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Abstract

We propose a family of First Hitting Diffusion Models (FHDM), deep generative
models that generate data with a diffusion process that terminates at a random
first hitting time. This yields an extension of the standard fixed-time diffusion
models that terminate at a pre-specified deterministic time. Although standard
diffusion models are designed for continuous unconstrained data, FHDM is natu-
rally designed to learn distributions on continuous as well as a range of discrete
and structure domains. Moreover, FHDM enables instance-dependent terminate
time and accelerates the diffusion process to sample higher quality data with fewer
diffusion steps. Technically, we train FHDM by maximum likelihood estimation on
diffusion trajectories augmented from observed data with conditional first hitting
processes (i.e., bridge) derived based on Doob’s h-transform, deviating from the
commonly used time-reversal mechanism. We apply FHDM to generate data in
various domains such as point cloud (general continuous distribution), climate and
geographical events on earth (continuous distribution on the sphere), unweighted
graphs (distribution of binary matrices), and segmentation maps of 2D images
(high-dimensional categorical distribution). We observe considerable improvement
compared with the state-of-the-art approaches in both quality and speed.

1 Introduction

Diffusion processes have become a powerful tool in various areas of machine learning (ML) and
statistics. Traditionally, Langevin dynamics and Hamiltonian Monte Carlo have been foundations
for learning and sampling from graphical models and energy-based models. Recently, denoising
diffusion probabilistic models (DDPM) [18] and score matching with Langevin dynamics (SMLD)
with its variants [41–43] have achieved the state-of-the-art results on data generation [13, 9, 30, 19].

Standard diffusion processes used in ML can be classified into two categories: 1) infinite (or mixing)
time diffusion processes such as Langevin dynamics, which requires the process to run sufficiently
long to converge to the invariant distribution, whose property is leveraged for the purpose of learning
and inference; and 2) fixed time diffusion processes such as DDPM, SMLD, and Schrodinger bridges
[11], which are designed to output the desirable results at a pre-fixed time. Although fixed-time
diffusion has been show to surpass infinite time diffusion on both speed and quality, it still yield slow
speed for modern applications due to the need of a pre-specified time and the incapability to adapt
the time based on the difficulty of instances and problems. Moreover, standard diffusion models are
naturally designed on Rd, and can not work for discrete and structured data without special cares.

In this work, we study and explore a different first hitting time diffusion model that terminates at
the first time as it hits a given domain, and leverages the distribution of the exit location (known as
exit distribution, or harmonic measure [31]) as a tool for learning and inference. We provide the
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A: Pre-!x time hit B: Sphere hit C: Boolean hit D: Categorical hit

Figure 1: The four hitting schemes introduced in this paper. A: fixed-time hit, the process terminates
at a fixed time; B: Sphere hit, hitting the boundary of a sphere from inside; C: Boolean hit, each
coordinate terminates when it hits 0 or 1 and the whole process terminates when all of its coordinates
terminate; D: Categorical hit, hitting the one-hot codes based on a conditioned process.

basic framework and tools for first hitting diffusion models. We leverage our framework to develop a
general approach for learning deep generative models based on first hitting diffusion. This approach
generalizes SMLD and its SDE extensions but can be attractively applied to a range of discrete
and structured domains. This contrasts with the standard diffusion models, which are restricted to
continuous Rd data. In particular, we instantiate our framework to three cases, yielding new diffusion
models for learning 1) spherical, 2) binary and 3) categorical data. In addition, the proposed diffusion
model gives different instances adaptive arrival times and can generate high-quality samples using
fewer diffusion steps. We discuss theoretical properties and fast implementation of our methods and
demonstrate their practical efficiency in a suite of practical learning problems.

2 Main Framework

2.1 First Hitting Diffusion Processes

Let ⇧⇤ be a distribution of interest on a domain ⌦ ⇢ Rd. The goal is to construct a first hitting
stochastic process, which starts from a point outside of ⌦ and returns a sample drawn from ⇧⇤ when
it first hits set ⌦. We start with introducing the new first hitting model.

Let Z := {Zt : t 2 [0,+1)} be a continuous-time Markov process with probability law Q taking
value in a set V that contains ⌦ as a subset. Here Q is a probability measure defined on the space of
all continuous trajectories C([0,+1), Rd). We use Qt to denote the marginal distribution of Zt at
time t. We assume that the process is initialized from a point Z0 outside of ⌦. Denote by ⌧ the first
hitting time of Zt on ⌦, that is, ⌧ = inft{t � 0: Zt 2 ⌦}. We call that Zt is absorbing to set ⌦ if

i) The process enters ⌦ in finite time almost surely when initialized from anywhere in V , that is,
Q(⌧ < +1 | Z0 = z) = 1, 8z 2 V .

ii) The process stops to move once it arrives at ⌦, that is, Q(Zt+s = Zt | Zt 2 ⌦) = 1, 8s, t � 0.

We define the Poisson kernel of Q as the conditional distribution of Z⌧ given Zt = z, denoted
by Q⌦(dx | Zt = z) := Q(Z⌧ = dx | Zt = z). The marginal distribution of Z⌧ , which we
write as Q⌦(dx) = Q(Z⌧ = dx), is called the exit distribution, or harmonic measure. Note
that Q⌦(dx) =

R
V Q⌦(dx | Z0 = z)Q0(dz). The crux of our framework is to leverage the exit

distribution Q⌦ as a tool for statistical learning and inference, which is different from traditional
frameworks that exploit the properties of the distributions at a fixed time or at convergence.
Example 2.1 (Sphere Hitting). As shown in Figure 1-B, let V = {x 2 Rd : kxk  1} be the unit
ball and ⌦ = Sd := @V the unit sphere. Let Z be a Brownian motion starting from z 2 V and
stopped once it hits the boundary ⌦. It is written as

QSd : dZt = I(kZtk < 1)dWt, Z0 2 V, (1)

where Wt is a Wiener process; the indicator function I(kZtk < 1) sets the velocity to zero and hence
stops the process once Zt hits ⌦. The Poisson kernel in this case is a textbook result:

QSd
⌦ (dx | Zt = z) / 1� kzk2

kx� zkd
⇥ µ⌦(dz), where µ⌦ is the surface measure on ⌦ = Sd. (2)
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Example 2.2 (Boolean Hitting). As shown in Figure 1-C, let V = [0, 1]d be the unit cube and
⌦ = Bd := {0, 1}d the Boolean cube. Let Z be a Brownian motion starting from Z0 2 V and
confined inside the cube V in the following way:

QBd : dZt,i = I(Zt,i 2 (0, 1))dWt,i, 8i 2 {1, 2, · · · , d},
where Zt,i is the i-th element of Z. Here, each coordinate Zt,i stops to move once it hits one of the
end points (0 or 1). It can be viewed as a particle flying in a room that sticks on a wall once it hits it.

Proposition 2.3. The Poisson kernel of QBd is a simple product of Bernoulli distributions:

QBd
⌦ (x | Zt = z) = Ber(x|z) :=

dY

i=1

Ber(xi|zi), where Ber(xi|zi) = xizi + (1� xi)(1� zi);

Ber(xi|zi) is the likelihood function of observing xi 2 {0, 1} under Bernoulli(zi) with zi 2 [0, 1].
Example 2.4 (Fixed Time Hitting). Our first hitting framework includes the more standard models
with fixed terminal time. To see this, let Z̄t = (t, Zt) be a stochastic process Zt with law Q augmented
with time t as one of its coordinates. Let V = [0, t]⇥ Rd and ⌦ = {t}⇥ Rd, where ⌦ is a vertical
plane on the augmented space. Then the hitting time ⌧ equals t deterministically, and the exit
distribution equals the marginal distribution of Zt at time t. See Figure 1-A, for illustration.

2.2 Diffusion Process Tools: Conditioning and h-transform

We introduce some basic tools for diffusion processes, including how to conduct conditioning, and
exponential tilting (via h-transform) on diffusion processes. We apply these tools to the first hitting
models we have. The readers can find related background in Oksendal [31], Särkkä and Solin [37].

Assume Z is a general Ito diffusion process in V that is absorbed to ⌦, denoted as Ito⌦(b,�),
Q ⇠ Ito⌦(b,�) : dZt = bt(Zt)dt+ �t(Zt)dWt, 8t 2 [0,+1), Z0 ⇠ Q0, (3)

where bt(x) 2 Rd is the drift term and �t(x) 2 Rd⇥d is a positive definite diffusion matrix. We
always assume that b and � are sufficiently regular to yield a unique weak solution of (3).

Conditioning A step in our work is to find the distribution of the trajectories of a process Q
conditioned on a future event, e.g., the event of hitting a particular value x at exit, that is, {Z⌧ = x}.
A notable result is that the conditioned diffusion processes are also diffusion processes. Given a point
x 2 ⌦ on the exit surface, the process of Q(· | Z⌧ = x) can be shown to be the law of the following
diffusion process [14, 37]:
Q(·|Z⌧ = x) : dZt =

�
bt(Zt) + �2

t (Zt)rZt log q⌦(x | Zt)
�
dt+ �t(Zt)dWt, Z0 ⇠ µ0|x, (4)

where q⌦(x | z) is the density function of the Poisson kernel Q⌦(dx | Zt = z) w.r.t. a reference
measure µ⌦ on ⌦, and �2 is the matrix square of �, and the conditional initial distribution µ0|x =
Q0(· | Z⌧ = x) is the posterior probability of Z0 given Z⌧ = x.

Intuitively, the additional drift term rZt log p⌦(x | Zt) plays the role of steering the process towards
the target x, with an increasing magnitude as Zt approaches ⌦ (because P⌦(· | Zt = z) converges to
a delta measure centered at x when z approaches ⌦). This process is known as a diffusion bridge,
because it is guaranteed to achieve Z⌧ = x at the first hitting time with probability one.
Proposition 2.5. For QSd , the process conditioned on Z⌧ = x 2 Sd at exit is

QSd(· | Z⌧ = x) : dZt = I(kZtk < 1)

 
rZt log

1� kZtk2

kx� Ztkd
dt+ dWt

!
. (5)

Here the additional drift term (colored in blue) grows to infinity if kZtk ! 1 but kZt � xk is large,
and hence enforces that Z⌧ = x when we exit the unit ball.

Proposition 2.6. For QBd , the process conditioned on Z⌧ = x 2 {0, 1}d at exit is

QBd(·|Z⌧ = x) : dZt,i = I(Zt,i 2 (0, 1))

✓
2xi � 1

xizi + (1� xi)(1� zi)
dt+ dWt,i

◆
, 8i. (6)

The additional drift term (colored in blue) enforces that Z⌧,i = xi at the exit time as the drift would
be infinite if zi is still far from xi when zi is close to {0, 1}.
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Proposition 2.7. For the fixed time diffusion in Example 2.4, let QT be the standard Brownian motion
dZt = dWt stopped at a fixed time t = T , then Q conditioned on QT (Z|ZT = x) is

QT (·|Z⌧ = x) : dZt = I(t  T )

✓
Zt � x

T � t
dt+ dWt

◆
. (7)

The additional drift (colored in blue) forces ZT = x as it grows to infinity if Zt 6= x while t ! T .

h-Transform Assume we want to modify the Markov process Z such that its exit distribution Q⌦

matches the desirable target distribution ⇧⇤. Doob’s h-transform [14] provides a simple general
procedure to do so. Note that by disintegration theorem, we have Q(dZ) =

R
Q⌦(dx)Q(dZ | Z⌧ =

x), which factorizes Q into the product of the exit distribution and the conditional process given a
fixed exit location Z⌧ = x. To modify the exit distribution of Q to ⇧⇤, we can simply replace Q⌦

with ⇧⇤ in the disintegration theorem, yielding

Q⇧⇤
(dZ) :=

Z
⇧⇤(dx)Q(dZ | Z⌧ = x) = ⇡⇤(Z⌧ )Q(dZ), with ⇡⇤(Z⌧ ) :=

d⇧⇤

dQ⌦
(Z⌧ ), (8)

where ⇡⇤ = d⇧⇤

dQ⌦
is the Radon–Nikodym derivative (or density ratio) between ⇧⇤ and Q⌦, and Q⇧⇤

is called an h-transform of Q. Intuitively, Q⇧⇤
is the distribution of trajectories Z ⇠ Q(·|Z⌧ = x)

when the exit location x is randomly drawn from x ⇠ ⇧⇤. We can also view ⇡⇤(Z⌧ ) as an importance
score of each trajectory Z based on its terminal state Z⌧ , and Q⇧⇤

is obtained by reweighing (or
tilting) the probability of each trajectory based on its score.

If Q is a diffusion process, then Q⇧⇤
is also a diffusion process. In addition, Q⇧⇤

is the law of the
following diffusion process:

Q⇧⇤
: dZt =

⇣
bt(Zt) + �2

t (Zt)rz log h
⇧⇤

t (Zt)
⌘
dt+ �t(Zt)dWt, Z0 ⇠ Q⇧⇤

0 (9)

where the initial distribution Q⇧⇤

0 and h⇧⇤
in the drift term are defined as

Q⇧⇤

0 (dz) =

Z

⌦
⇡⇤(x)Q(Z⌧ = dx, Z0 = dz) (10)

h⇧⇤

t (z) = EQ[⇡
⇤(Z⌧ ) | Zt = z] =

Z

⌦
⇡⇤(x)Q(Z⌧ = dx | Zt = z). (11)

It is clear that h coincides with ⇡⇤ on the boundary, that is, h⇡⇤(x, t) = ⇡⇤(x) for all x 2 ⌦, t � 0.
The name of h-transform comes from the fact that h⇧⇤

is a (space-time) harmonic function w.r.t. Q
in the light of a mean value property: h⇧⇤

t (z) = EQ[h⇧⇤

t+s(Zt+s) | Zt = z], 8s, t > 0. Q⇧⇤
yields a

simple variational representation in terms of Kullback–Leibler (KL) divergence.

Proposition 2.8 (Variational Principle). The Q⇧⇤
in (8) yields

Q⇧⇤
= argmin

P2P(V,⌦)

⇢
KL(P || Q) := EP


log

dP
dQ (Z)

�
, s.t. P⌦ = ⇧⇤

�
(12)

= argmin
P2P(V,⌦)

n
KL(P || Q⇧⇤

) ⌘ KL(P || Q)� EP[log ⇡
⇤(Z⌧ )]

o
, (13)

where P(V,⌦) denotes the set of path measures on V that is absorbed to ⌦.

Eq. (12) shows that Q⇧⇤
is the distribution with ⇧⇤ as the exit distribution that has the minimum KL

divergence with Q. It can be viewed as a Schrodinger half bridge problem [e.g., 32], which enforces
the constraint of PT = ⇧⇤ at a fixed time T , rather than the first hitting time ⌧ . Eq. (13) shows that
the constraint can be turned into a penalty.

First Hitting Diffusion for Sampling The h-transform above readily provides a first hitting
diffusion approach to approximate sampling from ⇧⇤, assuming we can approximate the drift term
h⇧⇤

. The Schrodinger-Follmer sampler [20] can be viewed as a special case of this approach with a
fixed exit time. We leave further exploration to future works. See more discussion in Appendix A.3.
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Simulate Conditioned  SDE by h-transform
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Figure 2: The training pipeline of FHDM. Start from initial distribution, we use h-transform to simulate a
conditioned SDE such that the process terminates at the desired destination data from training set at its hitting
time. The network is trained to approximate the drift term (b(Zt)), resulting a score-matching loss that is
equivalent to the KL divergence.

Algorithm 1 Learning Generative Models by First Hitting Diffusion

Inputs & Goal: A data ⇧̂ := {x(i)} drawn from ⇧⇤ on ⌦. A baseline process Q and a model P✓

that are absorbing to ⌦. Want to find ✓ such that P✓
⌦ ⇡ ⇧⇤.

Training: Approximate ✓̂ = argmin✓ L(✓) by stochastic gradient descent with batches of data
(approximately) drawn Z ⇠ Q(·|Z⌧ = x) and x ⇠ ⇧̂.
Inference: Simulate P✓̂.

2.3 Learning First Hitting Diffusion Models

We illustrate the learning pipeline of our First Hitting Diffusion Models (FHDM) in Figure 2. Assume
⇧⇤ is unknown and we observe it through an i.i.d. sample {x(i)}ni=1 drawn from ⇧⇤. We want to fit
the data with a parametric diffusion process Ito⌦(s✓,�) in V that is absorbing to ⌦,

P✓ : dZt = s✓t (Zt)dt+ �t(Zt)dWt, Z0 ⇠ P✓
0, (14)

such that the exit distribution P✓
⌦ matches the unknown ⇧⇤. Here s✓t (z) is a deep neural network

with input (z, t) and parameters ✓. We should design s✓ and � properly to ensure the absorbing
property. The standard approach to estimate ⇧⇤ is maximum likelihood estimation, which can be
viewed as approximately solving min✓ KL(⇧⇤ || P✓

⌦). However, calculating the likelihood of the exit
distribution P✓

⌦ of a general diffusion process is computationally intractable. To address this problem,
we fix Q as a “prior” process, and augment the data distribution ⇧⇤ to the h-transform Q⇧⇤

, whose
exit distribution Q⇧⇤

⌦ matches ⇧⇤ by definition. Note that we can draw i.i.d. sample from Q⇧⇤
in a

“backward” way: first drawing an exit location x ⇠ ⇧⇤ from the data, and then draw the trajectory Z
from Q(·|Z⌧ = x) with the fixed exit point. To train a generative model, we train P✓ to fit it with the
data drawn from Q⇧⇤

by maximum likelihood estimation:

min
✓

n
L(✓) := KL(Q⇧⇤

|| P✓) ⌘ �EZ⇠Q⇧⇤
⇥
log p✓(Z)

⇤
+ const,

o
,

where p✓ = dP✓

dQ⇧⇤ is Radon–Nikodym density function of P✓ relative to Q⇧⇤
. By the chain rule of

KL divergence in (20) in Appendix A.9, we have KL(⇧⇤ || P✓
⌦)  KL(Q⇧⇤ || P✓). Therefore, if

minimizing the KL divergence allows us to achieve P✓ ⇡ Q⇧⇤
, we should also have P✓

⌦ ⇡ Q⇧⇤

⌦ = ⇧⇤.

Using Girsanov theorem [24], we can calculate the density function p✓ and hence the loss function.
Proposition 2.9. Assume Q in (3), and P✓ in (14) are absorbing to ⌦. We have

L(✓) = 1

2
EQ⇧⇤

Z ⌧

0

���t(Zt)
�1(s✓t (Zt)� bt(Zt | Z⌧ ))

��2 dt� log p✓0(Z0)

�
+ const, (15)

where bt(z|x) := bt(z) + �2
t (z)rz log p⌦(x|z) is the drift of the conditioned process Q(·|Z⌧ = x)

in (4), and p✓0 is the probability density function of the initial distribution P✓
0. In addition, ✓⇤ achieves

the global minimum of L(✓) if

s✓
⇤

t (z) = EZ⇠Q⇧⇤ [bt(z|Z⌧ ) | Zt = z], P✓⇤

0 = Q⇧⇤

0 = Ex⇠⇧⇤ [Qx
0(·)].
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Therefore, the optimal drift term s✓
⇤

t should match the conditional expectation of bt(z|x) with
x ⇠ Q⌦(·|Zt = z), which coincides with the drift of Q⇧⇤

in (9). The initial distribution of P✓ should
obviously match the initial distribution of Q⇧⇤

. In practice, we recommend eliminating the need of
estimating P✓0 by starting Q from a deterministic point Z0 = z0, in which case P✓ should initialize
from the same deterministic point. See Algorithm 1.

Learning Spherical Hitting Models Take Q = QSd in Example 2.1, we get a method for learning
generative models for data on the unit sphere. We set the model to be dZt = I(kZtk < 1)(f✓

t (Zt)dt+
dWt) to ensure that it is absorbing to Sd. The loss function is

L(✓) = 1

2
Ex⇠⇧⇤

Z⇠Qx

2

4
Z ⌧

0

�����f
✓
t (Zt)�rZt log

1� kZtk2

kx� Ztkd

�����

2

dt� log p✓0(Z0)

3

5+ const.

Learning Boolean Hitting Models Taking Q = QBd as in Example 2.2 provides an approach
to learning diffusion generative models for binary variables. We set the model P✓ to be dZt =
I(Zt 2 (0, 1)) � (f✓

t (✓)dt + dWt) to ensure that P✓ is absorbing to Bd like QBd , where � denotes
element-wise multiplication. The loss function is

L(✓) = 1

2
Ex⇠⇧⇤

Z⇠Qx

Z ⌧

0

��I(Zt 2 (0, 1)) �
�
f✓
t (Zt)�rZt log Ber(Zt|x)

���2 dt� log p✓0(Z0)

�
+ const.

Learning Fixed Time Diffusion Models Following the fixed time setting in Example 2.4, we can
recover the standard fixed time diffusion models for continuous data, such as SMLD and DDPM. In
particular, a natural choice is to set Q to be an O-U process dZt = ↵tZtdt+ �tdWt initialized from
Z0 ⇠ N (0, v0) where �t � 0, v0 > 0. We show in Appendix A.4 that SMLD (↵t = 0) and DDPM
(↵t > 0) is recovered as the limit case when v0 ! +1.

2.3.1 Learning Categorical Generative Models

In addition to the boolean hitting model, we provide here a first hitting framework for learning cate-
gorical data. In this case, the data domain ⌦ is Cd,m = {e1, . . . , ed}m, where ei = [0, . . . , 1, . . . , 0]
is the i-th one-hot (or basis) vector in Rd, so the data is a m-dimensional and d-categorical.

It is less straightforward to construct a first hitting diffusion process that is absorbing to Cd,m.
We leverage the conditioning technique to achieve this. We explain the idea with m = 1, of
which the general case is a direct product. The key observation is that the one-hot vectors Cd,1

is a subset of the boolean cube Bd = {0, 1}d. Hence, by definition, the conditioned process
QCd,1 := QBd(·|Z⌧ 2 Cd,1) exits at Cd,1 from the inside of Bd. Using the method of h-transforms
[14, 37], Q⌦ := QBd(·|Z⌧ 2 ⌦) for any ⌦ ⇢ Bd is the law of

dZt = I(Zt 2 (0, 1)) � (rz log Ber(⌦ | Zt)dt+ dWt) , Ber(⌦ | z) :=
P

e2⌦Ber(e | z).

Another challenge is to construct a parametric family of P✓ that is absorbing to Cd,m, regardless of
the value of ✓. The result below shows that this can be done by simply adding on top of Q⌦ any
bounded neural network drift term.
Proposition 2.10. Let V = [0, 1]d and ⌦ is any subset of Bd = {0, 1}d. Assume f✓

t (z) is any
bounded measurable function. Then the following process is guaranteed to hit ⌦ when it exits V :

dZt = I(Zt 2 (0, 1)) �
�
f✓
t (Zt) + rz log Ber(⌦ | Zt)dt+ dWt

�
, Z0 2 (0, 1)d.

See Appendix A.1 for the summary of the algorithm for learning categorical data.

2.3.2 Fast Sampling of Bridges

One main step in calculating the loss L(✓) is to draw trajectory Z from the bridge Qx = Q(· | Z⌧ =
x). This can be achieved by simulating the bridge processes using Euler–Maruyama method. This
is not computationally costly because it is the simulation of elementary SDEs and does not involve
deep neural networks. However, it does cause a slow down in the training algorithm if the data x is
very high dimensional and the data size is very large.
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Rotate

Desired  
Exit 

Point
Figure 3: To sample a conditioned
process, we can pick up a trajectory of
unconditioned process and rotate it so
that it exits at a given point.

To speed up the training, we propose a fast algorithm for sim-
ulating bridges by exploiting the symmetry when we initialize
from a point z0 (e.g., the center of sphere) around which ⌦ and
Q are rotational symmetric. The idea is simple: we simulate
the unconditioned process Q to get a trajectory Z that exits at
any point. Then, to obtain the conditional process Q(·|Z⌧ = x),
we simply rotate the trajectory Z such that the exit point Z⌧

is transformed from the original one to x. An advantage is
that we can pre-simulate a large number of trajectories before
training and only need to apply the rotation operator to get
specific conditioned processes during training. Figure 3 gives
an illustration using the example of sphere hit. The idea can be
applied similarly for other types of hitting.

Proposition 2.11. Assume Z with law Q initialized from z0 2
Rd is absorbing to ⌦. For x, x0 2 ⌦, let rotx0!x be the
rotation operator around z0 that transforms x0 to x (hence rotx0!x(x0) = x). Assume that ⌦ and Q
are rotation invariant around z0 in that rotx0,x(⌦) = ⌦ and rotx0,x(Z) ⇠ Q when Z ⇠ Q for any
x0, x 2 ⌦. Then if Z ⇠ Q, we get Z 0 = rotZ⌧!x(Z), a sample drawn from Q(·|Z⌧ = x).

Such a fast sampling approach is applicable for all the categorical, sphere and binary distributions.

2.4 Discretization Error

In practice, the Euler-Maruyama method is applied to discretize the process. Analyzing the dis-
cretization error of a random hitting process is more difficult than that of a fixed-time process. In a
fixed-time process, both discretized and continuous processes terminate at the same time, making the
coupling tricks applicable for analyzing the discretization error based on the `2 Wasserstein distance.
Standard analysis under Lipschitz continuity assumption of the drifts gives O(�) error rate where �
is the discretization step size [37]. In comparison, the key challenge of analyzing the FHDM is that
the discretized and continuous processes may not terminate at the same time, and thus we need to
bound the probability of the difference of the hitting time distribution in the analysis. Besides, in
practice, we might also apply some time truncation tricks in order to have a bounded waiting time
for generating. In Appendix A.8, we provide a full analysis and show that FHDM also yields O(�)
discretization error asymptotically.

3 Related Work

Diffusion Generative Model on Different Domains Diffusion generative model has been demon-
strated to be powerful in generation of general continuous data such as image [40, 41, 18, 42, 43, 13],
point cloud shape [7, 26, 49] and audio [9, 22]. Recently, diffusion generative model has also been
extended to learn to generate data on special domains such graph [30], segmentation map [19],
text [19] and manifold data [12]. Such a generalization of diffusion model is usually case-by-case
and is based on applying constraints to ensure the data remains in the desired domain during the
diffusion process [19, 12] or use heuristic approximation to round the data into the discrete space
[30]. Our FHDM gives a unified framework for generating data on special domain via a completely
new mechanism of first hitting.

Theoretical Framework on Diffusion Process Most existing diffusion models are based on the
framework of time-reversing [43] in which the generation (i.e. denoising) process is learned based on
its time-reversed stochastic differential equation trajectory that can be simulated easily, ignoring the
mismatch of the initial distribution. In comparison, our framework is conceptually simpler and is
only based on a forward process, in which the learning is based on conditioned stochastic differential
equations (i.e., bridge) that can be simulated via h-transform. A similar framework is independently
explored in [34] but our method is more general and exploits the idea of first hitting. Schrodinger
bridges is an another well studied framework of diffusion model [46, 11, 34, 10]. However, using
Schrodinger bridges usually require expensive forward-backward algorithms. It is also unknown
whether or how Schrodinger bridges can be applied for generating data in special domains.
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Model Airplane Chair
MMD# COV" 1-NNA# JSD# MMD# COV" 1-NNA# JSD#

PC-GAN [1] 3.819 42.17 77.59 6.188 13.436 46.23 69.67 6.649
GCN-GAN [45] 4.713 39.04 89.13 6.669 15.354 39.84 77.86 21.71
Tree-GAN [38] 4.323 39.37 83.86 15.646 14.936 38.02 74.92 13.28
PointFLow [47] 3.688 44.98 66.39 1.536 13.631 41.86 66.13 12.47
ShapeGF [7] 3.306 50.4150.4150.41 61.9461.9461.94 1.059 13.175 48.53 56.1756.1756.17 5.996
DPM[26] 3.2763.2763.276 48.71 64.83 1.067 12.276 48.94 60.11 7.797
Ours 3.350 50.4150.4150.41 67.21 0.9860.9860.986 6.6446.6446.644 49.5049.5049.50 56.87 5.9135.9135.913

Table 1: Result of point cloud generation experiment. We adopt the base line from Luo and Hu [26].
Bolded value indicates the best performance method.

4 Experiments

We applied FHDM to distributions on various domains such as point cloud (general continuous
distribution), distribution of climate and geography events on earth (continuous distribution on the
sphere), unweighted graphs (distribution of binary matrices), and segmentation map of 2D image
(high dimension categorical distribution). We demonstrate that

• 1. As a generalization of the fixed-time processes such as DDPM, the fixed-time scheme of FHDM
is a generative model of higher quality for general continuous distribution (section 4.1).

• 2. As a versatile model, FHDM is able to learn the distribution in many different domains and it
outperforms existing specifically designed generative models (see section 4.1).

• 3. The hitting time of FHDM is well-bounded and in several tasks, FHDM even requires much
fewer diffusion steps than existing methods while generating higher quality samples (see section 4.2).

Besides, we also conduct experiments to understand the intuition of the first time hitting mechanism
(section 4.2) and demonstrate the acceleration of the fast sampling approach introduced in Section
2.3.2 (see in Appendix A.6). We include the visualization of the generated samples in Appendix A.7.
Please find the code at https://github.com/lushleaf/first_hitting_diffusion.

4.1 Generation Experiment

Point Cloud Generation Following Luo and Hu [26], we employ the ShapeNet dataset [8] to
evaluate the generated point cloud. We compare our approach against several the state-of-the-
art generative models including PC-GAN [1], GCN-GAN [45], Tree-GAN [38], PointFlow [47],
ShapeGF [7] and DPM [26]. See Appendix A.5 for training details. Following Cai et al. [7], Luo
and Hu [26], we use minimum matching distance (MMD) and the coverage score (COV) paired with
Chamfer distance as well as 1-NN classifier accuracy and the Jenson-Shannon divergence (JSD) to
evaluate the quality of the generated point cloud. We refer readers to Appendix A.5 for more details
on the metrics. Same to Cai et al. [7], Luo and Hu [26], we evaluate the quality on two categories,
Airplane and Chair and the generated and reference point clouds are normalized into a bounding
box of [�1, 1]3 at evaluation. Table 1 summarizes the results showing that FHDM achieves the best
performance on most criterion.

Generating Distribution on Sphere We apply FHDM to generate distribution of occurrences of
earth and climate science events on the surface of earth (which is approximated as a perfect sphere).
Following De Bortoli et al. [12], we consider 4 datasets: volcanic eruption [29], earthquakes [28],
floods [5] and wild fires [15]. We compared FHDM against the current the state-of-the-art baselines
including Riemannian Continuous Normalizing Flows [27], Moser Flows [36], mixture of Kent
distributions [33] and standard Score-Based Generative model on 2D plane followed by the inverse
stereographic projection (Stereographic Score-Based) [16] and Riemannian Generative Model [12].
Same to De Bortoli et al. [12], we evaluate the method via the negative log-likelihood on the test set.
We run our method for 5 independent trials and report the averaged metric with its standard deviation.
We directly adopt the baseline result from De Bortoli et al. [12]. Table 2 summarizes the result. See
Appendix A.5 for additional details.
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Volcano Earthquake Flood Fire
Mixture of Kent [33] �0.80± 0.47 0.33± 0.05 0.73± 0.07 �1.18± 0.06
Riemannian CNF [27] �0.97± 0.15 0.19± 0.0.4 0.90± 0.03 �0.66± 0.05
Moser Flow [36] �2.02± 0.42 �0.09± 0.02 0.62± 0.04 �1.03± 0.03
Stereographic Score-based [16] �4.18± 0.30 �0.04± 0.11 1.31± 0.16 0.28± 0.20
Riemannian Score-based [12] �5.56± 0.26�5.56± 0.26�5.56± 0.26 �0.21± 0.03 0.52± 0.02 �1.24± 0.07�1.24± 0.07�1.24± 0.07
Ours �1.25± 0.18 �0.27± 0.02�0.27± 0.02�0.27± 0.02 0.29± 0.030.29± 0.030.29± 0.03 �1.24± 0.08�1.24± 0.08�1.24± 0.08

Table 2: Result on generating distribution of occurrences of earth and climate science events on the
surface of earth. Bolded value indicates the best method.

Method Community-small Ego-small Avg.Deg. Clus. Orbit. Avg. Deg. Clus. Orbit. Avg.
GraphVAE [39] 0.350 0.980 0.540 0.623 0.130 0.170 0.050 0.117 0.370
DeepGMG [23] 0.220 0.950 0.400 0.523 0.040 0.100 0.020 0.053 0.288
GraphRNN [48] 0.080 0.120 0.040 0.080 0.090 0.220 0.003 0.104 0.092
GNF [25] 0.200 0.200 0.110 0.170 0.030 0.100 0.0010.0010.001 0.044 0.107
EDP-GNN[30] 0.053 0.144 0.026 0.074 0.052 0.093 0.007 0.050 0.062
Ours 0.0090.0090.009 0.1050.1050.105 0.0090.0090.009 0.0410.0410.041 0.0190.0190.019 0.0400.0400.040 0.005 0.0210.0210.021 0.0310.0310.031

Table 3: Result on graph generation experiment. We report the averaged performance of our approach
based on 5 independent runs, giving 0.0013 standard deviation of the averaged metric. The results of
the other baselines are directly adopted from Niu et al. [30]. Bolded value indicates the best method.

Graph Generation We apply FHDM to generate (unweighted) graph that can be represented using
binary adjacency matrix. Following the experiment setup in You et al. [48], Liu et al. [25], Niu et al.
[30], we compare methods on two widely used benchmark datasets, Community-small and Ego-small.
We apply the EDP-GNN [30] that preserves the node permutation invariance to approximate the drift.
We compare FHDM against GraphRNN [48], GNF [25], GraphVAE [39] and DeepGMG [23]. The
maximum mean discrepancy (MMD) over three graph statistics (1. degree distribution; 2. cluster
coefficient distribution; 3. the number of orbits with 4 nodes) proposed by You et al. [48] is used to
evaluate the quality of the generative graphs. For our approach, we run 5 independent trails and report
the averaged performance. See Appendix A.5 for additional training details. Table 3 summarizes the
result, suggesting considerable improvement over the baselines.

Method ELBO IWBO
Round / Unif [44] 1.010 0.930
Round / Var [17] 0.334 0.315
Argmax / Softplus thres. [19] 0.303 0.290
Argmax / Gumbel dist. [19] 0.365 0.341
Argmax / Gumbel thres. [19] 0.307 0.287
Multinomial Diffusion [19] 0.305 -
Ours 0.0660.0660.066 0.0650.0650.065

Table 4: Result for segmentation map generation. We run
our method for 5 independent runs and report the averaged
performance. FHDM gives 0.003/0.006 standard deviation
of ELBO/IWBO.

Segmentation Map Generation FHDM
can also be applied to generate high dimen-
sional categorical distribution such as the seg-
mentation map of a 2D image. Following
Hoogeboom et al. [19], we aim to learn a
model to generate the segmentation map of
cityscapes dataset, in which the value of each
pixel represents the category of the object
that pixel belongs to. Following the setup
in Hoogeboom et al. [19], there are in total
8 categories and the value at each pixel is
coded using one-hot vector. We compare our
approach with uniform dequantization [44], variational dequantization [17], three variants of argmax
flow [19] and multinomial diffusion [19]. Following Hoogeboom et al. [19], we evaluate the quality
of generative model by evidence lower bound (ELBO) and importance weighted bound (IWBO)
[6] (when it is available) with 1000 samples measured in bits per pixel. For our method, we run 5
independent trials and report the averaged metric and its standard deviation. The other baselines are
directly adopted from Hoogeboom et al. [19]. The result is summarized in Table 4. See Appendix
A.5 for additional details.
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Figure 4: The trajectory of generating a segmentation map image. The upper row shows the image where the
category of all pixels are decided based on the argmax (i.e., rounding) of all the 8 scores. The lower row only
plots the hit pixels of the snapshots.

4.2 Analysis

Hitting time distribution We study the hitting time distribution given by the optimized network,
which is summarized in Figure 5. Our first hitting diffusion model is able to hit the domain in
a well-bounded time. It is worth remarking that for Boolean and categorical distribution, FHDM
generates higher quality samples with much fewer diffusion steps. For example, in graph generation,
FHDM on average takes about 100 steps while the previous approach such as Niu et al. [30] requires
6K steps. Similarly, in segmentation map generation, FHDM takes about 90 steps on average while
the multinomial diffusion [19] needs 4K steps. Decreasing the number of diffusion steps in those
approaches will degenerate the performance. For example, if we only use 120 diffusion steps in Niu
et al. [30] the averaged performance becomes 0.306 which is much worse. See Appendix A.6 for
detailed result.

Figure 5: Hitting time distri-
butions for different data dis-
tributions.

Why we can stop at hitting time The key feature of FHDM that
is we stop the diffusion when it hits the domain rather than keep it
running for a pre-fixed time. We explore more the intuition behind
such a process. In figure 4 we visualize the trajectory of generating
a segmentation map. By looking at the image snapshot in the upper
row where the value of each pixel is decided by the argmax (i.e.
rounding) of the 8 scores, we observe that the global contour of the
image is already determined at a very early time (i.e., step 20) while
the refinement of local details is almost finished at step 50. Our first
hitting model exploits such property to stop the diffusion of the hit
pixels that the model has enough confidence about its value making
the generating process of the rest pixels easier.

5 Conclusion

We propose the first hitting diffusion model (FHDM), which generalizes the fixed-time diffusion pro-
cess and allows instance-dependent adaptive diffusion steps. Leveraging the idea of exit distribution,
FHDM provides an unified framework for learning distribution in various special domains. Despite
the good functionality, FHDM takes slightly larger training overhead, which is partially solved by the
our fast sampling tricks.
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Societal Impacts

The proposed first hitting diffusion model is able to generate data in various of domains and thus
might be maliciously used to generate fake data such as images or videos, which might cause negative
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societal impact or even crime. Unfortunately, this paper is not able to provide technique to prevent
such abuse as it is not the main focus of the paper. The theoretical foundation itself does not cause
negative societal impacts, to the best of our knowledge.
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