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A1 mHealth versus Clinical Pulsative Waveforms

In our proposed challenge, we draw from clinical pulsative waveform datasets to mimic mHealth
pulsative waveforms, and in this section, we provide additional justification for this approach.

A1.1 What is the rationale for constructing a dataset for mHealth signal imputation from
equivalent signals connected in the clinical setting?

While there are differences between clinical pulsative signals collected in a hospital setting and
mHealth pulsative signals collected in the field, this was a necessary approach due to the scarcity of
large, publicly-available mHealth datasets (e.g. PPG-DaLiA, an mHealth dataset, has 15 subjects
whereas our curated MIMIC-III PPG dataset, derived from a clinical dataset, has 18,210 subjects).

We can mimic real-world mHealth settings by applying realistic patterns of mHealth missingness.
The original ablated samples are the ground truth, which makes it possible to quantify and visualize
the imputation accuracy.

A1.2 What are the differences in how the ECG/PPG sensors collect pulsative signals across
both settings?

An ECG signal is a recording of the electrical activity of the heart. The electrical activity is measured
along the axis connecting two electrodes, and an ECG signal corresponding to a specific axis is
referred to as an ECG lead. There are many specific ECG leads that are well-established within the
medical field (e.g. Lead I, Lead II, Lead aVR, etc.), and each ECG lead measures the heart’s activity
along a specific direction.

In a clinical hospital setting, the patients are stationary, and therefore, it is simple to attach many
electrodes onto the patient for diagnosis or monitoring purposes, allowing for multiple ECG leads to
be recorded at once. However, in an mHealth field setting, ECG signals are recorded using wearables,
such as a smart watch [1] or a band [5], on a user who may be constantly moving. Therefore,
to prevent creating an unacceptable burden, single-lead recording is typically the only acceptable
approach. This difference in total-leads-used is why during curation, we treat each lead as a separate
waveform, and propose a univariate imputation problem rather than a multivariate one.

Previous work [6, 9] has demonstrated that mHealth ECG sensors are able to record clinically-accurate
ECG signals, very similar to those collected in a hospital setting, in both healthy subjects and subjects
with underlying cardiac disease.

A PPG signal measures blood volume changes to assess how the heart pumps blood to the periphery
and typically does so with a pulse oximeter sensor, which works by measuring the changes in light
absorption on the skin.

In clinical hospital settings, the pulse oximeter device is clipped to a stationary patient’s finger, so the
signal is stable with a high data quality [13]. In mHealth, PPG signals are typically collected on a
watch, so there will be more noise and missingness resulting from movement [13].

While there are some differences between wrist mHealth PPG and finger clinical PPG (namely in
signal shape structure) [15], both types of PPG signals are used to model the same health paradigms.
Both of them can been used to model the same morphological-based phenomena such as Pulse Arrival
Time [15] and the same rhythm-based phenomena such as Heart Rate Variability [13]. PPG signals
collected in the mHealth setting may be adapted to be used for clinical marker calculations originally
designed for clinical PPG signals [15, 13]. This suggests that domain gap issues between clinical and
mHealth settings, while they exist, may not be not a major obstacle.

A1.3 How do the populations differ in these two settings?

Generally, patients in a clinical setting are in a worse health condition than users in a mHealth setting.
In the hospital, patients may be in the ICU with ECG/PPG sensors to monitor their already-poor
health condition. Conversely, mHealth technology has a young consumer base and is generally used
by individuals for maintenance of healthy behaviors [20]. Therefore, clinical signals will be more
variable than those originating from mHealth devices, due to the diverse set of cardiopulmonary
diseases that may be afflicting the hospital patients. However, this is not a limitation for our challenge
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design, as this allows us to present a more challenging and interesting task for the ML community
to tackle. ML methods must rely on learning to impute missing signals based on the signal that is
present, rather than learning to create a general-purpose imputation template that mimics standard
healthy behavior.

A1.4 How does clinical missingness differ from mHealth missingness?

There are similarities in missingness patterns across the clinical and mHealth domains. For example,
with respect to participant compliance, both clinical patients and mHealth users can remove sensors,
resulting in blocks of missing data. Likewise, participant movement in both contexts can result in
artifacts (e.g. tugging at an attached sensor in the hospital vs adjusting an uncomfortable strap of a
mHealth wearable). At the same time, the mHealth environment is more challenging for data capture
and may experience more missingness overall.

However, we would like to clarify that comparisons between clinical and mHealth missingness do
not affect our findings and experimental design because:

1. We do not make any claims about the suitability of our approach for addressing the issue of
clinical missingness.

2. There is no clinical missingness present in our benchmark dataset.

Our contribution is on introducing a benchmarking suite for pulsative signals with realistic mHealth
missingness, and our data curation process (described in Sections 3.1, 3.2, A2.1, A2.2) ensured that
signals with clinical missingness were removed from the dataset.

A2 Curation of MIMIC-III Waveform and Heartbeat Detection Task Details

For each of these curations, we intentionally utilize an aggressive filtration method to ensure that we
have clean signals. The sheer volume of the MIMIC-III Waveforms dataset allows us to filter out
many unsuitable signals and still curate the largest ECG/PPG waveform dataset.

Curating a clean version of MIMIC-III Waveform is both critical for our imputation challenge design
and is very advantageous for the broader biosensor ML field. For PulseImpute, we need clean signals
for training imputation models to reconstruct the signal structure and not noise. In a broader context,
we want to match the high quality level of other datasets such as PTB-XL, in which 77.01% of
the signal data are of highest assessed quality [18]. This matching enables researchers to combine
datasets in the future or to train transfer learning approaches with our curated datasets, potentially
leveraging self-supervised representation learning.

A2.1 MIMIC-III ECG Curation

MIMIC-III Waveform [12] has 4,799,017 ECG signal files, which we curate down to 440,953 clean
ECG signal files. Below is the MIMIC-III ECG curation procedure we utilized, and please see our
code for specific implementation details.

1. For a given ECG Signal, resample the waveform from 125 Hz to 100 Hz and conduct linear
interpolation to fill in NA values.

2. Utilize Welch’s method [19] to obtain the periodogram and conduct peak detection on the
periodogram with a strict minimum peak distance requirement. In a clean ECG signal,
regularly spaced peaks in the periodogram correspond to the harmonics of a QRS complex,
especially those in the upper frequency bands [2].

Therefore, if the detected peaks are regularly spaced and there is a peak detected at > 10
Hz, then the ECG signal is marked as clean, and we skip to step 4. Else If the peaks are not
too irregularly spaced, then we move to step 3 for another chance for the signal to pass the
quality check. Else, the peaks are too irregularly spaced, and we reject the signal.

See below for examples of ECG signals with their associated periodogram. The top
demonstrates a clean ECG signal with regularly spaced peaks in its periodogram and
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detected peaks past 10 Hz. The bottom represents a noisy ECG signal with a periodogram
with irregularly spaced peaks and no significant peaks detected past 10 Hz.

3. A new peak detection on the periodogram is conducted with a relaxed minimum peak
distance requirement, and new peaks are compared to old peaks. These new peaks are
designated by the red x’s in the below periodogram, and the old peaks are designated by the
orange x’s.

If number of new peaks is not too high or if the new peaks are far away from the old peaks,
then the signal is marked clean, and we move to step 4. Else, we reject the signal. This
allows for non-normal heart rhythms in which the heart rate fluctuates to pass. The below
example demonstrates a signal with heart rate irregularities, but still passes our filter.

4. For all signals marked clean, we sample a 5-minute segment, run an ECG peak detection
algorithm, and if HR is within an acceptable physiological range, then the ECG signal is
accepted.

A2.2 MIMIC-III PPG Curation

MIMIC-III Waveform [12] has 3,162,804 PPG signal files, which we curate down to 151,738 clean
PPG signal files. Below is the MIMIC-III PPG curation procedure we utilized, and please see our
code for specific implementation details.

1. For a given PPG Signal, select a 5-minute segment and resample the waveform from 125 Hz
to 100 Hz.

2. Segment the waveform into each beat with a peak detection algorithm and extract the PPG
beat template with an ensemble averaging-based approach [17]. If a template is failed to be
found, then reject the signal.

3. Calculate the DTW-based quality metric (bounded between 0 and 1) for each beat [17]. This
is done by using DTW to align the template with the beat and calculating the correlation
coefficient. If the correlation is negative, the similarity is clamped to zero.
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4. If 95% of the beats have a quality greater than 0.5, the PPG signal is accepted. Else, reject
the signal. See below for examples of accepted and rejected PPG signals.

A2.3 ECG/PPG mHealth Missingness Extraction

To generate ECG mHealth Missingness patterns, the Autosense [5] device in our mHealth field study
[3] used an ECG data quality assessment algorithm [11] to detect noise and missingness.

However, this Autosense device does not record PPG signals, and thus we do not have access to
PPG mHealth missingness patterns. We cannot use ECG mHealth missingness patterns to model
PPG mHealth missingness because PPG signals may have different missingness patterns due to the
differing types of sensor attachment. ECG signals can be collected on a chest band, as is done in
Autosense, whereas PPG signals are typically collected with a wrist-mounted smartwatch.

Therefore, we seek to extract missingness patterns from the public mHealth PPG dataset, PPG-DaLiA
[16], with the procedure outlined below.

1. For a given PPG Signal in PPG-DaLiA, resample the waveform from 64 Hz to 100 Hz.

2. Segment the waveform into individual beats with PPG-DaLiA’s provided ground-truth peaks
and extract PPG beat template with ensemble averaging [17].

3. Calculate DTW-based quality metric (bounded between 0 and 1), as described in A2.2.

4. Create a binary time-series by marking segments with DTW-based quality metric < .5 as
missing (0) and segments with the metric ≥ .5 as not-missing (1).

5. Split the binary time-series into 5 minute segments to serve as a PPG mHealth missingness
pattern.

A2.4 Heartbeat Detection via Peak Detection in ECG/PPG

Peak detection is essential for segmenting and localizing individual heart beats, which is a core
capability that supports a variety of widely-used mHealth markers such as heart rate and heart rate
variability, and we use ECG/PPG Heartbeat detection on the curated MIMIC-III waveform datasets
as a downstream task within our challenge to evaluate imputation.
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Below are the formulations of each of the metrics that we use in this task.

Sens =
TP

TP + FN
Prec =

TP

TP + FP
F1 =

2 ∗ Prec ∗ Sens
Prec + Sens

Given a peak that was identified from the imputation, we center a 50 ms window around this peak, as
done by [14]. If there was a peak originally in this window before being ablated for imputation, then
this is a True Positive. If there was no peak originally in this window, this is a False Positive. False
Negatives are peaks that were in the original signal that were ablated but were not detected in the
reconstructed imputation with this procedure.

The peak detection procedures were Stationary Wavelet Transform peak detector from [8] for ECG
signals and a neighbor comparison with threshold and peak prominence filters for PPG signals.

A3 mHealth Missingness Visualizations for ECG and PPG

A3.1 ECG Extracted mHealth Missingness

Figure A1: Various extracted ECG mHealth signal missingness patterns (shown by the gaps between
the black signal) applied on different ECG waveforms. These are examples of the inputs used in the
ECG Imputation and Heartbeat Detection Task. ECG missingness patterns are very complex in terms
of their frequency and their duration. The ECG signals visualized here also are heterogeneous with
many different morphologies (e.g. some signals have large peaks while others have large valleys) and
different rhythms (e.g. signals have varying density). Additionally, each signal may be any particular
lead within a wide range of possible leads.
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Figure A2: Histogram of Missingness Gap Length found in Extracted ECG mHealth Missingness
Patterns. The missingness gaps’ lengths have a wide range: the majority of missingness gaps are 3-9
seconds long but some gaps can last more than a minute.

A3.2 PPG Extracted mHealth Missingness

Figure A3: Various extracted PPG mHealth signal missingness patterns (shown by the gaps between
the black signal) applied on different PPG waveforms. These are examples of the inputs used in the
PPG Imputation and Heartbeat Detection Task. The PPG missingness patterns are different from
those found in ECG, with much shorter gaps comparatively. The PPG signals are generally of simpler
shapes, and there is more noise found in these PPG signals compared to the ECG signals.
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Figure A4: Histogram of Missingness Gap Length found in Extracted PPG mHealth Missingness
Patterns. As visually seen while comparing Figure A1 and A3, the missingness gaps in PPG mHealth
signals are shorter than those found in ECG.

A4 Experimental Setup Details

Our PulseImpute repo (www.github.com/rehg-lab/pulseimpute) contains the code needed to
reproduce results, including a script to download the data and model checkpoints. Models were
trained on Titan Xp GPUs for 24 hours or until convergence, whichever came first, on an internal
Georgia Tech GPU Cluster. For each model trained on the 10-second-long ECG data used in the
extended loss scenario for the ECG Imputation and Cardiac Classification Task, their model weights
were used to initialize the model for the 5-minute-long ECG Imputation and Heartbeat Detection task
before being further fine-tuned.

BRITS and NAOMI + BRITS w/ GAIL were implemented with their original papers’ code bases found
www.github.com/caow13/BRITS and www.github.com/felixykliu/NAOMI, respectively. The
training procedures were set up to be identical to the original, with the only modification being
how missingness was simulated during training. Rather than their default missingness procedure of
dropping out individual time-points independently and at random, they were trained on task-specific
missingness patterns, as described in Sections 3.1, 3.2, 3.3.

For the transformer models, the longformer’s dilated sliding window attention was used for the
5-minute-long data in the ECG Imputation and Heartbeat Detection task. Conv9 uses the maximum
kernel size for conv self-attention in its prior work [10], and our BDC module’s query/key transforma-
tions have receptive fields of 883 (∼9 sec). Each of the transformer-based architectures used follow
the architecture scheme of one 1D Convolution Layer for embedding, two Transformer Encoder
Layers, followed by one 1D Convolution Layer for projection for imputation. The transformer models
were trained with a Masked Predictive Coding procedure, introduced in [7], inspired from the original
Masked Language Prediction procedure, introduced in [4]. Given a block in which missingness
would like to be ablated for training, there is a 80% probability that it is replaced with a 0 vector, 10%
probability that sinusoidal vector is added as noise, and 10% probability that the block is kept the
same. L2 Loss is then calculated between the imputed result and ground-truth.

Please see our code repo for further details on hyperparameters, experimental set-up, and repro-
ducibility.
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A5 Extra Results and Visualizations

In this section, we show extra visualizations of the performance of each of the imputation models,
grouped by their downstream task: ECG Imputation and Heartbeat Detection, PPG Imputation and
Heartbeat Detection, and ECG Imputation and Cardiac Pathophysiology Classification.

• ECG/PPG Imputation and Heartbeat Detection Tasks benchmark imputation by applying
extracted mHealth missingness patterns on 5-minute-long ECG/PPG data.

• ECG Imputation and Cardiac Classification benchmarks imputation by systematically vary-
ing amount of missingness with the extended and transient loss missingness models on
10-second-long ECG data.

The purpose of this section is to visually evaluate the reconstruction quality of each of the models, as
well as understanding the variation of the imputation model performance with MSE density plots.

A5.1 ECG Imputation and Heartbeat Detection

Figure A5: Extra visualization #1 of 5 minutes of imputation results from ECG Heartbeat Detection.
The green dots designate True Positive reconstructed heartbeat peak detection. Given a signal with
shorter missingness gaps, our BDC transformer is able to reconstruct the signal and rhythm very well,
shown by the large amount of green dots.
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Figure A6: Extra visualization #2 of 5 minutes of imputation results from ECG Heartbeat Detection.
The green dots designate True Positive reconstructed heartbeat peak detection. Here we see none of
the models are able to perform well with long gaps of missingness. For example, BRITS w/ GAIL
may seem to do well, but the small amount of green dots signifies that the rhythm of the original
signal was unable to be recovered.

Figure A7: Extra visualization #3 of 5 minutes of imputation results from ECG Heartbeat Detection.
The green dots designate True Positive reconstructed heartbeat peak detection. Even when the number
of missingness gaps increase, because the gap length is short, our BDC transformer is able to perform
well, signified by the high amount of green dots.
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Figure A8: Density of MSE values across all ECG waveforms, for each imputation model. This
demonstrates the variation of performance across all imputation methods, which shows that all
existing imputation models have poor performance, with many models unable to achieve better MSE
distributions than mean and linear interpolation. However, our BDC model consistently has the
lowest MSE.

A5.2 PPG Imputation and Heartbeat Detection

Figure A9: Extra visualization #1 of 5 minutes of imputation results from PPG Heartbeat Detection.
The green dots designate True Positive reconstructed heartbeat peak detection. We can see that
imputation models perform better in this PPG setting, with the simpler morphologies and shorter
gaps of missingness. Across all ML models, there are more green dots, and thus more correct peak
reconstructions. In general, our BDC transformer has very strong performance, able to reconstruct
the signal nearly perfectly.
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Figure A10: Extra visualization #2 of 5 minutes of imputation results from PPG Heartbeat Detection.
The green dots designate True Positive reconstructed peak detection. This further shows how all
models perform better within this PPG setting, and the stronger imputation performance of our BDC
transformer compared to other models.

Figure A11: Extra visualization #3 of 5 minutes of imputation results from PPG Heartbeat Detection.
The green dots designate True Positive reconstructed peak detection. This further shows how all
models perform better within this PPG setting, and the stronger imputation performance of our BDC
transformer compared to other models.
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Figure A12: Density of MSE values across all PPG waveforms, for each imputation model. This
demonstrates the variation of performance, which shows that compared to the ECG task, there are
only a few models with better MSE distributions than the mean imputation model, namely Conv9
Transformer, DeepMVI, NAOMI, and our BDC transformer, with BDC consistently having the lowest
MSE. In general, this PPG imputation task is easier for the ML models than the ECG imputation
counterpart, likely due to the simpler morphologies and shorter missingness gaps present.

A5.3 ECG Imputation and Cardiac Pathophysiology Classification

Figure A13: Extra visualization of imputation results from ECG Cardiac Classification, where each
plot corresponds to a 6-second subsequence of the full 10-second signal. Grey designates the ground
truth, blue the imputation results, and black the not-missing data. In the transient setting, all models
perform well. However, in the extended setting, we see the GAN methods (e.g. NAOMI and BRITS
w/ GAIL) will reconstruct signals that do not mimic the non-ablated data, and the other methods
(e.g. BRITS and DeepMVI) have flat-line imputations. Our BDC transformer matches the rhythm of
the ablated signal well, but struggles with reproducing the R peaks (the tallest steepest peaks in a
quasiperiod).
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Transient Extended
% Miss Models MSE Rhy AUC Form AUC Diag AUC MSE Rhy AUC Form AUC Diag AUC

0 - 0 .949 .796 .845 0 .949 .796 .845

10

Mean .0302 ± .00044 .922 ± .0112 .776 ± .0186 .827 ± .0120 .0300 ± .00042 .886 ± .0111 .786 ± .0166 .827 ± .0199

Lin Interp .0221 ± .00033 .927 ± .0108 .788 ± .0187 .833 ± .0117 .0438 ± .00107 .890 ± .0114 .787 ± .0156 .824 ± .0190

FFT .0482 ± .00058 .923 ± .0125 .786 ± .0169 .832 ± .0102 .0368 ± .00047 .905 ± .0005 .778 ± .0154 .826 ± .0115

BRITS .0059 ± .00013 .946 ± .0104 .793 ± .0184 .846 ± .0082 .0285 ± .00041 .887 ± .0106 .787 ± .0194 .834 ± .0192

BRITS w/ GAIL .0110 ± .00024 .939 ± .0101 .793 ± .0181 .846 ± .0094 .0486 ± .00049 .904 ± .0108 .787 ± .0166 .831 ± .0136

NAOMI .0306 ± .00019 .946 ± .0103 .793 ± .0180 .847 ± .0080 .0341 ± .00043 .929 ± .0096 .782 ± .0205 .843 ± .0100

DeepMVI .0039 ± .00010 .947 ± .0104 .794 ± .0185 .847 ± .0080 .0285 ± .00038 .875 ± .0110 .783 ± .0197 .824 ± .0213

Van Trans .0065 ± .00014 .946 ± .0105 .791 ± .0183 .846 ± .0081 .0260 ± .00039 .895 ± .0105 .787 ± .0180 .831 ± .0164

Conv9 Trans .0049 ± .00012 .944 ± .0104 .791 ± .0185 .847 ± .0083 .0288 ± .00041 .887 ± .0109 .787 ± .0182 .830 ± .0203

Our BDC Trans .0030 ± .00007 .948 ± .0104 .795 ± .0185 .847 ± .0078 .0116 ± .00027 .944 ± .0188 .790 ± .0086 .844 ± .0086

20

Mean .0302 ± .00038 .876 ± .0118 .762 ± .0194 .805 ± .0217 .0301 ± .00039 .882 ± .0206 .775 ± .0230 .811 ± .0230

Lin Interp .0239 ± .00028 .910 ± .0114 .782 ± .0196 .813 ± .0134 .0454 ± .00104 .886 ± .0203 .774 ± .0215 .812 ± .0215

FFT .0477 ± .00049 .890 ± .0147 .765 ± .0177 .808 ± .0108 .0357 ± .00045 .871 ± .0226 .758 ± .0173 .799 ± .0126

BRITS .0075 ± .00013 .944 ± .0104 .793 ± .0160 .844 ± .0076 .0296 ± .00040 .883 ± .0113 .776 ± .0206 .825 ± .0242

BRITS w/ GAIL .0137 ± .00023 .929 ± .0100 .787 ± .0179 .838 ± .0095 .0523 ± .00045 .898 ± .0109 .773 ± .0164 .816 ± .0145

NAOMI .0102 ± .00018 .941 ± .0099 .792 ± .0158 .846 ± .0088 .0388 ± .00039 .903 ± .0113 .771 ± .0189 .827 ± .0136

DeepMVI .0045 ± .00010 .945 ± .0107 .794 ± .0172 .845 ± .0076 .0288 ± .00035 .845 ± .0136 .771 ± .0212 .803 ± .0279

Van Trans .0071 ± .00014 .944 ± .0104 .790 ± .0164 .845 ± .0081 .0251 ± .00036 .895 ± .0122 .774 ± .0191 .808 ± .0189

Conv9 Trans .0060 ± .00012 .938 ± .0105 .789 ± .0181 .842 ± .0088 .0293 ± .00039 .882 ± .0120 .777 ± .0204 .819 ± .0232

Our BDC Trans .0033 ± .00007 .947 ± .0105 .795 ± .0160 .847 ± .0076 .0136 ± .00027 .935 ± .0119 .780 ± .0196 .829 ± .0093

30

Mean .0302 ± .00036 .828 ± .0119 .735 ± .0212 .782 ± .0240 .0304 ± .00040 .883 ± .0129 .760 ± .0197 .807 ± .0204

Lin Interp .0260 ± .00025 .870 ± .0119 .766 ± .0181 .792 ± .0207 .0454 ± .00109 .879 ± .0123 .761 ± .0190 .801 ± .0204

FFT .0470 ± .00046 .842 ± .0236 .738 ± .0198 .780 ± .0114 .0344 ± .00043 .870 ± .0182 .746 ± .0161 .768 ± .0137

BRITS .0095 ± .00014 .933 ± .0099 .783 ± .0179 .838 ± .0179 .0299 ± .00039 .880 ± .0115 .766 ± .0202 .823 ± .0188

BRITS w/ GAIL .0173 ± .00023 .909 ± .0101 .777 ± .0192 .826 ± .0192 .0535 ± .00043 .890 ± .0107 .768 ± .0180 .815 ± .0133

NAOMI .0124 ± .00018 .932 ± .0099 .781 ± .0167 .840 ± .0167 .0405 ± .00038 .899 ± .0119 .751 ± .0229 .808 ± .0113

DeepMVI .0056 ± .00011 .939 ± .0108 .790 ± .0155 .841 ± .0155 .0290 ± .00036 .856 ± .0136 .751 ± .0210 .797 ± .0223

Van Trans .0084 ± .00014 .936 ± .0107 .786 ± .0152 .841 ± .0152 .0226 ± .00035 .903 ± .0117 .758 ± .0194 .796 ± .0143

Conv9 Trans .0078 ± .00013 .930 ± .0106 .783 ± .0168 .837 ± .0168 .0294 ± .00038 .885 ± .0119 .761 ± .0207 .814 ± .0190

Our BDC Trans .0038 ± .00007 .945 ± .0105 .793 ± .0177 .844 ± .0177 .0159 ± .00028 .930 ± .0121 .773 ± .0197 .817 ± .0094

40

Mean .0302 ± .00035 .784 ± .0128 .707 ± .0240 .752 ± .0279 .0307 ± .00039 .871 ± .0114 .761 ± .0172 .812 ± .0181

Lin Interp .0282 ± .00026 .827 ± .0130 .745 ± .0180 .766 ± .0275 .0460 ± .00106 .870 ± .0110 .750 ± .0188 .804 ± .0154

FFT .0461 ± .00047 .776 ± .0298 .698 ± .0235 .740 ± .0143 .0332 ± .00043 .843 ± .0176 .736 ± .0183 .762 ± .0134

BRITS .0121 ± .00016 .923 ± .0109 .778 ± .0161 .832 ± .0098 .0301 ± .00038 .870 ± .0107 .762 ± .0206 .825 ± .0190

BRITS w/ GAIL .0216 ± .00024 .870 ± .0101 .764 ± .0177 .807 ± .0182 .0543 ± .00041 .874 ± .0113 .754 ± .0184 .809 ± .0147

NAOMI .0150 ± .00018 .922 ± .0099 .775 ± .0171 .833 ± .0110 .0410 ± .00036 .876 ± .0122 .749 ± .0160 .801 ± .0166

DeepMVI .0072 ± .00012 .925 ± .0110 .781 ± .0169 .833 ± .0102 .0291 ± .00034 .830 ± .0127 .741 ± .0248 .799 ± .0297

Van Trans .0105 ± .00016 .929 ± .0107 .774 ± .0164 .835 ± .0103 .0270 ± .00036 .860 ± .0120 .755 ± .0182 .790 ± .0219

Conv9 Trans .0106 ± .00016 .915 ± .0109 .768 ± .0190 .827 ± .0122 .0295 ± .00037 .870 ± .0115 .760 ± .0182 .815 ± .0175

Our BDC Trans .0048 ± .00009 .944 ± .0109 .790 ± .0183 .841 ± .0084 .0181 ± .00029 .912 ± .0132 .762 ± .0194 .801 ± .0113

50

Mean .0302 ± .00034 .758 ± .0137 .677 ± .0210 .717 ± .0294 .0312 ± .00040 .858 ± .0119 .742 ± .0217 .806 ± .0225

Lin Interp .0306 ± .00028 .772 ± .0130 .726 ± .0174 .743 ± .0312 .0467 ± .00104 .846 ± .0113 .740 ± .0237 .800 ± .0251

FFT .0448 ± .00046 .721 ± .0296 .665 ± .0216 .706 ± .0138 .0325 ± .00038 .830 ± .0314 .727 ± .0219 .766 ± .0129

BRITS .0155 ± .00018 .895 ± .0115 .761 ± .0151 .817 ± .0142 .0302 ± .00036 .850 ± .0103 .744 ± .0212 .825 ± .0242

BRITS w/ GAIL .0275 ± .00027 .841 ± .0117 .737 ± .0196 .786 ± .0188 .0549 ± .00040 .860 ± .0120 .749 ± .0181 .802 ± .0212

NAOMI .0179 ± .00019 .913 ± .0095 .765 ± .0155 .829 ± .0101 .0411 ± .00037 .863 ± .0123 .716 ± .0201 .786 ± .0167

DeepMVI .0098 ± .00014 .904 ± .0116 .767 ± .0170 .820 ± .0136 .0294 ± .00034 .818 ± .0120 .736 ± .0222 .797 ± .0225

Van Trans .0138 ± .00020 .903 ± .0108 .756 ± .0178 .826 ± .0149 .0290 ± .00035 .827 ± .0133 .748 ± .0163 .779 ± .0261

Conv9 Trans .0146 ± .00020 .877 ± .0117 .756 ± .0187 .812 ± .0210 .0296 ± .00035 .856 ± .0111 .744 ± .0217 .812 ± .0233

Our BDC Trans .0066 ± .00011 .936 ± .0109 .784 ± .0157 .836 ± .0083 .0209 ± .00029 .892 ± .0126 .754 ± .0176 .794 ± .0142

Table A1: Full tabulated results from the ECG cardiac classification task with Macro AUC values
with 95% CI
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Transient Extended
% Miss Models MSE Rhy AUC Form AUC Diag AUC MSE Rhy AUC Form AUC Diag AUC

0 - 0 .930 .752 .794 0 .930 .752 .794

10

Mean .0334 ± .00014 .904 ± .0051 .743 ± .0055 .783 ± .0038 .0333 ± .00015 .885 ± .0053 .733 ± .0054 .773 ± .0036

Lin Interp .0229 ± .00011 .919 ± .0045 .747 ± .0053 .786 ± .0038 .0460 ± .00031 .880 ± .0056 .730 ± .0053 .773 ± .0039

FFT .0487 ± .00017 .917 ± .0047 .744 ± .0054 .774 ± .0036 .0406 ± .00017 .888 ± .0055 .734 ± .0051 .783 ± .0037

BRITS .0036 ± .00003 .931 ± .0042 .749 ± .0052 .795 ± .0037 .0336 ± .00016 .887 ± .0053 .741 ± .0052 .777 ± .0038

BRITS w/ GAIL .0378 ± .00017 .887 ± .0056 .729 ± .0057 .764 ± .0037 .4249 ± .00278 .883 ± .0051 .714 ± .0058 .766 ± .0038

NAOMI .0264 ± .00015 .914 ± .0045 .743 ± .0054 .783 ± .0038 .0409 ± .00021 .889 ± .0052 .731 ± .0057 .776 ± .0038

DeepMVI 1.1129 ± .00108 .609 ± .0085 .598 ± .0061 .647 ± .0043 .0309 ± .00012 .878 ± .0055 .740 ± .0054 .775 ± .0038

Van Trans .0015 ± .00002 .930 ± .0042 .750 ± .0051 .794 ± .0037 .0304 ± .00012 .875 ± .0055 .735 ± .0053 .764 ± .0038

Conv9 Trans .0018 ± .00002 .928 ± .0043 .750 ± .0051 .793 ± .0037 .0323 ± .00015 .886 ± .0051 .734 ± .0054 .776 ± .0037

Our BDC Trans .0015 ± .00001 .932 ± .0040 .749 ± .0054 .794 ± .0037 .0132 ± .00010 .867 ± .0061 .713 ± .0053 .751 ± .0042

20

Mean .0334 ± .00012 .878 ± .0055 .721 ± .0055 .756 ± .0037 .0336 ± .00014 .867 ± .0061 .713 ± .0053 .751 ± .0042

Lin Interp .0246 ± .00009 .896 ± .0057 .736 ± .0059 .774 ± .0037 .0477 ± .00031 .862 ± .0061 .713 ± .0051 .752 ± .0042

FFT .0490 ± .00015 .880 ± .0062 .724 ± .0056 .746 ± .0037 .0397 ± .00015 .870 ± .0060 .702 ± .0055 .752 ± .0037

BRITS .0042 ± .00003 .931 ± .0041 .748 ± .0050 .795 ± .0036 .0343 ± .00015 .871 ± .0055 .716 ± .0051 .759 ± .0041

BRITS w/ GAIL .0378 ± .00015 .831 ± .0072 .689 ± .0058 .718 ± .0039 .5566 ± .00293 .863 ± .0055 .691 ± .0056 .738 ± .0039

NAOMI .0252 ± .00013 .897 ± .0051 .730 ± .0053 .762 ± .0038 .0493 ± .00025 .855 ± .0057 .690 ± .0056 .745 ± .0041

DeepMVI .0038 ± .00002 .929 ± .0039 .748 ± .0054 .794 ± .0037 .0316 ± .00012 .836 ± .0070 .712 ± .0053 .734 ± .0039

Van Trans .0019 ± .00002 .929 ± .0043 .747 ± .0053 .792 ± .0037 .0286 ± .00010 .848 ± .0068 .728 ± .0054 .743 ± .0043

Conv9 Trans .0026 ± .00002 .924 ± .0046 .747 ± .0052 .791 ± .0037 .0326 ± .00013 .870 ± .0057 .715 ± .0052 .752 ± .0041

Our BDC Trans .0017 ± .00001 .931 ± .0042 .747 ± .0054 .793 ± .0036 .0153 ± .00009 .919 ± .0037 .735 ± .0050 .773 ± .0039

30

Mean .0335 ± .00011 .847 ± .0060 .686 ± .0059 .723 ± .0040 .0340 ± .00014 .864 ± .0054 .691 ± .0056 .737 ± .0044

Lin Interp .0266 ± .00008 .869 ± .0051 .691 ± .0054 .740 ± .0041 .0487 ± .00032 .868 ± .0067 .721 ± .0060 .756 ± .0037

FFT .0489 ± .00014 .840 ± .0065 .694 ± .0057 .712 ± .0039 .0384 ± .00015 .868 ± .0058 .682 ± .0055 .727 ± .0038

BRITS .0051 ± .00003 .933 ± .0035 .745 ± .0051 .792 ± .0036 .0346 ± .00014 .865 ± .0053 .697 ± .0054 .748 ± .0041

BRITS w/ GAIL .0379 ± .00014 .767 ± .0077 .646 ± .0057 .669 ± .0039 .6916 ± .00279 .849 ± .0054 .674 ± .0053 .724 ± .0040

NAOMI .0249 ± .00011 .875 ± .0053 .705 ± .0055 .741 ± .0039 .0513 ± .00024 .841 ± .0061 .666 ± .0059 .718 ± .0042

DeepMVI .0048 ± .00003 .925 ± .0038 .743 ± .0053 .790 ± .0036 .0320 ± .00012 .834 ± .0072 .698 ± .0054 .736 ± .0037

Van Trans .0027 ± .00002 .926 ± .0043 .745 ± .0054 .791 ± .0037 .0289 ± .00010 .852 ± .0064 .704 ± .0057 .735 ± .0041

Conv9 Trans .0038 ± .00003 .917 ± .0045 .743 ± .0055 .787 ± .0037 .0329 ± .00013 .863 ± .0056 .691 ± .0055 .741 ± .0043

Our BDC Trans .0021 ± .00002 .930 ± .0041 .745 ± .0053 .792 ± .0037 .0174 ± .00009 .917 ± .0038 .719 ± .0053 .760 ± .0039

40

Mean .0335 ± .00011 .806 ± .0074 .646 ± .0060 .683 ± .0042 .0345 ± .00014 .851 ± .0054 .684 ± .0058 .736 ± .0041

Lin Interp .0287 ± .00008 .850 ± .0057 .684 ± .0058 .734 ± .0041 .0496 ± .00031 .835 ± .0075 .696 ± .0060 .728 ± .0038

FFT .0485 ± .00014 .796 ± .0068 .657 ± .0058 .668 ± .0042 .0372 ± .00014 .840 ± .0062 .668 ± .0057 .712 ± .0038

BRITS .0063 ± .00003 .928 ± .0036 .738 ± .0053 .787 ± .0036 .0349 ± .00014 .852 ± .0054 .693 ± .0056 .742 ± .0041

BRITS w/ GAIL .0380 ± .00014 .699 ± .0081 .600 ± .0057 .619 ± .0041 .8261 ± .00253 .836 ± .0061 .661 ± .0062 .711 ± .0040

NAOMI .0251 ± .00010 .842 ± .0068 .676 ± .0056 .716 ± .0040 .0514 ± .00022 .797 ± .0085 .653 ± .0060 .693 ± .0042

DeepMVI .0064 ± .00003 .914 ± .0043 .738 ± .0052 .784 ± .0036 .0325 ± .00012 .821 ± .0067 .691 ± .0056 .731 ± .0039

Van Trans .0041 ± .00002 .921 ± .0043 .743 ± .0050 .788 ± .0037 .0302 ± .00010 .839 ± .0062 .689 ± .0057 .719 ± .0045

Conv9 Trans .0058 ± .00003 .902 ± .0050 .738 ± .0052 .782 ± .0037 .0332 ± .00013 .851 ± .0055 .684 ± .0058 .738 ± .0041

Our BDC Trans .0030 ± .00002 .927 ± .0042 .742 ± .0052 .789 ± .0037 .0203 ± .00009 .907 ± .0039 .705 ± .0053 .746 ± .0040

50

Mean .0335 ± .00011 .753 ± .0075 .611 ± .0059 .638 ± .0043 .0351 ± .00014 .847 ± .0061 .681 ± .0053 .728 ± .0042

Lin Interp .0311 ± .00008 .849 ± .0058 .680 ± .0054 .731 ± .0041 .0506 ± .00031 .790 ± .0076 .666 ± .0060 .698 ± .0039

FFT .0476 ± .00014 .734 ± .0076 .619 ± .0062 .623 ± .0043 .0364 ± .00013 .834 ± .0062 .662 ± .0054 .698 ± .0042

BRITS .0080 ± .00003 .915 ± .0040 .731 ± .0053 .779 ± .0035 .0350 ± .00013 .851 ± .0057 .692 ± .0053 .736 ± .0044

BRITS w/ GAIL .0380 ± .00014 .620 ± .0083 .563 ± .0060 .578 ± .0044 .9647 ± .00183 .825 ± .0059 .661 ± .0057 .711 ± .0040

NAOMI .0261 ± .00010 .809 ± .0068 .642 ± .0053 .691 ± .0038 .0519 ± .00020 .775 ± .0073 .638 ± .0057 .679 ± .0043

DeepMVI .0090 ± .00004 .891 ± .0052 .726 ± .0052 .772 ± .0036 .0329 ± .00012 .820 ± .0070 .686 ± .0051 .725 ± .0041

Van Trans .0065 ± .00003 .907 ± .0044 .733 ± .0052 .780 ± .0037 .0318 ± .00011 .830 ± .0067 .680 ± .0054 .705 ± .0044

Conv9 Trans .0088 ± .00004 .881 ± .0058 .727 ± .0056 .770 ± .0037 .0334 ± .00012 .847 ± .0061 .682 ± .0055 .729 ± .0042

Our BDC Trans .0054 ± .00003 .916 ± .0042 .736 ± .0051 .782 ± .0038 .0235 ± .00010 .888 ± .0049 .691 ± .0055 .728 ± .0040

Table A2: For the sake of completeness, these are the full tabulated results from a Union of Leads
PTB-XL ECG dataset for the Cardiac Classification task with Macro AUC values with 95% CI.
However, assume that all other results, besides this table, presented with ECG cardiac classification
task are with the Lead I only PTB-XL dataset.
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Figure A14: Density of MSE values across all ECG waveforms, for each imputation model for both
the transient and extended missingness scenarios. These plots demonstrate imputation models have a
much easier time modeling in the transient loss scenario, with most models performing well. However,
as missingness duration increases in transient loss, many models exhibit decreased performance, with
an increased MSE. In extended loss, most models’ performance stays constant (except for BDC and
Vanilla transformer), MSE seemingly independent from amount of missingness. This makes sense if
we also look at the visualizations in Figure A13 above. The GAN methods (e.g. NAOMI and BRITS
w/ GAIL) do not seem to depend heavily on the non-ablated data because their reconstructions do not
mimic the non-ablated data, and the other methods (e.g. BRITS and DeepMVI) have simple flat-line
imputations, regardless of the amount missing.
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A6 Dataset and License details

The code repository for our benchmarking challenge can be found here, www.github.com/
rehg-lab/pulseimpute, and it is licensed under the MIT License. The intended use of our
curated datasets and missingness patterns is to be used in conjunction with our PulseImpute challenge
framework. The training and evaluation procedures for our challenge can be found in our code repo
and is described in the main text and Appendix A4.

Our curated datasets and missingness patterns can be found linked here, www.doi.org/10.5281/
zenodo.7129965, and we license them under the Creative Commons Attribution 4.0 International.
The ECG and PPG waveforms are a form of personal data, but the identifiers have been removed and
its public redistribution is in public interest. The data we provide also does not contain any offensive
content. We, the authors, bear all responsibility to withdraw our paper and data in case of violation
of licensing or patient privacy rights, and confirmation of the data license. The curated data and
missingness patterns are organized as shown below:

/pulseimpute_data/
README.md
missingness_patterns/

mHealth_missing_ecg/
missing_ecg_train.csv
missing_ecg_val.csv
missing_ecg_test.csv

mHealth_missing_ppg/
missing_ppg_train.csv
missing_ppg_val.csv
missing_ppg_test.csv

waveforms/
mimic_ecg/

mimic_ecg_train.npy
mimic_ecg_val.npy
mimic_ecg_test.npy
MIMIC_III_ECG_filenames.txt

mimic_ppg/
mimic_ppg_train.npy
mimic_ppg_val.npy
mimic_ppg_test.npy
MIMIC_III_PPG_filenames.txt

ptbxl_ecg/
scp_statements.csv
ptbxl_database.csv
ptbxl_ecg.npy

The data is all stored as .npy files, with each row corresponding to a 100 Hz waveform. The
missingness patterns are stored in csv files, with each row as a list of tuples of size 2, which represent
the binary missingness pattern time-series. The first item in the tuple corresponds to missing (0)
or not missing (1) with the second entry corresponding to the length of samples (in 100 Hz) that
the missing or not missingness segment lasts. Each of MIMIC-III curated data and missingness
patterns have been split into 80/10/10 training/validation/testing splits accordingly. If we concatenate
train, validation, and test .npy files in that order, each data index corresponds to the file name at the
corresponding line in the MIMIC_III_ECG_filenames.txt or the MIMIC_III_PPG_filenames.txt file.

For the cardiac classification tasks on the PTB-XL data, the labels can be found in the pt-
bxl_database.csv file and the waveform data in the ptbxl_ecg.npy. We use the original paper’s
proposed splits to divide the data into 40/10/50 training/validation/testing splits. Imputation models
and downstream cardiac classification models are trained and tuned with the 40/10 split, with the
classification model training on the clean non-imputed data. Then classification runs inference on the
imputed test data in the 50 split to evaluate imputation quality. This large test split was done to allow
for future work where the classification model trains directly on imputed data.
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Our datasets originate from the curation of two different datasets, MIMIC-III Waveform [12] and
PTB-XL [18]. MIMIC-III Waveform uses the Open Data Commons Open Database License v1.0
(linked here), which explicitly allows for the creation and distribution of derivative databases, which
we have done via our curation described in Section A2. We have attributed the data to its original
source throughout our paper, by citing [12]. PTB-XL uses the Creative Commons Attribution 4.0
International Public License (linked here), which explicitly allows for adaptation and redistribution
of the data, and we have attributed the data to its original source throughout our paper, by citing [18].
The missingness patterns for PPG were extracted from analyzing PPG-DaLiA, which is hosted on the
UCI Machine Learning Repository (linked here), and does not have an explicit license, but states
others may use the dataset for scientific, non-commercial purposes, provided that credit is given,
which we have done throughout our paper, by citing [16]. The binary missingness patterns for ECG
were extracted from [3], our mHealth study. For additional documentation for the datasets we have
mentioned, please see the original publications that the datasets originate from [12, 18, 16, 3].
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