ∪
· · · ∪ C0) = ∅,∀t ∈ {1, · · · , T}. CI is a standard scenario that only requires the models to learn from
the novel samples and keep the performance of the known categories.

Data Incremental Scenario (DI): the data are only drawn from the known categories, i.e., C0 =
Ct,∀t ∈ {1, · · · , T}. DI is a simple scenario, which evaluates the models’ capability to improve the
feature representation with the continuous unlabeled data.

Mixed Incremental Scenario (MI): the data are drawn from both novel categories and the known
categories, i.e., C0 ⊂ C1 ⊂ · · · ⊂ CT . MI is more complicated than CI, where models are further
required to identify whether the data comes from novel categories or not.

Semi-supervised Mixed Incremental Scenario (SMI): the data are drawn from both novel categories
and the known categories, i.e., C0 ⊂ C1 ⊂ · · · ⊂ CT , and a portion of the data are labeled. SMI is
closer to the real-world application, where both labeled and unlabeled samples are provided in the
incremental stages.

For CI, 70%/10%/10%/10% classes of the CIFAR-100, CUB-200, ImageNet-100, Stanford-Cars, and
FGVC-Aircraft datasets are used in the initial stage and the following 3 time-steps of the continuous
category discovery stage, respectively. For DI, 25% of the data are used for the initial stage, and 75%
are used for the continuous category discovery stage, with 25% data at each time-step. For MI, 87%
data from 0-70 classes in CIFAR-100 are used for initial stage. 7% of data from 0-70 classes, 70%
data from 70-80 classes are used for t = 1 during the continuous category discovery stage. 2% data
from 0-70 classes, 20% data from 70-80 classes and 90% data from 80-90 classes are used for t = 2.
3% data form 0-70 classes, 10% data from 70-80 classes, 10% data from 80-90 classes and all of
the data from 90-100 classes are used during t = 3. For SMI, 20% of the data from MI are labeled
during t = 1, 2, 3.
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Table F1: Experimental results of 20/50 incremental classes at each time step on CI scenario and
CIFAR-100 dataset.

Step=20 Step=50
Mf Md Mf Md

lower-bound ofMf (offline K-Means) 7.18±0.57 17.07±0.51 11.69±0.79 15.46±0.31
upper-bould ofMd (offline AutoNovel) 5.58±0.37 32.79±1.07 6.20±0.62 30.26±1.41

AutoNovel (online) 63.02±0.48 27.03±3.16 62.51±0.22 12.32 ± 0.22
DRNCD (online) 65.67±1.68 7.12±2.15 68.53±0.89 7.25±1.05
AutoNovel (online) + LwF 16.41±2.64 27.18±1.28 26.57±1.47 10.10±4.90
DRNCD (online) + LwF 67.31±1.24 7.7±1.64 67.78±1.42 8.74±0.49
iCaRL (fixed exemplars) + LwF 31.02±1.06 - 38.83±0.75 -
GM (Ours) 10.86±0.33 34.37±0.80 13.36±0.49 13.69±0.32

Table F2: Additional ablation studies.

Mf Md

GM 9.87±0.25 35.97±1.28
Replace WTA with GCD 7.59±0.18 31.43±1.35
avg. sifting 10.03±0.36 34.85±1.46
Ramp-up weight for LMSE 8.69±0.17 33.20±0.96

E Implementation Details

For all experiments, we use ResNet-18 [5] network as the encoder, and fully connected layers as the
classifier and the cluster head. SGD optimizer [6] with learning rate 0.1, momentum 0.9 and weight
decay 1e − 4 is used. The learning rate decays for every 60 epochs. The batch size is set to 128
for CIFAR-100 dataset, 64 for CUB-200, Stanford-Cars, and FGVC-Aircraft datasets, and 32 for
ImageNet-100. All the experiments run on the platform with Intel Xeon CPU E5-2640 and Nvidia
GeForce RTX 3080 GPUs.

F Additional Experiments

F.1 More Incremental Classes at each time step

In this section, we provide experimental results of 20/50 incremental classes at each time step on CI
scenario and CIFAR-100 dataset, where GMNet can be well compatible with different number of
incremental classes and obtain consistent performance improvement, shown in Table F1.

F.2 Additional Ablation Studies

Alternative of LBCE with WTA hash. GM is a general framework, supporting various methods
to learn the representation of the samples. Here, we perform ablation study, which removes LBCE
+WTA and the cluster head, performs the supervised/unsupervised contrastive loss in GCD on the
exemplar set/unlabeled samples respectively, and applies semi-supervised K-Means algorithm for
label assignment. The results in CI scenario and CIFAR-100 dataset are shown in Table F2.

Alternative of sample sifting strategy. The maximum distance of top-j NN is used for sifting in
GM. However, the average of the j distances could also be applied during the sifting process. The
results of using average distance of top-j nearest neighbor in CI scenario and CIFAR-100 dataset are
shown in Table F2. Meanwhile, the influence of j in GM under CI on CIFAR-100 is studied, shown
in Table F3.

Weights of each terms in the loss function. The loss of GM framework contains four terms, i.e.,
LBCE, LMSE, LPLL, LSD. The studies of the impact of the variation of the weight for each term is
shown in Table F4. During the experiments, one of the weight varies while the other weights keep
fixed. We can find that although four losses are involved, our method shows robust to different loss
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Table F3: Influence of j for sifting strategy under CI on CIFAR-100.

k Mf Md

5 10.06 34.10
10 10.11 35.03
15 9.79 35.77
20 9.64 34.13
25 9.54 33.87

Table F4: Impact of the variation of the weight for each term in the loss function. For each term, the
corresponding weight varies while the other weights keep fixed.

LBCE LMSE LPLL LSD
Weight Mf Md Mf Md Mf Md Mf Md

0.1 9.61 21.00 10.21 32.47 9.11 37.03 10.20 36.67
0.25 8.94 27.93 10.61 34.63 9.84 37.17 10.29 37.13
0.5 9.41 33.77 9.81 35.07 9.45 36.23 10.41 35.93
0.75 10.36 35.17 10.11 35.80 9.94 35.87 10.49 36.9
1.0 9.79 35.77 9.79 35.77 9.79 35.77 9.79 35.77
2.5 9.94 37.00 10.37 39.87 20.43 35.23 10.49 36.9
5.0 9.84 36.6 9.10 35.57 30.59 35.13 9.81 33.00
7.5 10.27 33.33 9.72 34.2 71.07 1.23 9.87 33.4
10.0 10.07 36.3 8.44 31.63 71.07 0.66 10.01 32.70

weights. Except for using too small weight for LBCE and too large weight for LPLL, in other cases,
our model can obtain superior performance with a large range of loss weight (from 0.1 to 10). As
the ramp-up function is widely used as the weight of MSE loss [1], experiments are conducted on
to evaluate the performance of GM model with ramp-up weight for LMSE, shown in Table F2. The
model with ramp-up weight performs slightly better onMf and worse onMd.

Study on novelty detection threshold ϵ. In our experiments, GM is not sensitive to this threshold and
GM with the 0.6 theshhold will achieve relatively high performance. Here, we provide the ablation
study on the novelty detection threshold, shown in Table F5. The results show that though GM
achieves the best performance with threshold 0.6, it maintains relatively high performance with the
values in [0.4, 0.7] and consistently outperforms existing methods. The experiments are conducted
on the CIFAR-100 dataset in MI scenario.

Discussion about the effectiveness of GMNet on Md. For the compared methods, they can
hardly solve the contradiction between the two tasks of classification and novel classes discovery in
contiguous stages well, leading to the degraded performance . Labeled data is introduced in SMI, so
that the model can fit the distribution of new data and learn the novel category information at each
stage, reducing the difficulty of novelty detection and improving the performance ofMd, but even
so, existing methods still not well compatible with the two tasks, led to a more severe forgetting
effect. For GMNet, through the double-branch and exemplar structure and LSD and LPLL on top of
this, the model can be well compatible with two tasks in contiguous stages. we provide ablation study
for them in Table F6 under MI scenario. We can find that, LPLL could significantly decreaseMf

and increaseMd. EMA and LSD could help the model leverage the effective representation learned

Table F5: Influence of ϵ for novelty detection under MI on CIFAR-100.

ϵ Mf Md

0.4 9.79 29.27
0.5 10.29 32.33
0.6 9.79 35.77
0.7 10.16 30.37
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Table F6: Ablation studies about the effectiveness of GMNet onMd under MI on CIFAR-100.F

Mf Md

GM 9.65±0.32 30.58±1.13
GM w/o. LSD 22.03±0.49 22.47±2.62
GM w/o. LSD, EMA 26.20±0.67 24.35±1.09
GM w/o. LSD, EMA, LPLL 46.46±0.81 18.02±1.77

Table F7: The alignment and uniformity of feature distribution under CI in CIFAR-100 dataset.
Classification Model represents the model trained on known categories, Discovery Model represents
the model trained for novel category discovery, and GM model represents the proposed method.

Classification Model Discovery Model GM Model

Alignment Known Categories -1.008± 0.007 -1.153±0.003 -0.825±0.007
Novel Categories -1.118±0.005 -1.009±0.008 -0.923±0.009

Uniformity Known Categories -2.704±0.008 -2.625±0.005 -2.510±0.012
Novel Categories -2.631±0.009 -2.754±0.008 -2.397±0.012

from the initial stage, and further improve the performance. With the help of proposed methods, GM
obtains the best performance on bothMf andMd.

F.3 Alignment and Uniformity

The visualization of the feature distribution of different models in Figure 2 is qualitative. In this
section, the quantitative results of the distribution are provided. Following [7], the alignment and
uniformity are calculated under CI on CIFAR-100 dataset. The alignment measures the distances
between each positive pairs, while the uniformity represents the diversity of the feature. The results
in Table F7 show that the changes of these two indicators are consistent with our assumption.
Classification model shows smaller uniformity and larger alignment on on known categories than
novel categories and discovery model show the opposite results, which indicates feature discriminative
ability of the two model focus on different sample types (novel or known categories). Compared
to the two models, GM model show better uniformity and Alignment on both novel and known
categories.

G Limitations and Future Works

Here we discuss the limitations of GM and the future works. First, although GM outperforms the
compared baseline methods on bothMf andMd, the forgetting of the knowledge on the known
categories is still not overcome completely. Second, the scenario in real-world applications is more
complicated than the proposed four scenarios, which is worthy for further studying.

H Potential Negative Social Impact

The proposed GM framework significantly reduces the impact of catastrophic forgetting and improves
the ability of novel category discovery compared with other baseline methods, which is pratical in
real-world applications with unlabeled data stream. However, specific settings of the model may lead
to unreasonable usages with negative social impact, i.e., identifying minorities and discriminating
against them. Our method is not specifically designed for the imbalanced training set (e.g., gender,
age and race) against the potential social impact. It is recommended to clean, sift, and rebalance the
imbalanced training set, especially the images for different gender and race. We also claim that the
proposed GM framework is mainly for research purpose and could not be applied directly without
the rational assessment towards the deployed environment.

5



References
[1] Kai Han, Sylvestre-Alvise Rebuffi, Sebastien Ehrhardt, Andrea Vedaldi, and Andrew Zisserman.

Autonovel: Automatically discovering and learning novel visual categories. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021.

[2] Bingchen Zhao and Kai Han. Novel visual category discovery with dual ranking statistics and
mutual knowledge distillation. In Advances in Neural Information Processing Systems, pages
22982–22994, 2021.

[3] Harold W Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83–97, 1955.

[4] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. iCaRL:
Incremental classifier and representation learning. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 5533–5542, 2017.

[5] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. In International Conference on Learning Representations, 2018.

[6] Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. On the importance
of initialization and momentum in deep learning. In Proceedings of the 30th International
Conference on Machine Learning, pages 1139–1147, 2013.

[7] Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through
alignment and uniformity on the hypersphere. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pages 9929–9939. PMLR, 2020. URL http://proceedings.
mlr.press/v119/wang20k.html.

6

http://proceedings.mlr.press/v119/wang20k.html
http://proceedings.mlr.press/v119/wang20k.html

	Evaluation Metrics
	Illustration of the GM Framework
	Exemplar Set Construction
	Scenarios Details
	Implementation Details
	Additional Experiments
	More Incremental Classes at each time step
	Additional Ablation Studies
	Alignment and Uniformity

	Limitations and Future Works
	Potential Negative Social Impact

