
Appendix

A Training Dynamics of ProbTransformer

In this section, we provide insights into the training dynamics of the ProbTransformer using the
RNA folding task. In Figure 5 we visualize the progress of the training. The first row pictures the
hamming distance on the validation set, in the second we show the learning rate schedule, in the third
the annealing of kappa, in the fourth the cross-entropy loss Lrec, in the fifth the KL loss DKL, in the
sixth the adjustment of κ, and at the bottom the reconstruction constraint Lrec − κ.

Figure 5: The training dynamics of the ProbTransformer in the RNA folding task.

We observe that the κ decreases over time due to a low λ which allows an increase in the pressure
on the reconstruction. In Figure 6, we show the same training but with a log scale on the x-axis to
focus on the early training phase. At the beginning of the training, the reconstruction constraint is not
satisfied and the Lagrange multiplier λ is increasing which results in pressure on the reconstruction
loss. At the same time, the KL divergence increases due to reconstruction via Zpost, leading to
an increase in the initial distance of Pφ and Qψ. Once the reconstruction constraint is satisfied, λ
decreases and the pressure moves to the KL term. Also, the performance, measured in terms of the
Hamming distance, does not improve even when the CE loss drops, since the CE loss only trains the
posterior reconstruction. It only starts to improve when the KL divergence begins to decrease and the
predictive model learns to create a useful internal latent representation.

19



Figure 6: The training dynamics of the ProbTransformer in the RNA folding task but with log scale
on the x axis to focus on the early phase of the training.

20



B Synthetic Sequential Distribution Task

This section provides more details about the synthetic sequential distribution task itself, the configu-
ration of the used Transformer and ProbTransformer model, the training process, and the results.

B.1 Data

We design the task to map a sequence of tokens from a source vocabulary x ∈ V∗
i to a sequence

of target tokens from a target vocabulary y ∈ V∗
o with the same length. The tokens in the source

sequence are used to build ‘phrases” P. Each phrase consists of l tokens sampled with replacement
(similar to the combination of words in a sentence). We randomly generate a unique distribution
p(y|x,P) over the target tokens for each source token in each phrase, depending on the current phrase.
Further, we design the distribution sparsely so that no more than k tokens from the target vocabulary
have a non-zero probability. The training data is generated by sampling input sequences from all
phrases (with replacement) and sampling the target sequence from its corresponding distribution. The
size of the source and target vocabulary is 500, a phrase exists of three tokens, and we create 1000
different sections. Each target token is drawn from a sparse distribution with 1 to 10 non-zero token
probabilities. The sequence length is uniformly drawn from a length of 15 to 90. We created 100.000
training samples and 10.000 validation and test samples. Please find the detailed configuration of the
task in Table 5.

Table 5: Configuration of the synthetic sequential distribution task.
Max token length 90
Min. token length 15
Number of phrases 1000
Number of training samples 100000
Token per phrase l 3
Possible target tokens k 10
Vocabulary source tokens 500
Vocabulary target tokens 500

Figure 7 shows an example of target distribution depending on the source phrase. On the x-axis, we
show the target vocabulary consisting of number-tokens. On the y-axis, there are two phrases of
source tokens. The yellow-green-blue color scheme represents the distribution of the target token
mapping to a source token depending on the source phrase. Please note that the tokens in the second
and third rows are the same but have different distributions due to the position in the phrase. A target
sequence is sampled from this distribution, and in the optimal case, the model should be able to
reproduce this distribution.

B.2 Setup

In general, we implement our models and tasks in Python 3.8 using mainly PyTroch [88], Numpy [89],
and Pandas [90]. We use Matplotlib [91] for the plots in the paper.

For experiments on the synthetic sequential distribution task, we use the configuration listed in Table
6 for the Transformer and ProbTransformer. For MC dropout, we employed a grid search to find the
optimal Dropout rate (0.1, 0.2, · · · , 0.5). The other hyperparameters were tuned manually based on
preliminary work [1] or based on preliminary experiments. We use SiLU [92] as activation function
in both models. Furthermore, we use automatic mixed-precision during the training, initialize the
last linear of each layer (feed-forward, attention, or prob layer) with zero, and use a learning rate
warm-up in the first epoch of training as well as a cosine learning rate schedule. We use the squared
softplus function to ensure a positive λ value during training and update λ with a negative gradient
scaling of 0.01. For the moving average of the reconstruction loss, we use a decay of 0.95.

B.3 Results

We provide detailed results of our models and sampling methods with mean and standard deviation for
five random seeds and evaluate two additional metrics: (1) We count the different output variations.

21



Figure 7: Target distribution depending on the source phrase.

Table 6: Hyperparameters of the Transformer and ProbTransformer training in the synthetic sequential
distribution task.

Feed-forward dim 1024
Latent Z dim 256
Model dim 256
Number of layers 4
Number of heads 4
Prob layer all layer

Kappa 0.1
Dropout 0.1
Optimizer adamW
Beta 1 0.9
Beta 2 0.98
Gradient Clipping 100
Learning rate schedule cosine
Learning rate high 0.001
Learning rate low 0.0001
Warmup epochs 1
Weight decay 0.01
Epochs 50
Training steps per epoch 2000

22



A perfect model creates the same diversity as nonzero probabilities in the true distribution. We
normalize this measure to one; high values suggest more different tokens than non-zero tokens in
the true distribution, and smaller values suggest fewer tokens. (2) Another measure for the distance
between two distributions is the total variation which can deal with zero probabilities. Please find the
results in Table 7.

Table 7: The mean and standard deviation of five random seeds for runs with Transformer and
ProbTransformer in the Synthetic Sequential Distribution Task.

Model Validity Diversity KL-divergence Total Variation
mean std mean std mean std mean std

ProbTransformer 0.99 0.0024 0.99 0.0002 0.52 0.0165 0.11 0.0007

Transformer dropout 0.93 0.0198 0.72 0.0014 12.71 0.0357 0.35 0.0004
softmax 0.73 0.0075 0.90 0.0020 7.84 0.0654 0.31 0.0016

C RNA Folding

In this section, we detail our data pipeline, the general experimental setup and evaluation protocol,
and show additional results, including standard deviations for multiseed runs, for our experiments on
the RNA folding problem. We start, however, with a brief introduction to RNA functions and the
importance of their secondary structure.

RNAs are one of the major regulators in the cell and have recently been connected to diseases like
cancer [93] or Parkinson’s [94, 95]. They consequently arise as a promising alternative for the
development of novel drugs, including antiviral therapies against COVID-19[96] and HIV[97], or
vaccines[98].

The vast majority of RNAs that are differentially transcribed from the human genome do not encode
proteins [99, 100] and revealing the functions of these so-called non-coding RNAs (ncRNAs) is one
of the main challenges for understanding cellular regulatory processes [31]. Similar to proteins, the
function of an RNA molecule strongly depends on its folding into complex shapes, but unlike protein
folding, which is dominated by hydrophobic forces acting globally, RNAs exhibit a hierarchical
folding process [101]. In a first step, the corresponding nucleotides of the RNA sequence connect to
each other by forming hydrogen bonds, resulting in local geometries and a distinct pairing scheme
of the so-called secondary structure of RNA3. The secondary structure defines the accessibility
of regions for interactions with other cellular compounds [31] and dictates the formation of the
3-dimensional tertiary structure [101, 102]. However, RNA structures are highly dynamic, which
dramatically influences their functions [13, 14]. A learning algorithm that tackles the problem of
predicting these structure ensembles is currently lacking in the field and we consider our work a
major step in the direction of accurate RNA structure prediction.

C.1 Data

In this section, we detail the datasets used during training and for our experiments. RNA sequences
are chains of the four nucleotides (bases) adenine, cytosine, guanine, and uracil. However, RNA data
often considers an extended nucleotide alphabet using IUPAC nomenclature4 and we note that the
datasets used in this work include IUPAC nucleotides.

A RNA secondary structure is typically described as a list of pairs where a pair (i, j) denotes two
nucleotides at the positions i and j of a RNA sequence that are connected by hydrogen bonds to
form a base pair. In the simplest case, all pairs of the secondary structure are nested, i.e. if (i, j)
and (k, l) describe two pairs of a secondary structure with i < k, then i < k < l < j. A functional
important class of base pairs [47, 48], however, is called pseudoknots, where the nested pairing

3We note that there is a longstanding discussion in the field of structural biology on what is called an
RNA secondary structure and we use the broadest definition of secondary structure, i.e. including non-nested
structures, in this work.

4We refer to the IUPAC nomenclature described by the International Nucleotide Sequence Database Collabo-
ration (INSDC) at https://www.insdc.org/documents/feature_table.html#7.4.1.

23

https://www.insdc.org/documents/feature_table.html#7.4.1


scheme is disrupted by one or more pairs of type: i < k < j < l. Canonical base pairs are formed
between A and U, G and C (Watson-Crick pairs) or between G and U (Wobble pairs), while all other
pairings of nucleotides are called non-canonical base pairs. We use the dot-bracket notation [12] for
description of secondary structures where a dot corresponds to unpaired nucleotides and a pair of
matching brackets denotes a pair of two nucleotides.

For our experiments we collect a large pool of annotated RNA secondary structures and their
corresponding sequences from recent publications [41, 39, 37, 103, 38]. In particular, we collect
102098 samples from the BpRNA [103] meta database, two versions of the RNAStralign [104]
dataset provided by [41] and [39] with 28168 and 20897 samples, respectively, two versions of the
ArchiveII [105] dataset provided by [41] and [39] with 2936 and 3966 samples, the TR0, VL0, and
TS0 datasets provided by [37] with 10814, 1300, and 1305 samples, respectively, the TrainSetA [106]
and the TrainSetB [106] with 3164 and 1094 samples, respectively, and all available data from the
RNA-Strand [38] database (3898 samples). For all data provided in .bpseq, .ct or similar file formats
that only provide base pairs, we use BpRNA [103] to consistently annotate secondary structures
with our major data source, the BpRNA metadatabase. We split the testset TS0 and the validation
set VL0 from the pool and uniformly sampled a novel testset, TSsameSeq, from sequences of the
remaining pool as described in Section 4.2. The highly redundant raw data consists of 177035
training samples, 1300 validation samples and 1351 test samples. We remove duplicates from the
data as well as samples that did not contain any pairs. We applied CD-HIT-EST-2D [107] to remove
sequences from the training data with a sequence similarity greater than 80% to the validation and test
samples, the lowest available threshold [37]. In accordance to [37], we limit the length of sequences
to 500 nucleotides to save computational budget and since especially for longer RNAs, experimental
evidence is generally still lacking because of challenges in crystallization and spectral overlap [108].
Table 8 summarizes the final datasets used for our experiments.

Table 8: Statistics of the different datasets used for our experiments on RNA folding.

Dataset # Samples Unique Seq. Unique Struc. Avg. Length Pair Types

Canonical Non-Canonical Pseudoknots

Train 52007 48092 27179 137.46 1701469 106208 47382
VL0 1299 1299 1218 131.94 35301 4096 1001
TS0 1304 1304 1204 136.09 36702 4083 1206
TSsameStruc 149 149 49 85.04 2849 211 –
TSsameSeq 46 20 46 176.46 2273 60 150

C.2 Setup

In this section, we provide the configuration of the models and training details. We list the hyperpa-
rameters of the Transformer and ProbTransformer training in the RNA folding experiment in Table
9. We use the squared softplus function to ensure a positive λ value during training and update λ
with a negative gradient scaling of 0.1. For the moving average of the reconstruction loss we use
a decay of 0.95. We performed the training on one Nvidia RTX2080 GPU and the training time
for one ProbTransformer model is ∼63h and for one Transformer ∼33h. The training time for the
ProbTransformer nearly doubles due to the posterior model.

C.2.1 CNN Head

Although the Transformer’s and ProbTransformer’s output prediction has a high quality, its still
sometimes flawed. This hinders the evaluation of the F1 score and therefore the comparison on this
metric to related work. Instead of manually designing an error correction heuristic we decided to
learn a simple model which takes the Transformer’s last latent and predicts an adjacency matrix
which is use to evaluate the F1 score of our prediction.

We use a fixed-size CNN without up or down scaling. The detailed hyperparameters and training
configuration of our CNN is listed in Table 10. The input is a concatenation of the vertical and
horizontal broadcast of the last latent from the Transformer as well as the embedded nucleotide
sequence. The output are two classes, one for a connection between nucleotides and one for no
connection. We train our CNN head on the same training data as the Transformer and pre-compute
the Transformer output to save computational resources during the CNN training, i.e. we do not train

24



Table 9: Hyperparameters of the Transformer and ProbTransformer and training details of the RNA
folding experiment.

Feed-forward dim 2048
Latent Z dim 512
Model dim 512
Number of layers 6
Number of heads 8
Prob layer 2,3,4,5

Kappa 0.1
Dropout 0.1
Optimizer adamW
Beta 1 0.9
Beta 2 0.98
Gradient Clipping 100
Learning rate schedule cosine
Learning rate high 0.0005
Learning rate low 0.00005
Warmup epochs 1
Weight decay 0.01
Epochs 100
Training steps per epoch 10000

them jointly. We use early stopping based on the Hamming distance of the validation set. We perform
the training on one Nvidia RTX2080 GPU and the training time is ∼3h.

Table 10: Hyperparameters of the CNN head and training configuration.
Model dim 64
Number of layers 8
Stride 1
Kernel 5

Dropout 0.1
Optimizer adamW
Beta 1 0.9
Beta 2 0.98
Gradient Clipping None
Learning rate schedule cosine
Learning rate high 0.005
Learning rate low 0.0005
Warmup epochs 1
Weight decay 1e-10
Epochs 10
Training steps per epoch 2000

C.3 Results

In this section, we describe our evaluation protocol in detail and show additional results for the
predictions on the three test sets, TS0, TSsameStruc, and TSsameSeq, including standard deviations.
For drawing of RNA secondary structures, we use VARNA [109] provided under GNU GPL License.

C.3.1 Evaluation

We evaluate all approaches concerning Hamming distance, the number of solved tasks, and the F1
score. The Hamming distance is the raw count of mismatching characters in two strings of the same
length. A dot-bracket structure with a Hamming distance of zero counts as solved. F1 score describes

25



the harmonic mean of precision (PR) and sensitivity (SN) and is computed as follows:

PR =
TP

(TP + FP)
, (12)

SN =
TP

(TP + FN)
, (13)

F1 = 2 · (PR · SN)

(PR + SN)
, (14)

where TP, FP and FN denote true positives, false positives and false negatives, respectively. For
TSsameSeq, we only evaluate the best predictions concerning Hamming distance.

SPOT-RNA The output of SPOT-RNA is in .ct tabular format with columns for indication of
pairs. Deriving pseudoknots from base pairs is not trivial [110, 103] and we, therefore, convert the
output to .bpseq format and apply BpRNA [103], the same annotation tool as we used during data
generation, to yield annotated secondary structures for all predictions of SPOT-RNA.

MXFold2 MXFold2 directly outputs secondary structures in dot-bracket format, which we evaluate
directly.

RNAfold As for MXFold2, RNAfold’s predictions can be evaluated directly from the output in
dot-bracket format.

We note that RNAfold and MXFold2 are not capable of predicting pseudoknots due to their underlying
dynamic programming approach.

UFold In contrast to all other approaches, UFold cannot handle IUPAC nucleotides in the input
sequences. When evaluating the exact same test data used for all other approaches, the recommended
webserver of UFold at https://ufold.ics.uci.edu/ as well as the standalone version generates
predictions with different lengths compared to the inputs which cannot be evaluated. A fair com-
parison with UFold thus was not possible and we decided to exclude UFold from the evaluations in
the main paper. However, we resolved IUPAC nucleotides by uniformly sampling corresponding
canonical nucleotides for IUPAC nucleotides to create a dataset accepted by UFold. We use the
dot-bracket output of UFold for evaluations since provided .ct files resulted in errors when trying to
obtain secondary structures using BpRNA similar as described for SPOT-RNA due to predictions
with nucleotides pairing with themselves. The results of UFold on TS0 and TSsameStruc are shown
in Table 11.

Table 11: Structure fidelity of UFold and the ProbTransformer on TS0 and TSsameStruc.

Model TS0 TSsameStruc

F1 Score Hamming Solved F1 Score Hamming Solved

ProbTransformer 62.5 27.4 0.118 93.2 3.2 0.550
UFold 58.8 33.3 0.038 82.7 9.4 0.141

ProbTransformer Regarding Hamming distance and the number of solved structures, we directly
evaluate the predictions of the ProbTransformer from the raw model outputs. For the F1 Score,
however, we use a post-processing step using the CNN head to obtain an adjacency matrix as
described above.

Structure Ensemble Predictions We use the dot-bracket output of all approaches for evaluations
on TSsameSeq. The predictions with the lowest Hamming distance to the respective ground truth
structure were used for the evaluation of performance.

C.3.2 Detailed results

In this section, we provide further results for our experiments on the RNA folding problem, including
standard deviations for multiseed runs.

26

https://ufold.ics.uci.edu/


TS0 We provide additional results for predictions on TS0. In Table 12 we provide results with
standard deviations. Figure 8, 9 and 10 show example predictions of different approaches. Figure 13
shows the F1 score for different base-pairs in comparison with related work.

Table 12: Mean and standard deviation for three random seeds of the ProbTransformer and Trans-
former on TS0.

Model TS0

F1 Score Hamming Solved

mean std mean std mean std

ProbTransformer 62.5 0.004 27.4 0.3425 0.118 0.0037
Transformer 50.5 0.0109 35.27 0.5911 0.084 0.0019

Table 13: The F1 score of different base-pairs of the ProbTransformer, Transformer and related work
on TS0.

Method F1-All F1-WC F1-canonical F1-wobble F1-NC

ProbTransformer 62.5 65.7 64.7 58.1 39.5
Transformer 50.5 53.4 52.5 47.7 36.3
SPOT-RNA 59.7 63.7 62.7 43.9 15.6
MXFold2 55.0 58.0 57.0 41.7 0.0
RNAFold 49.2 52.0 50.8 36.9 0.0

27



True Structure ProbTransformer SPOT-RNA MXFold2

Figure 8: RNA Structure prediction examples for the test set TS0. The shown structures for the
ProbTransformer are derived from the raw model outputs without further post-processing.

28



True Structure ProbTransformer SPOT-RNA

Figure 9: RNA Structure prediction examples for targets that contain pseudoknots from the test set
TS0. The shown structures for the ProbTransformer are derived from the raw model outputs without
further post-processing. We only show the two algorithms that are capable of predicting pseudoknots.

29



True Structure ProbTransformer SPOT-RNA MXFold2

Figure 10: RNA Structure prediction examples for the test set TS0 for inaccurately predicted
structures. The shown structures for the ProbTransformer are derived from the raw model outputs
without further post-processing.

30



TSsameStruc We provide additional results for predictions on TSsameStruc. Table 14 shows
results with standard deviation.

Table 14: Mean and standard deviation for three random seeds of the ProbTransformer and Trans-
former on TSsameStruc.

Model TSsameStruc

F1 Score Hamming Solved

mean std mean std mean std

ProbTransformer 93.2 0.005 3.22 0.163 0.55 0.0055
Transformer 89.5 0.0111 4.55 0.0316 0.481 0.0084

TSsameSeq We provide results for the predictions on TSsameSeq to analyze the ability of the
ProbTransformer to capture the structure distribution of RNA sequences that map to different
structures. For all experiments, we inferred the model 5, 10, 20, 50, and 100 times using sample
inference and analyzed the raw predictions without further post-processing. We observe that the
ProbTransformer has learned the structure distributions from the data, producing predictions closer
to the desired structures as indicated by a low Hamming distance shown in Table 15. The mean
and standard deviations of the predictions are shown in Table 17, results for individual samples are
summarized in Table 16. Remarkably, the ProbTransformer is the only model that reproduces both
true structures for two of the 20 RNA sequences from the raw model predictions directly using only 5
inferences (with two out of three random seeds, results not shown).

Table 15: Average minimum Hamming distance of the different approaches on TSsameSeq.

Model Hamming Distance

N=5 N=10 N=20 N=50 N=100

ProbTransformer 26.51 25.16 24.47 23.60 23.09
Transformer 49.17 49.17 49.17 49.17 49.17
RNAsubopt 42.59 42.83 38.09 34.22 31.30
RNAshapes 47.65 45.83 45.24 39.04 37.59
RNAstructure 47.22 42.02 38.04 35.20 32.59

31



Table 16: Minimal Hamming distances per Structure for all samples of TSsameSeq. We show results
for one random seed of the ProbTransformer only.
Family #Structures ProbTransformer RNAsubopt RNAshapes RNAStructure

5S rRNA 2 0/0 8/12 12/16 8/12
5S rRNA 2 8/0 16/12 14/10 24/22
5S rRNA 2 8/0 10/2 12/4 12/4
Group I
catalytic intron 2 24/24 44/47 51/53 50/56
N/A 2 76/88 51/65 59/71 60/72
Antizyme RNA
frameshifting stimulation element 2 14/2 12/0 16/6 15/4
N/A 3 7/5/1 6/4/0 6/4/0 6/4/0
tRNA 2 0/4 4/0 4/0 4/0
transfer-messenger RNA 3 17/33/29 91/62/112 140/111/152 107/77/119
tRNA 2 0/2 2/0 2/0 2/0
N/A 2 14/13 12/2 12/2 10/0
Bacterial small
signal recognition particle RNA 2 6/7 10/6 10/6 10/6
Hammerhead ribozyme (type I) 2 36/35 14/14 8/8 8/8
Group I
catalytic intron 2 118/116 54/53 102/101 66/65
5S rRNA 2 9/1 10/6 10/6 12/8
5S rRNA 2 11/1 12/12 16/8 20/14
Bacterial RNase P
class A 3 14/15/15 63/60/52 55/51/46 61/59/54
Bacterial RNase P
class A 3 9/6/6 50/47/42 61/58/55 43/43/38
Bacterial RNase P
class B 4 65/66/68/69 78/79/101/99 80/78/104/101 65/67/89/91
5S rRNA 2 3/1 4/0 6/2 4/0

Table 17: Mean and standard deviation of the ProbTransformer and Transformer on TSsameSeq for
three random seeds.
Model TSsameSeq

N=5 N=10 N=20 N=50 N=100

mean std mean std mean std mean std mean std

ProbTransformer 26.51 0.7754 25.16 0.4687 24.47 0.3388 23.60 0.2310 23.09 0.4820
Transformer 49.17 2.6304 49.17 2.6304 49.17 2.6304 49.17 2.6304 49.17 2.6304

C.4 Related work RNA folding

In this section, we discuss state-of-the-art deep learning approaches for the RNA folding problem in
detail.

SPOT-RNA [37] was the first algorithm using deep neural networks for end-to-end prediction of RNA
secondary structures. In this work, an ensemble of residual networks (ResNets) [111] and bidirectional
LSTMs [112] (BiLSTMs) [113] was pre-trained on a large set of RNA secondary structure data and
then fine-tuned on a small set of experimentally-derived RNA data, including tertiary interactions.
Although the authors claimed the possibility of predicting RNA tertiary interactions, the performance
for these types of base pairs was poor and the currently available version of the algorithm excludes
tertiary interactions from its outputs. We thus consider this work as RNA secondary structure
prediction.

E2efold [41] uses a Transformer encoder architecture to learn the prediction of RNA secondary
structures. The algorithm was trained on a very homologous set of RNA data and showed strongly
reduced performance when evaluated on data of other publications [39, 42], indicating strong
overfitting. Since we use the same data set as the respective work, we exclude E2efold from our
evaluations.

MXFold2 [39] combines deep learning with a DP approach by using a CNN/BiLSTM architecture to
learn the scoring function for the DP algorithm. The network is trained to predict scores close to a set

32



of thermodynamic parameters to increase robustness. MXFold2 is restricted to predict a reduced set
of base pairs due to limitations in the DP algorithm.

UFold [42] employs a UNet [114] architecture for solving the RNA folding problem. Similar to SPOT-
RNA, the authors additionally report results for predictions on data that contains tertiary interactions
after fine-tuning the model on experimental data with slightly worse overall performance compared
to SPOT-RNA. In contrast to the previously described works, however, UFold treats an RNA sequence
as an image of all possible base-pairing maps (16 maps corresponding to 16 possible pairs) and an
additional map for pair probabilities, represented as square matrices of the provided sequence.

D Molecular Design

In this section, we provide further information on our experiments for the conditional generation of
molecules based on multiple desired properties.

Estimations of the size of the chemical space [52] vary widely [115] (typically between 1020 and
10100) with a common consensus that it contains too many molecules to be explicitly enumerated [53].
Deep generative models recently attracted huge interest in exploring this practically infinite space
for the use in drug discovery and deep learning-based molecular de novo generation has emerged
as the most interesting and fast-moving field in cheminformatics [53] during the last five years. In
this so-called generative chemistry [51], deep generative models are typically trained on a large
part of enumerated chemical space to learn a biased distribution of molecular representations and
evaluated for their ability to generate novel compounds and explore the unseen chemical space.
Common evaluation protocols include metrics to measure e.g. the novelty of the designed compounds
concerning the examples visited during training, their uniqueness to measure the internal diversity
of predictions, and validity of the generated compounds regarding e.g. the underlying SMILES
grammar [57]. However, besides general exploration which could be achieved using uniform sampling
approaches [53], biological applications typically require that the designed molecules have certain
desired properties. For generative models, the task is then to explore the chemical space conditioned
on molecule properties (conditional generation).

D.1 Data

For sequence-based approaches, a common way of representing molecules is the simple molecular
line-entry system (SMILES) [15]. This notation was originally proposed to represent molecules
as strings and uses a sequence of elements combined with special characters to enable branching,
ring-closure, and different bond orders as well as indications for properties like charges [53]. To
train the ProbTransformer, we use the training data of the GuacaMol [57] benchmark suite provided
by [11]. Overall, the training data consists of 1259543 SMILES with a vocabulary of 94 unique
characters.

D.2 Setup

In this section, we provide the configuration of the models and training details. We list the hyperpa-
rameters of the Transformer and ProbTransformer training for the molecule design experiment in
Table 18. Furthermore, we use automatic mixed-precision during the training, initialize the last linear
of each layer (feed-forward, attention, or prob layer) with zero, and use a learning rate warm-up
in the first epoch of training. We use the squared softplus function to ensure a positive λ value
during training and update λ with a negative gradient scaling of 0.01. For the moving average of the
reconstruction loss, we use a decay of 0.95. We performed the training on one Nvidia RTX2080 GPU
and the training time for one ProbTransformer model is ∼25h and for one Transformer ∼13h.

We condition the generation of molecules on three properties:

The synthetic accessibility score (SAS) is a measure of how difficult it is to synthesize a compound.
The values for SAS could generally range between 1 (easy to synthesize) and 10 (very difficult to
make).

The partition coefficient (logP) describes the logarithm of the partition coefficient of a compound.
This measure compares the solubilities of a solute in two immiscible solvents at equilibrium. If one
of the solvents is water and the other one is non-polar, logP is a measure of hydrophobicity.

33



Table 18: Hyperparameters of the Transformer and ProbTransformer and training details of the
molecule design experiment.

Feed-forward dim 1024
Latent Z dim 64
Model dim 256
Number of layers 8
Number of heads 8
Prob layer 2-7

Kappa 0.1
Dropout 0.1
Optimizer adamW
Beta 1 0.9
Beta 2 0.98
Gradient Clipping 100
Learning rate schedule cosine
Learning rate high 0.0005
Learning rate low 0.00005
Warmup epochs 1
Weight decay 0.01
Epochs 60
Training steps per epoch 5000

The topological polar surface area (TPSA) measures the ability of a drug to permeate cell membranes
and describes the contributions of all polar atoms, such as oxygen and nitrogen and their attached
hydrogens, to the molecular surface area. The polar surface area is a good estimator of the absorption,
distribution, metabolism, excretion, and toxicology (ADMET)-relations of a compound and provides
a rule-of-thumb for chemists to avoid dead-ends during the development process in drug discovery
pipelines [116].

For our experiments, we follow the protocol described for MolGPT by choosing a value for each
property from the following domains of values. SAS: 2.0, 4.0; logP 2.0, 6.0; TPSA: 40, 80. The model
then conditionally generates molecules with the task to match all chosen values. Following MolGPT,
results are reported in terms of the mean average deviation (MAD) and the standard deviation (SD)
relative to the range of the desired property values. While our experiment focuses on conditional
generation to match the desired property values, we also report the following scores.

Validity describes the fraction of generated molecules that are expressed as valid SMILES. High
validity indicates strong learning of the underlying SMILES grammar.

Uniqueness is a measure of the prediction diversity. Uniqueness is the fraction of unique predictions
from all generated valid SMILES. Although this metric is known to be not well-defined [16] and can
be tricked by very simple means [58], we report uniqueness scores for reasons of comparability to
previous work in the field.

Novelty is the fraction of valid molecules that are different from the training samples. A high novelty
indicates strong exploration while a low novelty indicates overfitting.

We use rdkit [117] for computations of TPSA and logP and use the provided script by [11] for
computations of SAS.

D.3 Results

We provide detailed results with standard derivation in Table 19. Figure 11 shows the distributions of
properties for all valid predictions of the ProbTransformer and MolGPT. We observe less deviation
from the desired property values for the predictions of the ProbTransformer compared to MolGPT.
In line with these results, we observe that the ProbTransformer generates more unique molecules
with properties close to the desired property values compared to MolGPT as indicated in Table 20.
Example predictions of these molecules are shown in Figures 12, 13, 14, 15, 16, 17, 18, and 19. We
use rdkit [117] for drawing of the molecules.

34



Table 19: Results of the ProbTransformer in multi-property (TPSA+logP+SAS) conditional training
on GuacaMol dataset on five different seeds.

TPSA logP SAS

Validity Unique Novelty MAD SD MAD SD MAD SD

mean 0.981 0.821 1 2.47 2.04 0.22 0.18 0.16 0.14
std 0.0123 0.0858 0 0.3727 0.3715 0.0544 0.0449 0.0767 0.0623

Figure 11: Distributions of predicted properties of the ProbTransformer and MolGPT. Results are
shown for a representative seed for the ProbTransformer.

Table 20: Number of unique molecules that meet the desired properties for the ProbTransformer and
MolGPT. We allow a deviation from the desired values of 0.5 for TPSA and 0.1 for SAS and LogP.
Results show the mean with standard deviation for five random seeds of the ProbTransformer.

(TPSA, LogP, SAS) MolGPT ProbTransformer

Mean Std

(40.0, 2.0, 2.0) 58.0 80.4 4.1280
(40.0, 2.0, 4.0) 25.0 48.6 4.8415
(40.0, 6.0, 4.0) 20.0 40.4 3.7202
(40.0, 6.0, 2.0) 44.0 102.4 9.7693
(80.0, 2.0, 2.0) 105.0 220.2 16.8333
(80.0, 2.0, 4.0) 49.0 55.4 4.4091
(80.0, 6.0, 4.0) 50.0 60.8 6.2418
(80.0, 6.0, 2.0) 246.0 430.8 57.9876

35



Figure 12: Example predictions of the ProbTransformer for property values of TPSA: 40.0; LogP:
2.0; SAS: 2.0 with an allowed deviation of 0.5, 0.1, and 0.1, respectively.

Figure 13: Example predictions of the ProbTransformer for property values of TPSA: 40.0; LogP:
2.0; SAS: 4.0 with an allowed deviation of 0.5, 0.1, and 0.1, respectively.

Figure 14: Example predictions of the ProbTransformer for property values of TPSA: 40.0; LogP:
6.0; SAS: 4.0 with an allowed deviation of 0.5, 0.1, and 0.1, respectively.

36



Figure 15: Example predictions of the ProbTransformer for property values of TPSA: 40.0; LogP:
6.0; SAS: 2.0 with an allowed deviation of 0.5, 0.1, and 0.1, respectively.

Figure 16: Example predictions of the ProbTransformer for property values of TPSA: 80.0; LogP:
2.0; SAS: 2.0 with an allowed deviation of 0.5, 0.1, and 0.1, respectively.

Figure 17: Example predictions of the ProbTransformer for property values of TPSA: 80.0; LogP:
2.0; SAS: 4.0 with an allowed deviation of 0.5, 0.1, and 0.1, respectively.

37



Figure 18: Example predictions of the ProbTransformer for property values of TPSA: 80.0; LogP:
6.0; SAS: 4.0 with an allowed deviation of 0.5, 0.1, and 0.1, respectively.

Figure 19: Example predictions of the ProbTransformer for property values of TPSA: 80.0; LogP:
6.0; SAS: 2.0 with an allowed deviation of 0.5, 0.1, and 0.1, respectively.

D.4 Related Work

Inspired by progress in the field of natural language processing (NLP), early work employed recurrent
neural networks (RNNs) to produce focus libraries based on the SMILES notation [73]. Later on,
these approaches were coupled with reinforcement learning (RL) to focus the generation on molecules
with desirable properties [69, 74]. Additional methods were proposed to tackle the problem, including
generative adversarial networks (GANs) [70, 71], variational autoencoders (VAEs) [75, 76], and
adversarial autoencoders (AAEs) [72, 77, 78, 79]. For more details on the different methods, we refer
the interested reader to multiple reviews of the field [83, 84, 51, 53].

More recently, the success of self-attention mechanisms entered the field and novel methods were
developed, adding attention either to RNNs [16] or VAEs [16, 118]. Remarkably, Transformer-
based VAEs showed more complex latent representations of molecules and outperformed previous
state-of-the-art VAEs [79] in the field [16].

However, as discussed before in Section 5, only some methods yet approached the challenging task
of generating molecules with (multiple) predefined property values (conditional generation) [73, 80,
81, 82, 11].

38



E Ablation Study

We list the hyperparameters of the Transformer and ProbTransformer as well as the training configu-
ration for the ablation study in Table 21. We performed the training on one Nvidia RTX2080 GPU
and the training time for one ProbTransformer model is ∼56h (1 prob layer) to ∼80h (all prob layer)
and for one Transformer ∼33h. Also, we reduced the learning rate for the architecture ablation study
due to unstable training when using all prob layers.

Table 21: Hyperparameters of the Transformer and ProbTransformer and training details of the
ablation study.

Feed-forward dim 2048
Latent Z dim 512
Model dim 512
Number of layers 6
Number of heads 8
Prob layer 4,3-4,2-5,all

Kappa 0.1
Dropout 0.1
Optimizer adamW
Beta 1 0.9
Beta 2 0.98
Gradient Clipping 100
Learning rate schedule cosine
Learning rate high 0.0001/5
Learning rate low 0.00001/5
Warmup epochs 1
Weight decay 0.01
Epochs 200
Training steps per epoch 5000

39


