A Extensive comparison between stochastic methods for bilevel optimization

We provide here tables summarizing other methods in stochastic bilevel optimization. They are
grouped between methods that are based on two nested loops and methods that use only one loop.

In the following tables, the inner iterations are referred with the variable k and the outer iterations are
referred with the variable ¢ (or T for the total number of iterations).

In the literature, there are three main ways to perform Hessian inversion. The HIA, first proposed in
[19], and SHIA, proposed in [26], procedures used for Hessian inversion are precised in Algorithm 2
and 3. These methods are based on Neumann approximation of the inverse of a matrix. SGD for
Hessian inversion refers to Stochastic Gradient Descenton v +— 1(V3,G(z, z)v,v) — (V1 F(z,z),v).
The complexity refers to the number of call to the oracles to get an e-stationary solution. In these
complexities, the notation O hide polynomial factors in log e 1.

Algorithm 2 Hessian Inverse Approximation (HIA)

Input: variables z € RP, x € RY, gradient V1 F'(z, ) € RP, maximum number of iterations b, a
parameter 7).
Setv? = V1 F(z,)
Choose p € {0,...,b— 1} randomly.
fork=1,...,pdo
Sample i € [n]
Update v : v¥+1 = (I —nV?3,G (2, z))v"
end for
Return: bnv,q

Algorithm 3 Summed Hessian Inverse Approximation (SHIA)

Input: variables z € R?, x € R?, gradient V1 F(z, z) € RP, maximum number of iterations b, a
parameter 7).
Set v’ = V1 F(z,z)
Set s¥ = oY
fork=0...,b—1do
Sample i € [n]
Update v: vF*! = (I —nV3,G(z,z))v"
Update s: sF1 = sF 4 pF+1
end for
Return: 7s’

The momentum column refers to the use of STORM [12] momentum in the inner loop or the outer

loop. This momentum can be applied to either the inner or the implicit gradient estimate. If we

consider the current estimate y* = (2%, v?, x') and the previous estimate ' =1 = (2!=1, 0!~ zt~1),

and we apply STORM to the quantity ¢(y*) with the memory ngSt, the momentum update rule reads
D =ng(y') + (1 =)@ + o(y") — oy 1)) -

Note that this update requires to evaluate the quantity ¢ twice per iteration, once in y* and once in
y'~1. The memory is need to store the previous estimates y*~! as well as the running estimate of the

gradient ¢.
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B Details on experiments

We provide here additional informations on the experiments.

B.1 Generalities

All the experiments are performed with Python, using the package Benchopt [35] and Numba [29]
for fast implementation of stochastic methods. For each problem, we use oracles for a function given
function f that (f(z,x), V1f(z,2), V3, f(z,2)v, V3, f(z,x)v) avoiding duplicate computation of
intermediate results for these quantities.

We find that using mini-batches instead of individual samples to compute the stochastic estimates
allowed for much faster computations, thanks to hardware acceleration and vectorization of the
computations. We use continuous batches to avoid random memory access that slow down the
computations. Concretely, if i; is the index of the current batch and B is the batch-size, the indices
of the corresponding samples are those in the set {iy X B, ..., (iy + 1) x B — 1}. By doing so, the
samples in a same batch are contiguous in memory, which facilitates the access. We use a batch-size
of 64 in all experiments.

For the methods involving an inner loop (stocBiO, BSA, AmIGO), we perform 10 inner steps at
each outer iteration as proposed in the papers which introduced these methods. For the approximate
Hessian vector product, we perform 10 steps per outer iteration for each methods using HIA (BSA,
TTSA, SUSTAIN), SHIA (MRBO, stocBiO) or SGD (AmIGO) for the inversion of the linear system.

For the step sizes, they all have the form p! = a/t® and 4* = 3/t*. For the pair of exponents
(a,b), we choose the theoretical one from the original papers, that is (1/2,1/2) for BSA and FSLA,
(1/3,1/3) for MRBO and SUSTAIN, (0, 0) for SABA, AmIGO and stocBiO, (2/5, 3/5) for TTSA
and SOBA. For («, 3), we perform a grid search (the grid is precised in the subsection dedicated to
each experiment) and we keep for each method, the pair («, 8) that gives the lowest value of h (for
the hyperparameters) or the lowest test accuracy (for the data cleaning task) in median over 10 runs
for each possible pair. When we use HIA or SHIA for the Hessian inversion, we set 7 = « since the
Hessian inversion problem has the same conditioning as the inner optimization problem.

For the STORM’s momentum parameter in MRBO and SUSTAIN, we take 0.5/ 2/3,

For SABA, we have to maintain the estimate S[¢, w]i = ¢;(wi*") — ¢;(w!) + L 35 _, i (wh)
of L3 | ¢i(y") (see Section 2.2 for the notations). The sum inside S is maintain by performing
a rolling mean on the past gradients computed. More precisely, A; = %L 23:1 dir(wl). To get
Ay, instead of computing the summing all the gradients stored, which has O(n) computational

complexity, we do A1 = Ay + 2 (¢ (wi ') — ¢;(w?)), which is equivalent mathematically but has
O(1) computational complexity.

B.2 Hyperparameter selection on a toy problem

The Figure 1 corresponds to the methods SABA et SOBA applied to an hyperparameter selection
problem for a Ridge regression. We generate 1000 samples 21, . .., 1000 € R0 for N'(0, I0). We
generate a parameter 3 ~ N(0,I1p) anddo y = (X @ W)3 + € where € ~ N(0,0.011;¢) and the
entries of W have the form W; ; = 1 + u;v; ; with v; j ~ U([0,1]) and u; ~ U([0,1])if 1 <5 <5
oruj ~ U([0,10]) if 6 < j < 10. Then we use 750 pairs (2train, yirain), o, 7o) as training samples

and the remaining pairs (x;’al, y;’al)lgiggg,o as validation samples. Finally, we solve (1) with

1 ™ va va
F(O,0) = 5— > (™) 70— ™)’
Nval i—1
and
GO.N) = 5 S (@) T — g 4 2o
2Ntrain ! ! 2

i=1

with n¢2in = 750 and n, = 250.
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B.3 Hyperparameters selection on IJCNN1

In this experiment, we select the parameters regularization for a multiregularized logistic regression
model precised in Equations (12) and (13) where we have one hyperparameter per feature

1 m
FO,\) = — valqval g d 12
(0,2 m;sﬂ(%(“))an (12)
_ 1 - train / jtrain 1 T 3 A1 Ap
G(M)—;;mi (d,0)) + 07 diag(e™, ..., eM)0 . (13)

Note that the parametrization in e of the penalty instead of \ can be surprising at first glance, but it
is classical in the bilevel optimization literature [38, 26, 21] because it avoids positivity constraints
on A. In order to choose the select proper parameters («, 3) for each algorithm, we perform a grid
search. We search « in a set of 9 values between 275 and 22 spaced on a log scale. For 3, we choose
7 in a set of 7 values between 102 and 10 spaced on a logarithmic scale and we set 3 = >

For this experiments, we use Just-In-Time (JIT) compilation thanks to the package Numba [29], to
decrease the python overhead in the iteration loop.

To evaluate the value function h, we use L-BFGS [32] to solve compute z*(x?) and then evaluate the
function h(zt) = F(2*(x?), zt).
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Figure B.1: Comparison of SOBA and SABA with other stochastic bilevel optimization methods in
a problem of hyperparameter selection for ¢? penalized logistic regression on IICNN1 dataset. For
each algorithm, we plot the median performance over 10 runs. In both plots, SABA achieves the
best performance. The dashed lines are for one loop competitor methods, the dotted lines are for
two loops methods and the solid lines are the proposed methods. Left: performance in running time,
Right: performance in number of gradient/Hessian-vector products sampled.

B.4 Data hyper-cleaning

For the regularization parameter C,., we choose C,. = 0.2 after a manual search in order to get the
best final test accuracy.

In this experiment, the selection of the good pair («, ) is also performed by grid search. The
parameter « is picked in a set of 11 numbers between 10~ and 100 spaced on a logarithmic scale.
For 3, we choose r in a set of 11 values between 1075 and 1 spaced on a logarithmic scale and we
set = <.

Note that in this case, we could not use JIT from Numba since at the moment of the experiment, the
softmax function coming from Scipy was not compatible with Numba.

We report in Figure B.2 some additional convergence curves with different corruption probabilities
p € {0.5,0.7,0.9} (the figure in the main text corresponds to p = 0.5). SABA is always the fastest
algorithm to reach its final accuracy.

B.5 Additional experiment: Hyperparameter selection on the covtype dataset

We also perform an additional experiment which consists in selecting the best regularization parameter
for a /2-regularized multinomial logistic regression problem on the covtype dataset’. This dataset

“https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_
covtype.html
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Figure B.2: Datacleaning experiment, with different corruption probability (higher means that more
data are contamined). Top: Performance with respect to the number of gradient/Hessian-vector
product sampled, Bottom: Performance with respect to running time

contains 581, 012 samples with p = 54 features and there are C' = 7 classes. We used n = 371, 847
train samples, m = 92, 962 samples and ntest = 116, 203 test samples. We fit a multiclass logistic

train

regression on this dataset, with one hyperparameter per class. This means that, if (df#", y? )icin]

and (d"®, y"al)ie[m] are respectively the training samples and the validation samples, we solve the
Problem (1) with

1 m
F(6,)) = — > e(0dy™, yy™) and
i=1
1 n . ) C p
G(g, )\) _ E Zg(ad‘;ram’ ygraln) + Z 6)\6 Z 91'2,c
1=1 c=1 =1

where § € RP*C and )\ € RC.

As for the other experiments, we performed and grid search over 63 pairs («, () to set the step sizes.
The parameter « is chosen among values between 2> and 23 spaced in log scale. For 3, we choose
it in a set of values between 10~2 and 10 spaced in log scale. We used a batch size of 64. The
experiment took 525 CPU hours.

We show in Figure B.3 the error on the test samples with respect to the running time and the number
of gradients/Hessian-vector products sampled. We observe that SABA and SOBA achieve the best
performances. The initial gap between the first and the second plot for SABA is due to the overhead
of the initialization of the memory. This gap can be reduced by increasing the batch size.
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Figure B.3: Comparison of SOBA and SABA with other stochastic bilevel optimization methods
in a problem of hyperparameter selection for £ penalized multical logistic regression on covtype
dataset. For each algorithm, we plot the median performance over 10 runs. The dashed lines are
for one loop competitor methods, the dotted lines are for two loops methods and the solid lines
are the proposed methods. Left: performance in running time, Right: performance in number of
gradient/Hessian-vector products sampled.

C Proofs

C.1 Proof of Proposition 2.1

Proof. Let (z,v,z) a zero of (D, D,,D,). For D,, this means that V1G(z,z) = 0. Since
G(-,x) is strongly convex, z is the minimizer of G(-,z), i.e. z = z*(z). The fact that (z,v, z)
is a zero of D,, implies that V2,G(z,x)v = —V1F(z, ). Replacing z by its value, we get v =

— [V3,G(z%(z), x)] ~!' V1 F(2*(x), ) which is v*(z) by definition. Putting all together and using
the expression of Vh(z) given by (2), we get

Dy(z,v,2) = VoF(2*(x),x) + Vo1 G(2" (z), z)v* (x) = Vh(z) .
On the other hand, D, (z,v,x) = 0 so Vh(z) = 0. O
C.2 Proof of Lemma 3.4

Proof. Let (z,v, ) € RP x RP x RY. Using the fact that V;G(z*(z), x) = 0 and the L§-smoothness
of G(-,x), we have

1D (2, v, 2)|> = [V1G(z,2) = V1G(z* (@), 2)|I° < LE |}z = 2" (@)|]° .|

For D, since V2, G(z*(z), x)v*(x) = —V1F(2*(x), ), we write
1Du[l = (V3G (2, 2)v + ViF(z,2)) = (VH G (2" (@), 2)v” (2) + ViF (2" (2),2))|  (14)
<V G(z @) = V3G (" (), 2)]o* ()| + V1 G(z,2)[v — v* ()] (15)
+||V1F(z,2) = V1 F(z"(2),2)| .
For the first term, we use the Lipschitz continuity of V%, G:
IV G(z,2) = VLG (2" (), 2)]o" (@) < L ||z = 2" (@) | [v* ()] -

Then, since G in pg-strongly convex w.rt. z, ViF(z*(-),-) is bounded and v*(z) =
—[V3,G(z*(x),x)] V1 F(2*(z), z), we have

LSCp
Ha

V3G (2, ) = V3G (2" (2), 2)]v" (2)| < Iz = 2" ()| - (16)

For the second term, we use the L{-smoothness of G(-,x) and for the third term, we use the
L -smoothness of F' and we finally get

LgCF F * G *
[ Dol| < uTJrLl Iz = 2" (@)l + Ly [lv = v* (@) - (17)
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Then, taking L,, = V2 max (& + LF, L1G> , we get

HrG

\ IDo(2,0,2)|” < Li(llz = 2" @) 1* + lo — v* @)I°) (18)

For D, (z,v,2z) — Vh(x) we start by writing

Do (2,0, 2) = Vi(z)| < [[V2F (z,2) = Vo F(2"(2),2) ]| + V3, G (2, 2)v — VglG(z*(x)vxgg)(w)ll

<|IVaF(z,2) = VaF (2" (2), )| + [ V3, G(z, 2)lllv = v* (@) (20)

+l* @) IV3,G(z ) = V5, G (@), )| -
We bound the first term using the fact that V, F' is LT -Lipschitz continuous. For the second term,
the fact that V3, G is bounded thanks to the Lipschitz continuity of V1 G(z, - ). For the third term,

we use that V3,G( -, ) is LS -Lipschitz continuous and the same derivation as Equation (16). We
finally get

CrLS

HDmVM@H§<Lf+ )|zfmw+LﬂwU%mn. @)

Taking L, = v/2 max (L{“ 4 OrLf L?) yields

nae

’ 1Dz (2,0, 2) = Vh(@)[* < Li(llz = 2" @)|” + [lv = v* @)[°) (22)

C.3 Smoothness constant of i

From Ghadimi and Wang [19, Lemma 2.2], we get the Lemma 3.10 which states the L"-smoothness
of h with

2LY LS + C2LS N LG LY Cp + LYLSGCp + (L§)?LY N (L)’ LS CR .

L"=L{+
' e 2 11

C.4 Lemmas on the regularity of z* and v*
We start by showing the Lipschitz continuity of z* and v*.

Lemma C.1. There exists a constant L, > 0 such that for any x1, 2 € R? we have

2% (21) = 2*(@2)]| < Lullar = zall, 0" (1) — v (@2)]| < Luljar — ] -

Proof. Let =z € R%. The Jacobian of 2z* is given by dz*(z) =
—[V$,G(z*(2),2)]'Vi 3G (2" (x),2). Thanks to the ug-strong convexity of G and the

fact that VG is bounded, we have ||dz*(z)|| < i—g . Thus, z* is Lipschitz continuous.
For ||v*(x1) — v*(z2)||, we start from the definition v*:
[ (1) = v (@2) || = [VE1 G (2" (21), 21)] 7 Vi F (2" (1), 21) = [VHG(" (w2), 22)] T Vi F (2" (22), 22)
(23)
< (V4G (1), 2)] ) — VA6 (w2), 22)] VP (2 (1), ) | (24)
T IVR G (@2), 22)] (V1 P(* (22),22) — V1 F (=" (1), 21) | -

For the first term, we use that for any invertible matrix A and B we have A1 —b~1 = A~}(B —
A)B~! to get
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V3G (2" (1), 21)] 7" = VHG(" (w2), 22)] 7| = V]G (2" (21), 20)] T (VH G(2" (22), w2)]
VG (1), 21)])[VH G(2" (w2), 22)] 7|

1 . .
< /TQHV%G(Z (21), 1) — VG (2" (22), 32) |
G
Lg * *
< (" (@1), 1) — (27 (22), z2)|
G
Lg * *
< —llz%(@1) = 2" (@2)|| + llz1 — 22l]
Ha
LS L¢
<D By
el 27e;

And then, since V1 F'(z*(-), - ) is bounded:

2 * -1 _ 2 * -1 * CFLg E T1—1
T3, 0) )] = (TG (a1 o)) < g [1+MG}||1 J -

For the second term, the strong convexity of G( -, ) and the fact that V1 F' is Lipschitz continuous
lead to

V31 G (2" (w2), 22)] T (Vi F (2" (w2), w2) = ViF (2" (1), 1)) || < #LGHVlF(Z*(M)wz) = ViF (% (z1), 1)

(25
Ly
< —I(z"(21), 1) — (2" (22), z2) |
KE
(26)
il
< —[l[z"(@1) = 2" (z2) ]| + llz1 — 2]
ke
27
LF LG
<=L [1+ 1] |21 — wa|
12e] 2%e}
(28)
Then we get
CrL§ L¢ LY L¢
[v*(z1) — v* (x2)]| < [ F2 2 [1 + 1} + =+ [1 + =2 ” |lz1 — z2] - (29)
[ re] HG [2%e; MG
We conclude by setting
LG LG LG’ LF LG
L* —max<1,CYF‘22 |:1+1:| +71 |:1+1:|>
ke Hg ha %! ta
O

In what follows, we denote by [E,[ - | the expectation conditionally on 2%, v* and x*.
We have the smoothness property of z* provided in [9, Lemma 2].

Lemma C.2. Under the Assumptions 3.1, 3.2 and 3.3, the function z* : R* — RP is L, -smooth

with

[ L§(1+L.) N LYLE (1+ Ly) .
e 7

(30)

We establish the same result for v*. To this, we need more regularity on G and F'.
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Lemma C.3. The function v* : R* — RP? is differentiable and its differential is defined for any

x,e € R by:
dv*(2).e = [ViG (2" (2), 2)] [V F (2" (2), 2)dz" (). + VI F (" (2), ) ] GBD
— [VIG(z* (2), 2)] T [(VIn Gz (), 2)|dz"(x).€) + (Vi1,G (2" (2), 2)[e)]
x [VIG(2* (), 2)] ' ViF (2% (2), 2)

where for any z,a € RP and x € RY, (V3,,G(z,7)|a) € RP¥P is defined by
P
P3G
(V111G(Z z)|a) = [Z m( )ak]
1<i,5<p

and for any 3 € RY, (V3,,G(z,7)|8) € RP*P is defined by

(V112G(z r)|B) =

SN A
Z 8213z]8xk( =) B '
1<4,j<p

Moreover, dv* is L,,.-Lipschitz continuous.

Proof. Letzx, e € R4, Using the differentiability of V%lG, V1 F and of the matrix inversion, we have

v (4 €) = [VHG( (x +€),x + €)'V F(2*(x +€),€)
= [V1G(» *( ) @) + (Vin Gz (2), 2)|d2" (2).€) + (Vi12G (2" (), 2)]e) + o(|le])]
X (ViF (2" (), ) + Vi F (" (x), 2)dz" (2). + VI, F (2" (x), 2)e + o(|[e])))
= {[VLG (=" (x),2)]
~[ViG(z" (), )] [(V?MG(Z‘ (2), 2)|d2"(2).€) + (Vi12G (" (x), @)[e)]
x[VHG (2" (x),2)] " +o([lel) }
x (ViF(z"(x), $)+V?1 (2% (x), 2)d2"(x).€ + Vi F (" (), 2)e + o([|e])))
= v (@) + [VIG(z* (2), 2)] VI F(2* (2), 2)d2" (2).€ + VI F (" (2), ) €]
— [VIG (" (2),2)] T (VI G (2" (2), 2)|dz"(2).€) + (VipG(z* (2), 2) ) [VIG(z* (2), 2)]
x ViF(z%(x), ) + o([|e])

z

that proves (31). Now, let z,y, € € R? with ||¢|| = 1. Let us denote

Az, €) = =[VIG(2" (2), )] (Vi G (=" (2), 2)|d2"(2).€)+(Vi1G(2* (2), 2) )] [VIG(2* (x), )]
and

B(z,e) = V2, F(2*(z), 2)dz* (z).c + V4, F(2*(x), z)
so that dv*(z).€ = [V2,G(2*(2),2)] ' B(x, €) + A(z, ) V1 F(2*(x), ). We have

(dv*(x) — dv*(y)).e = [V, G (2" (x),z)] ' B(z,€) + Az, e)V1 F(2*(x), x) (32)
— [VHG(z"(y),9)] ' Bly,€) = Ay, )ViF (2" (1), )
= [VHLG(z"(x),2)] " (B(z,€) — B(y,¢)) (33)
+ (VLG (" (2),2)
+ Az, e) (V1 F(2*(
+ (A(z,€e) — A(y, €

(z,

|7 = [VLG(z* (), )] ") By, €)
z),z) — ViF(z*(y),y))
NWVLF(2"(y),y) -
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We can now bound each term using the regularity assumptions on G and F:
IV G (2" (), 2)] 7 (B(x,€) = By, o) < ; IV F (2" (2), 2)dz"(2) = VI F (2" (y), y)d2" (y) ]
(34
IV F(z"(2),2) = Vi F(z"(y), »)])
< (IVhF(E (@).2) = VhFE W) p)lld @)
(35
+ld2"(z) — d" (W) IV F (" (), )
+ Ly (2% (@) = 2* @)l + | — yl)
(L3 Lu(1+ La) + L Ly + L3 (1+ L)) 2 — o
¢ (36)
(37

<

==

For the second term: )
(V3G (=" (), 2)] " = [VHG(z*(y),9)] ) B(y, )|l < @IIV%G(Z*@),:U) - VHGE (), )1B(y o)
(33)

slanv (2 (x),2) - V4G(* (1), 9)
(39)
% (IV2,F (= (), 2) | |d=" (@) + [IV2F (2" (2), 2)]])
o L+ LT) (L +1)

x—y (40)
2 [ [

For the third term, we have:

|A(z, €)(ViF(2* (), z) — V1F(z*(y),y))| < M

2 [(VinG (=" (2),2)|dz"(x).) (41)
+ (ViRG("(2),2)le)llllz -yl
(LF +LG)(1 + L¥)
< 2

lz = yll (42)

And finally, for the forth term:

[(A(z, €) = Ay, ))V1iF (" (y),y)|| < CT{I[VHG(="(2), 2)] ! 43)
x (Vi Gz (I),I)Idz*( )-€) + (Vi1G(2" (z), z)le) |
x [[VHG(2"(2), 2)] 7" = [VH G (" (y), )] ]
HIVHG(E (2),2)] 7 = [VHG(" (y) |

< [(VinG(z"(2), 2)|dz"(z).€) + (Vi1G

< [IVHG(" (), ]

+HIVHGE () 9] P

x ([(VI G (2), 2)|dz"(x).€) — (Vi1 G (2" (y), y)ld=" (y).€) |

1(Vi12G (=" (2), z)le) — (Vi’lzG(Z*(y),y)le)ll)(L)

), x

; |

Y)
y) ™!
(z),2)]e)|

(
I”
I”
(=

2LG(1+L*) L1+ L*
SCF{Q 2(3 )+ 3(2 )}Hﬁ?—yH
el Ha
Thus v* is L,,-smooth with
I LYL.(14+ L)+ L. LY + LE(1 + L*)+2 (LS + LYY(L, + 1)+C’FL§(1 + L*)+ CpLS(1+ L)
o e e g 11y '
O
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C.5 Proof of Lemma 3.9
We now provide the proof of Lemma 3.9.
Proof. Inequality for ¢,.
We start by expanding the square:
I2F = 2" (@2 =[]z = 2" (@) + [l @) = 27 (@) (45)
_ 2<Zt+1 _ z*(mt),z*(a:tH) _ z*(xt)>
We study each member, using the unbiasedness of D! and the pc—strong convexity of G( -, x?):
Ee[ll = — 2" (2")|1P] = Eelllz" = 2" (@")["] = 20Ee[(D, 2" — 2" (2"))] + p*Ee [ DL?) - (46)
=l = 2" (@)l = 20(V1G (2, a), ' — 27 (a")) + B[l DLIP) (47)
< (1= pug)|lz" = 2" (2")II” + p*Ee [ DL]?) - (48)
Taking the total expectation yields
B[l = 2" (2")[*] < (1 = puc)ol + V7 - (49)
The second member is bounded using Lipschitz continuity of z*:
Efll2*(2") = 2% (2")II”] < LIE[|l2""" - 2"|*) = LIV .
For the remaining scalar product, we have
2 = (@), 27 (@) — 27 (0) = 2t - 2(@), 27 (@) — 27 (@h) — (DL, 2 (et
(50)

The second term can be bounded using Cauchy-Schwarz inequality, the Lipschitz-continuity of z*
and Young inequality:

Elp(D%, z*(a') — 2*(a"))] < Elp|| DL|[l2*(a"*") — 2* (2")|] (51)
< pLLE[|| DLl — 2] (52)
2 L2
< Dyt S atht - ot (53)
2 2
2 2
< %V; T Lf%vg . (54)

For —2(z% — 2*(at), 2* (x'T1) — 2*(2!)), we follow the proof of [9] which consists in making appear
the "unbiased part of z*(2'*! — 2*(2') by a linear approximation. More precisely, we have

(2" = 2% (2"), 2" (a") — 2 (")) = (2" — 2" ("), 2" (a") (a"T" — 2")) (55)
A
(28 — 2*(a"), Z*(CUH_I) — 2% (a) — (1Z*(=15t)(35t-~_1 —a') .
B

For A, we use the unbiasedness of D!, Cauchy-Schwarz inequality, the Lipschitz continuity of z*
(Lemma C.1) and the identity ab < na? + ﬁ for any n > 0:

—2E[A] = —29E[(2" — z* ("), d2* (") DL)] (56)
= —2E[(z" — 2*(2"),dz" (2")E[Dy))] (57)
= —29E[(z" — z*(a"),dz*(2") D, (2", v, 2"))] (58)
< NE[|2" - 2% (2" |[[|dz* (2") Dy (25, 0", 2") ] (59)
< 2LAE[||2" — 2" (") [[[| Do (2", 0, 2] (60)
- 2L2
< 2707 + ; “E[[| Do (2", 0", )% (61)
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We take ) = 24€ and we get

8L2

—2E[4] < 2C5t + ;«57 E[|| D, (2", o', 247 . 62)

For B, we use Cauchy-Schwarz inequality, the smoothness of z* (Lemma C.2), Young inequality and
the boundedness of E,[|| D% ||?] to get

—2E[B] < 2E[||2" — z*(«")||[|z* (=) — 2*(a") — dz* (2") (2" — 2)|] (63)
< LBl — 2 () |+ — 2t (64)
LZI
< LaoVE[|[28 = 25 (@) Pl — &' )?] + —==E[l|lz — 2] (65)
1%
2 t w (V]2 2 Lzr’YQ t
< Loy Efll2" = 27 (@) IPE[ DL ] + — Ve (66)
LZ(L’ 2
< L., B2vy?st + 221yt (67)
12
We take v = LLZ;’ and we get

L2 BQ 2

_9E[B] < ”T;”ag + L22V! (68)

*

prg Ly

Now, using 72 < B2LZ,

we end up with

2
G = 7
B < (11— EEE)0L + 207V + BV + Beo  ElIDa(" 0520 | (69)
with ., = 312 and 5, = 2.

Inequality for 6,. We proceed in a similar way for v:
oy S E[flo™ —o* (@) IPIHE[[o" (2 ) — 0" (2") 7] - 2E[(v" T v (), 0" (2"T) w7 (2"))]
(70)
For the first term, we have
Ef[lo™™ —o*(@")|%] = vf = o*(@)|? = 2p(Dy (2", 0", ), 0° — 0¥ (2")) + p’Eo[| DL|P] (71)
Now, using that D, (z*(z!), v*(z?), z*) = 0:
(D, (2", vt ), 0" — v* (")) = (D, (2", v, %) — Dy (2*(zh),v* ("), z"), v" — v*(2")) (72)

= (V1L G(Z" z") (v —v*(wt>>7 —v*(z")) (73)
F (V3G at) — V3, G (), )" (o), of — v* ("))
VARG — VR ), a )t — o (a)

zuﬂﬁﬂﬂﬂwfggqfffWWwfﬁWW(w

= LTl = 2" (@")|[l|v* — v*(z")]]
> pgllv’ — v (@")|* —wll2’ — 2 (@")[lv" — v ()] (75)

G
where w = LI + 2257 We then use wl|2* — 2* (2*) [v* —v* (2*)]| < Leljvt —v* (!> + & |2* —
2*(2)||? with ¢ = pg to get
tot oty ot w(ot 1 t w?
_<DU(Z7Ua'T)aU —U(J? )>S_7M06v+ 52 .
2 2ug
We get the overall inequality by taking the total expectation

2
Efllo* ™ — v @)]?) < (1= 2£9) 8 + 3ot + o2V .
2ug
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We also use Lipschitz on v* to bound the other term
Eflo* (") — v (2")|P] < L3A?V;:

As previously, the scalar product is bounded by:

—E[("" —v*(2"),v"(2"T) = v*(a"))] = ~E[(v" — v*(2"),v" ("TT) — v*(2"))] - pE[(D}, v* (2" T) ~
(76)

2 ~?
B[ - 27 ("), 0" (@) = o (@) + 2V + 122V

(77)

We do similar manipulations pour v*, thanks to Lemma C.3. We have as for z from Lemma C.1 for
any n > 0:

L2 2
—E[(v" —v*(2"),dv* (z") (@ = 2")] < 0oy + ’;77 E[|| Dy (2", 0%, 2")|%] - (78)
We take n = 2£€ and we get
L?
—EW—v*(xt»dv*(:ct)(xf“—xtmsp“—%z B Da(t ot a) B (9
8 pap
(80)
Then smoothness of v* for any n > 0 gives us
t R AN TR S wi ot YIRS ¢ LU@JB:%VQt Loa o004
[0 — " (1), 0" (@) 0" (@) — do” (2) (@ - a))] < T2 RV
(1)
Withy = & 7 we get
t 0t s t+1 * 0,0 *0,t t+1 t Ltz)a:Bg 2 ¢t Li 27/t
—E[(v* —v*(z),v*(x""") —v*(a*) — dv* (z") (' — 2"))] SW’)/ 5v+7’y Ve . (82)
With the assumption 7* < £ 55%2 , we get

L2 B, 16L2
st < (1o he g o DB ooy oo sty 020t 43022V 4 5 mp (o0 ot oty )
2 4 L? Hap
(83)
16L2~?
(1 - W—G) 88 4 B0t + 207V + 3LV 4+ 7*7E[||Dm(zt,vt,xt)\\2] . (84)
pap

And finally we have

o 2
5 < (1= P67 ) 80+ pBusbl 4 26°VE o+ ooV 4 B ElIDa(, ot P 89)

i 2 3 161247
with sz = 2‘;7’ sz = 3Li and ﬁvx = 2= 0

HrG
C.6 Proof of Lemma 3.10

Proof. We use smoothness of h to get
Lh
Eelh(@ )] < h(a') = 4(Da(2', 0", 2"), VR(Y)) + 7Bl D3 ) (86)

v (@))]

v L"
< h(z') - §(||Vh(xt)||2 + | Dg (2", 0", 3% ||? = [Vh(z") — Dg(2" 0", 2")|?) + 772Et[IIDZIIQ]

87)

where the last inequality comes from the identity (a,b) = ([|a/|? + [|b]|* — |la — b]|)?. We take the
total expectation and use the previous Lemma 3.4 to get

L2 Lh
W< bt = 2t = ZE[IDa (s, 0, 0")[P) + S5 (8L + 6L) + Ve (88)

O
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C.7 Proof of Theorem 1

This section is devoted to the proof of Theorem 1 that we recall here.

Theorem 1 (Convergence of SOBA, fixed step size). Fix an iteration 7" > 1 and assume that
Assumptions 3.1 to 3.7 hold. We consider fixed steps p’ = ﬁ and 7' = ¢p? with p and ¢ precised

in the appendix. Let (z');>; the sequence of outer iterates for SOBA. Then,

TZEHVh IPT=0T%) .

The values of the differents constants are
1 . 1 /LG(ZS/ _ . 16 | e} MG ﬁvz
/) - _— z _ -
P:=gg > ¢y=min <8ﬁm’ 326,. ) © P M\ i 160282 32L2Bg’ I2B2)
S L] . 1 1 LE
and &° = v min {mln (ng, L%}w) Bg smin (¢, ¢%) 575 2L2

Before, one has to adapt our descent lemmas to the case of SOBA.

Lemma C.4. Assume that the step sizes p and v verify p < min (165532, 325%?35, L%Uég) and

2 2
2 < in (LEGLE oLl ) :
min . Then it holds
7= (4B§L§m’ SBIL2,

ot < (1- p’;G)sf+2p232+/3zw232+ﬂm” E[| D (2", ', z)||? (89)
t+1 /),UG t t 22 2 2
st < (1 8y 4 2B02p0% + 20° B} + Buay’ By + BBl Dx (25, 0%, 2)[?] . (90)

Proof. From Assumption 3.6 and Lemma 3.4, we have
V! < B2(1+D.(2',v',2") < BZ(1+ L25!) .
Plugging this into Equation (69) and using V! < B2 yields

o0 < (1= L€ +212B2%) 6L+ 20* B2 + B0 " B+ B, L TE[ID: (! )P - oD

Since by assumption p < 1657532, we have
60 < (1- 2E9) 5 4+ 20282 + B + ﬂzﬂ E[|Da(=" o' )P . (92)

For ¢, Assumption 3.3 and Lemma 3.4 provide us
Vi< BI1+LI(6L+0L)) .

Since the assumptions of Lemma 3.9 are verified, we can plug the previous inequality into Equa-
tion (85) to get

07 < (1= PEE 2028207} 8l + (Busp + 2L2p* B2)OL + 20° B2 + Bt B + BBl D" 0" "))

(93)

which can be simplified using p < min (wgigm, %) to get finally
6071 < (1= 229 81 +28,.p8% + 202 B2 + B B2 + B, EllI Doz, 0,2t . 9%)
O

We can now prove Theorem 1.

27



Proof. Consider the Lyapunov function £! = h' 4+ ¢,6% + ¢,,6¢. Using the Equations (88), (69) and
(85), we can bound L1 — £t

2 2
Rt (7 - mm% - wm”p) E[|Da(" o' 2] 99)

d)z? - 7’7 - 2¢vﬂvzp)

<¢ ,U,G ) 5t
< + d)zﬂzx + d’vﬁvaﬁ) J:’YZ

+2(¢.B? + ¢,B?)p?
Let ¢, = d)z% and ¢ = 1 o that:

_|_

£t < —;g (3 = 9LBoer = #1Ba) EIDL(, 0" 2" 96)
2 L2
- (¢;“§p -5 2¢>Lﬁw”> o
Y Y
2 2
(g Hert Ly N s
(% 67 2 7) Oy

( + ¢ Bzaz + ¢vﬁvaz ) 2 2
r2(0ml 4 ¢;Bsf’) P
v v
In order to get a decrease, ¢, ¢}, p and v must verify

¢’ Byt 8By < < 3

Lo 4 2¢), Bozt < @LEEE (97)

L2 K
L /MGP
57 < Puie

(M

Let us take ¢, = B and ¢!, = min (ﬁ, gf;z ) We have

1

d) /Bzr+¢ /81)75—1

M\H

and 2 2 2 2
p- _ L ) BG P
—z 20! wi<i =2

5 7T 20,8 ,27+216

2
If we impose %'y + ¢, 5% ’fy < gLhe ’; this combined with the third condition in Equation (97)

gives the condition %72 < min (¢}, ¢,) 45 p®. We also have the conditions coming from the
assumptions of C.4, that is

16L2B2 "32L2B2° L2

and v2 < min (

g ) ”4%2* p. Let us take p = \/’L with v = £p where £ is defined as
e ) 1 1 L?
22 =7 min {mln (Lzz, 'L'%z) B2 ,min (@), ¢.) — 2L2 . 99)

From now, we have

Lh
Lot —Jgty 73572 + (¢, 820 + & Bux) Bapy + 2 (¢, B2 + ¢.,B7) (100)

-
2 Y
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Summing and telescoping yields

T 3
%ngt 2T£7 + LBy + 2(6.Bar + 20, Bs) Brp + 4 (0. B2 + ¢, B7) % (101)
<2£ + L"B? 2 S0 + (¢ Ban + 20, Bua) B2— +4(¢.B2 + ¢|,B2) @
T VT VT T TR e g
(102)
(103)

and so

’ﬂ \

2o (7)

C.8 Proof of Theorem 2

Proof. In the decreasing step size case, we take p'! = v/t and 7! = £p? where 7 is defined in
Equation (98) and € is defined in Equation (99). We recall the integral majorization:

T T
2}*§1+/t*mzyu%@y
t=1 1

With such definition of p* and ¢, Equation (100) is still valid for any ¢ > 1. The only difference is
that the step sizes decrease with ¢. Hence, by summing and rearranging in Equation (100), we get

T

T
S otgt <20t 4+ (m + 2 (64 8er + 20, 8u0) Bl +4 (0152 + 6, 52) ;) >0 doy
t=1

The left-hand-side in Equation (104) can be lower bounded by

T

thgtz(u[l;gﬁpZt P> (mfg)pr% : (105)
t

t=1

Also we have
T

T

S =p> <P (1+1og(T)) . (106)
t=1 t=1

Plugging Equations (105) and (106) into Equation (104) and rearranging give

) 2,1 _ 1 1Y\ 1+1log(T)
inf g* < + (Lh+2 2Bze + 20, Bua) B2 +4 (.52 + ¢, B} )
e s =% &p (¢.8 ¢, Buz) e (¢ ¢, B7) & N
(107)
that is to say
1 log(T))
fg'=0(—=+ . 108
2 (ﬁ VT (109
O

C.9 Proof of Theorem 3
In this section, we prove Theorem 3 that we recall here

Theorem 3 (Convergence of SABA, smooth case). Assume that Assumptions 3.1 to 3.3 and 3.7 to
3.8 hold. We suppose p = p' N ~3 and ~ = &p, where p’ and £ depend only on F' and G and are
specified in appendix. Let 2! the iterates of SABA. Then,

T
= S E(IVA@ ) =0 (NiT)
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The constants p’ and £ are given by

2 5 1 — —
;) . Kl KQ 5 K3 T K4 | %€ ﬁzx | %€ /BUZ /81)3:
p = min ) I ) I ) ) 9
Vs \Ks Ks Ks) 6412728, 128(L2 + L) 8(L2 + L") 2Byq

Wl

(109)
and
¢ = min(Ky, Ka(p') "%, Ks(p') "%, Ka(p/) ™) (110)
where
1 . 1 | %]
//: — , szln — , /! ,
o 328, b (3251& oz 128%)
K- min | [S2bG [Pukc
! 32027\ 48127 2L’ Bm 2L ﬂm ’
. | el ﬁvz
K =
2o (\/ 646ng’\/ 1286ng’\/ 4Lgﬁm> !
o | e (1 I U1 e e
87\ 3849y 0 ark 2Lk \ 6LP L. 8P 323 484!,
and

15(¢7 L, + ¢y Ls)
T/ '

K5 =

C.9.1 Control of distance from memory to iterates

We can view our method has having two parallel” memories for each variable (2!, v}, xt) for

i € 1[n] corresponding to calls in G and (2, v}, zf) for j € [m] corresponding to calls to F'.

At each iteration, we sample i at random uniformly and do (z/™!, v/t 2!*1) = (2%, 0!, 2*) and
(25H ot 2ty = (28, v, o)) for i’ # 4, and similarly for the other memory.

In what follows, we focus on controlling the error between the iterates and the memories. We define
to make things simpler

1 n
ZE I12* = 2{11%) ZE I = il’] By = EZ]E[vat—wﬁHz} :
i=1

and similarly E’', E'* and E’¢.
Lemma C.5. We have the following inequalities:

1
B < (1= o) B+ PRIDP + 20 BID. o 2]

B < (1 B!+ B DLIP + 2007B]| Dy (=1, o', ") 7]

Bt < (1

B, +7°E||Dy|I* + 20y °E[|| Do (", 0", 2Y)|7]

1
EIT < (1~ zm> B!+ pE|[ DL + 2mp?E[| D (=, 0!, 2 2]
1
By < (1 - 2m> By, + p°El| Dy || + 2mpE[|| Dy (2", ", 2]
and
1
Bt < (1 - 2m> E, + 7°E| Dy + 2myE[| Dy (2, 0", 2") ]
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Proof. We provide the detailed proof for EL. The approach for the five others is similar.

Let i € [n]. Taking the expectation of ||zt — 2/1||? conditionaly to z¢, v?, 2t yields

1 n—1
Bofllo1 — 22 = B[l — 22+ R - P

Then, using the fact that E;[D! (2%, vt 2!)] = D, (2%, v?, 2%), we have
Ee[ll=" = 211°] = Eelll="" = 27T + [|2° = 2{* = 2p(Ds (2", 0", 2), 2 = =) . (11D

We then upper-bound crudely the scalar product by Cauchy-Schwarz and Young inequalities with
parameter 3:

E(ll= = 217 S Eelll="F = 217 + pB7 D= (2", 0, )P + (L + pB) 12" — #]?
As a consequence, by taking the total expectation and summing for all ¢ € [n], we find

B < PBIDLIR 4 05t (1 3 ) BIDLGA o P+ (14 08) (1- 1) B

Finally, we take 5 = 2np to obtain
1
B < (1= 5o ) B+ PEIDLGS ot P+ 20 BIDG o P | (11
n
O
C.9.2 Bounds on the variances
The following lemma gives us upper-bounds for E[|| D% (2%, vt, z%)||?], E[|| D! (2%, vt, 2)||?], and

E[||D; (2, 0", 2)|?].
Lemma C.6. For SABA, there are constants L', L, L', > 0 such that

E[| DL (2", o', a")I]* < 2E[| D= (2", 0", 2") "] + 2LL(E; + E)

E[|| D} (2", 0, 2")[|*) < 2E[|| Dy (2", 0", 2%)|1?] + 2L, (BL + EL + E} + E' + E}Y) + 2L} (3% + &)
and

E[| DL (2", o', a")|]?] < 2E[|| Dy (2", 0", 2")||?] + 2L, (EL + EL + Ef + EY + ElY) + 2L (5% + 65) .

Proof. For SABA, if we consider ¢ sampled from [n] at iteration ¢, we have

Z’ Z E V1 217 71/) .

1’1

D! = V1Gi(2t,2t) — V1G

Hence we get

N
1
E[|DL(=", o' a)|*] = Bl VaGile' a) = ViGieh a) + — D" ViGir(ah, o)
=1
— V1G22t + VG (2 Y%
<2 V1G22 |)? 4 2K, [[| V1 Gy (2t ) — V1Gy(2E, 2h) (113)

N
1
+EZ_:V1GZ/ i’ z) le(Z Jf)”]

The second term is the variance of V1G; (2%, ') — V1G; (2!, t), which is therefore upper-bounded
by
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E(l[[V1Gi(2', ') = V1Gi(z],27)|°] = %ZII[VlGi(Zt,x) ViGi(zf, 2p)|°

n

L/
= (2" = 2117 + |l — f]1%) (114)

i=1

IN

where the inequality comes from the Lipschitz continuity of each V1G; with L, = max; ¢y Lf
Then, by plugging (114) into (113) and taking the total expectation, we get

|E[ID% (4, of, o) ]2 < 2E[|D. (=, o', 2)|?] + 2L, (EL + EY) . (115)

Things are quite similar for the other variables, albeit a bit more difficult.
In v, it holds

Et[||Df,(zt,vt,xt)||2] :Et[HVle(zt zh) — VlF( 25, ] )+ — Z ViFj (= ,,x]t,) (116)

j'=1
+ V2,Gi(2h att — V2, Gi(2h, xh) ZV2 (2L, 2t v
'L’ 1
— Dy(2, 0", ) + Dy (2%, 08, 2t ||?]
<2[|| Dy (28,0t 2|2 (117)
+ 2R, (| V1 F (2, 2') — ViF (2, 2lf) + Zvl (2l

+ VHGi(2 2! = V3,Gi(zf, v + = ZVIG Zirs Ty )0y
7,’ 1
_Dv(zt’vt7xt)||2]
(118)

Here, we see that we need to control the variance of ViFj(z',z') — ViFj(z},2%) +
V24,Gi(2h at)wt — V3 Gi(2E, xt)vl. Since i and j are independent, this is a sum of two inde-
pendent random variables, hence its variance is the sum of the variances, which is upper-bounded

by

E([V1F; (", 2") = ViF; (2, )] + Bl [ V3 Gi(2", 2")o = V31 Gz, 23)vi )] -

J’J

For B, [|| V1 Fj (2!, 2") — V1 F;(2}, 2})||*] we use the lipschitz continuity of the V; F}

BAIVLF ') = VAR )1 < s LD Balls = 2+ ot -] 19

11
< Lma}f Lf’} —> (1" = #17 + " = 251%) - (120
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The control of E,[[| V%, G, (2%, 2)vt — V3, G, (21, xt)vt||?] is a bit harder without assuming the bound-
ness of v beforehand. But, we can bypass the dlfﬁculty by introducing V%, G;(z* (z?), zt)v* (at):

E [V Gi(2', 2")0" = VHGi(z], a9)vi (] < HE[| VT Gilz", ') (0" — o™ (2))]1*] (121)
FE (V1 Gz, 2") — VI Gz ('), 2"))o" (2")]1?]
+E (V] Gi(z"(2), ') = V1 Gilef, 27) Jo™ () ||°]
+E V3 Gizf, 29 (v* () — o) II°]}
F
< 4((max LT7) 0" — 0" (@) + (maXLg'i)g||Zt — 2" (a")]?
i€[n] i€[n] el
(122)
F
+ (Ig?ﬁLG ) = (ll2* = afl® +2(]]=" = 2" (@")I* + [I=" = #*))
+ (max LY (||l2* — b + 2(]|o* — v*(@")[* + [[o" = of[1*))

i€[n]

Let L, = 4max (Qmaxie[n] L§" 2 maxiepn LS €5 majeqm Lt ) and LI =

4 max (3 max;e(n) L?i),?)maxie[n] Lgl)%) Taking the total expectation and putting all

together yields

\E[IIDZ(Zt,vt,xt)IIQ] < 2E[|| Dy (2, 0", a")||°] + 2L, (EL + EL + Ef + E} + E) +2L; (6, + 6%) . \
(123)

In x we have similarly

|E[IDL (=4, o, o) |?) < 2E[| Do (s, o, 2)|?) + 2L, (B + E + EY + B2 + EY) + 2L4(5% + 6¢) .|
(124)
O]

We now form S* = E! + EL + El + E! + E]! + E!, and letting I' = min(--, ). Note that by
definition, each quantity E? is smaller than S®.

We will therefore use the cruder bounds on E[|| D ||?], E[|| D! ||?] and E[|| DL ||?] as follows thanks to
Lemma 3.4 and Lemma C.6

E[||DL(2",v",2")||*] < 2L26% + 2L, 5" | (125)
E[|D} (2", v*, a)|I”] < 2(L2 + L7))(8% + 65) + 2L,,S" (126)

and
E[|DL (2", 0", 2")|1%] < 2E[|| Do ||*] + 2L, 5" + 2L (8% + 6%) . (127

We have the following lemma
Lemma C.7. If4p*(L, + L})) + 4v*L}, < § and ALl? < p*(L? + ALY)), it holds

r
541 < (1= ) 8+ B8l + B8l + PYEIID.IY
for some Lg, B, P > 0.

Proof. Tt holds following eq. (112) (and omitting the dependencies in (2%, v?, 2¢) in the direction for
simplicity)

ST < (1-T) 8 +E [20°(IDL)* + |1 DLIIP) + 29[| DS |I?
+2(m +n)[p* (|| D[ + [ Dol*) + 2 D]
Using the previous bounds (115), (123) and (124), we get
ST < (1-T +4p(LL + Ly) +49°L;,) S* + (2(m + n) + DE[*(| D= |* + (1D, |1%)
+ 2 Da||?] + 4Ly p* (8% + 8,) + 4LEY? (8L +67)
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Next, using 4p*(L, + L) + 47*L}, < § and letting P = (2(m + n) + 4) we get

5141 < (1= § ) 8" PRI (DL 41D ) 412D P +-HALUGE 60 HL 6L
To finish, we use Lemma 3.4 to get

5141 < (1= ) 8° 4 P2 + 0L+ L260) + (L5 + AL 0L+ 83) + D 1)

Then, using that 41”42 < p?(L? + 4L"), we get the bound, letting L,, = L% + L2 + 4L/ and
Lo — L2 4 AL":

541 < (1= 5) 8+ BualP8L + B8t + PYEIID.)

with Bsz =2PL,., st =2PLg, O

C.9.3 Putting it all together

Recall that we denote g* = E[||Vh(z!)|?] and h! = E[h(z!)]. In the following lemma, we adapt
Lemma 3.9 and Lemma 3.10 to the SABA algorithm.

Lemma C.8. If
p < mln /’LG Bzaj /’LG /B’UZ Bvaj
B 64L2" 2.,  128(L2 + Ly))" 8(L2 + L))’ 2Bs
and
+ < min PHG PHG PBuz ) L2
648, L’ 2L’ ﬁm 1288y, L2 \| ALY Bys’ 2L’ 5vz ’ Lh’ 2Lh LY
then it holds
t+1 PHG Y ¢t " 2t 2 at *f toot (2
oL < (1= 557 ) 0+ 2L B0n’0, +5L.p%S +2,Bzwa[\|Dx(z,v,x)|| ], (128)
puc = 7
st < (1 ) 5t + 3B,.p0t + 5L, p2St + Qﬂm;]E[HDm(zt,vt,xt)HQ] (129)
and
Rl < pt— D gt WIE[HD (2t 0t ') |2] + L2y (6% + 68) + LPLLA2St . (130)

2
Proof. We start from Lemma 3.9 and plug the bounds of Equations (125) and (126).

60 < (1= PLE +4L20% + 4B, Ly L + 2L BuuyS, (131)

2
+ (4LLp* + 2L, B..7*) St + (2/3zw + Boe— ; ) E[|Dx (2", 0", 2")[|?]

Since p < 64L2 and7 < W, we have
_PEG | 412p? 4B, L2 < — WTG . (132)
The condition * < 3 L/L/E p? gives us
AL p? + 2L B,y < BL.p? . (133)
2 2
267" + ﬁzﬂ; < zﬁzﬂ; . (134)



We can plug Equations (132), (133) and (134) into Equation (131) and we end up with
PEG - 7
00 < (1= 2B 6L 4 2L/18.09%8) + 5LL%S" + 2B, LB D, (=, o' "))
p

The proof for 6! is quite similar. From Lemma 3.9, Equations (126) and (127).

. 2
357 < (1= PEE) 80 4 Buspdl 4 20°VE o BuarVE 4 By LEIDS 0% )P (139)
< (1= ZEE + 4(L2 + L)o? + ALY Buar®) 6% + (4(LE + LY)p? + 2L Buay® + Buop)Oit
(136)

o 2
+ (4L3p° + 2L, Buay®) S* (2%72 + mﬂp) E[| Dy (2", 0", 2")|°] -

Using p < W and 72 < #ffﬁm’ we get
—”%G FAL2 + L") 4+ AL Bur? < — %G . (137)
With 42 < 455,’%; and p < %, we have
4(L2 + L) p* + 2L Boay? + Bosp < 3Buzp - (138)
.. L' .
The condition 2 < L7 B p? yields
AL, p? + 2L, Bray® < 5L,0° . (139)
With p < 5 “ we get
~2 _ 2
QBw'y —|—Bz$ < 28— - (140)
p p
As a consequence of Equations (135), (137), (138), (139) and (140), we have
2
gt < (1 ’){‘G) 8t 4 38,.p0% + 5L, p2St + 2BM%]E[||Dx(zt,vt,:ct)||2] .
For the inequality on h?, we start from Equations (88) and (127)
W< ht = 2ot — (3 - 2792 EllID.( o' ")) (141)
Li hyt_ 2 t t hyt 2qt
+ 77+L Liv* | (0, 4+ 0,) + L" L. ~v*S
. . 1 L2
Assuming v < min (m, ﬁ) leads
R < Bt — g t 7E[||Dw(zt,vt,xt)|| |+ L24(6t +6) + L"L/ A28 . (142)
O
We are now ready to prove Theorem 3.
Proof. We consider the Lyapunov function
LY =R 4 ¢,8" + .65 + ¢,0! (143)

for some constants ¢, ¢, and ¢,,.
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We have

t+1 t Yot Y - '72 2 t ot V(2

- <¢z M?GP - L?ﬂ - 8¢v/8vzp - (/bS/Bssz) 62

- (QSU’L]L_%/) - Li'y - 2¢ZLZ 2 - ¢sﬂsvp2) 65
Tr
- (¢s2 - 5¢ZL;p2 - 5¢UL;p2 - LhL;’YQ) St :

To get a decrease, ¢., ¢, and ¢4, p and v must be such that:

,YQ 2

3 g
2¢Zﬁz;{;?

+ 2008, = + ¢ P72 < 1
p 4
HrGc
Li’}/ + 8¢Uﬁvzp + ¢S/Bszp2 S ¢z7
L3y + 8¢ LY + ¢sBsup® < fbv
5¢.LLp? + 5, Lyp? + L"Liy® < ¢>s
In order to take into account the scaling of the quantities with respect to N = n + m, we take
p=pNv, v=+N", ¢, =¢.N", ¢, = ¢, N™ and ¢s = ¢ N". Since ' = O(N1),

P =0O(N), B;, = O(N) and B, = O(N), we also define I = T'N, P’ = PN~} 3/ = B, N~}
and 3., N 1. Now, the previous Equations read (after slight simplifications):

a 7 ’Y/ Nnz+n-—n ns+n 1
(2¢lzﬂzr +2¢;6m¢)7/N iy ’ +¢;P/’Y/N oyt < Z

L2/ N™ 4 81,8,2p/ N7 + 9181, (o 2Nttt < g B e

L2y N™ 4 8¢/ L (7 N2 4 6l B, (p))AN 2] < qg N
BOLLL(p)*N™ 2" + 5/, L, (p/) 2N + LML (7/)*N™ < ¢55N"s—1 :

In order to ensure that the exponents on N are lower in the left-hand-side than those on the right-
hand-side, we take n; = n, = 0,n, = ny = —3 and ny = —1. The Equations become

(20,80 +208) % + 0P < |
L2y N7 4 86,B,.p' N~/ + ¢sﬂsz<p PN < g BN
L2y N7/ 4 86L L+ )2 N~ + 68, (¢ 2N 72/* < ¢/, EE p N =23
5OLLL(p )P N~V 4+ 5¢, L1, (p') ) N~** + L' L, (')’ N~/ < ¢;%N‘4/3 :
We can replace the penultimate equation by the stronger
L2y N~/ 4 86L LUy PN~ + 8L, (0PN 27 < ¢/, EE N =25
so that we can simplify all the equations by dropping the dependencies in V:
(2080 + 205,000 + 6P < 1
L2 + 8¢/, Boxp + ¢>sﬁ;z< DT
L2 +86LL(+)? + 4Bl (o) < 6, qg ’
SLLL ()2 + 50,14 (012 + LML (7)? < )
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Let us take ¢, = 1, ¢/, = ””/ and ¢}, = ””/ with ¢/ =
The equations become

"o : HG
325 and ¢; = min (325 , 128ﬁ1,z)'

—_

Pl/_y/ S =

oo

7\2
12+ / /2<//N£(p)
R TR
2

/
L2’y'—|—8q5”L”’yp +B ( ) S¢//N£(p)
Sv v 16 ,yl

/ / I
5¢NL/(,Y) +5¢”L/(7) —|—LhL/( /) < =

The condition 7' < g L 7 ensures that the first equation is verified. With 4" < min (, / (gg‘gg o, f; ;,Cz" ),

the second equations is verified. With 4/ < min (, / ‘ngg o, fgg,c, \/ 38%’/2,”5,1,[),), the third is

verified. With v/ <,/ 6LhL’ , the last can be simplified:

F,
(56LLL + 56,1, (0) < 57

Let us write v/ = £p’. If we want that equation does no contradict the previous upper bound on ~'
involving p’ and the conditions of Lemma C.8, that is

~" < min dnc s o
- 32[/2 ’ 48L2 ’ 2L/ ﬂm 2[/ ﬁ’U.L

’Y/ < min | 7€ ma ﬁvz \/;
o 645.2ng ’ 128/8111ch 7 4Lg/81193

Ko
g < ke T
384¢7L Vo
—_———
K3
S emin L3 I 1 $lpe e
- ALh’ 20hL\ 6LMLC 8P’ 328, 480",
Ky
15(¢7 L% + ¢ Ly) 3
Y2 I P
Ks
& must verify
§< Ky
£ < Ky(p))2
€< Ky(p/)" 2
§<Ky(p)7!
£> Ks(p)?

which is possible if p’ satisfies

_3 _s _
! < min & & ’ & (B i
JUS K5’ K5 ) K5 ) K5



Let us take
3

_3 _5 _ — —
e B (K2 TE(Ks\TE (KT pe B ke Bz Bu
p K5 \ K;5 "\ K5 "\ K "64L2° 28, 128(L2 + L)’ 8(L2 + L")’ 2By

(144)
and
€ =min(Ky, Ka(p') "2, K3(p') "2, Ku(p)) ") . (145)
Finally, we have
i
£t+1 —ﬁt < _§gt
and therefore, summing and telescoping yields
T 2
1 . LY LON3
— < Z =
T ;g =TT
Since with respect to N we have
L0=h"+ 6.0+ ¢80 + ¢sS° = O(N"'+1+1+ N"35) =0(1) ,
we end up with
T 2
N3
T 2:: [IVA(z)]?] = O ( - )
O

C.10 Proof of Theorem 4
We are now going to prove Theorem 4 that we recall here:

Theorem 4 (Convergence of SABA, PL case). Assume that & satisfies the PL inequality and that

Assumptions 3.1 to 3.3 and 3.7 to 3.8 hold. We suppose p = p/N~3 and v = £/ N~!, where p/
and ¢ depend only on F and G and are specified in appendix. Let z¢ the iterates of SABA and
¢ £ min (up, ﬁ) with P’ specified in the appendix. Then,

EhT] —h* = (1 - y)T(h° — h* 4+ C9)
where C? is a constant specified in appendix that depends on the initialization of z, v, x and memory.

Here, we have

2 2 1 — —
/ = min ﬁ & ’ ﬁ ! ﬁ ’ MG ﬁzw MG sz ﬁvm
p K \K;) "\Ks) '\ K;) *64L2 2.,  128(L2 + L)’ 8(LZ + L") 2By | °

and

¢ = min(K}, Ko (p') "%, Ka(p) %, K4 (p)7Y)

where P/ = PN~1, TV =T'N,
"o "o . n MG
e I (3251);@ 128@,2) ’

K — min e
! 4 " 48127 \/ 64L2” 2L’ @m 2L’ ﬁm ’
2% ﬂvz
K N
2 = min (\/64ﬂmL;” \/128&ng’ 4Lgﬁm> )
K e, % (T 1 L2 I 1 ¢lua dpa

= _— =min | —,—
3 512¢7L" 7 T * 6¢/ 4LP’ 2L L \| 6LPL! " 18P 4843, 640",

and
20(07 L, + ¢ L)
I '

1

K5 =
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Proof. For simplicity, we assume that h* = 0 and so for any = € R? the PL inequality reads:
%HVh(z)H2 > pnh(x) - (146)
Then, eq. (130) gives
P (1= 2ER) B = JEIID. (2 ot 2! P] + YLA(OL + 65) + L Lon2S"

We take £! the Lyapunov function given in Equation (143). We find

o 2 o 2
L7~ L <~y — (Z ~ 2680 208, @P%) B[ Da (=", o', )|

- (@“—Gp — L2y = 86uBup — dscp?) 3L
— (0580 = L2y = 20.L17* — 6.800")
- (% 0L = 50, L~ D' ) 5°
We now try to find linear convergence, hence we add to this c£? to get

2 ,y2

LY — (1= )L < —(ypn — )bt — (” - 2@@% — 208,57 — 6P ) E[|| D (2t v, a)|]

4
— (0580 = 12y = 80uBu.p — 0. Buep® — co. ) 3
- (¢v%p - Liﬁ’ - 2¢zLH72 - (bsﬁsvp ¢ ) 62
r
— (%2 —5¢.L,p* — 5, Li,p* — L"L),»* — c¢s> St

Hence, the set of inequations for decrease becomes

< Yih
= 7 = 7 v
2¢Zﬂzm? + 2(;51},81};8? + QSSP’YQ +c S Z

G
L?v'y + 8¢v6vzp + (Z)sﬁssz + (]520 < szL
L3y +80:Lin? + ¢sBsup® + poc < ¢v

56, L. p* +5¢,L,p* + L"L~? + ¢sc < ¢>s

We see that it is more convenient to write ¢ = y¢'. As previously, we write v = 7' N™, p = p/ N™e,
¢Z:¢/ZNTLZ,¢’U:¢;Nn/u9¢s:gb/anS’P:P/N’F:FINilsBS:E: NandBSU: S’UN
The equations read:

d < pn
1
4
L;{Y N™ + 8, Bospf! N+ + ¢3! _(p ) Nnst2n,+l + @l Nt < ¢ BG NG o NTetns

26,8, L Nmtmne 4 2B, LNty L gl Py Nt )

Z:E/ ’UI/

Li’)//Nn'y+8¢;Lg(’}//)2an+2n'y +¢/56;1}( ) N +1+2np+¢/ / /N’ﬂv+’ﬂ-y <¢/ FLG /Nanrnp

BELLL(p') N2 560, L, (p") 2N 20 4 LV (7 )2 NP 4 gidy/ N+ < ¢;5an_1 '
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In order to ensure that the exponents on N are lower in the left-hand-side than those on the right-
; — — - _2 - _ —_1 i
hand-side, we take n, = n, = 0,n, = SNy = 1l and ng = 3 The Equations become

/
c

IN
»M»—*T:

24, ,82367/]\[" + 240, ﬁw N g Py NE b <
/MG N 2

3

L3N~ 4+ 80,800/ N~5 + §L8L. (0N~ + 9Ly N < 0.
L2/ N~ 4 80LLL(Y )N "> + 681, (6PN 5 + 6,/ N 7! < g, ’{g IN~E
BOLLL(P PN TE 4+ 56, Ly (o PN T2 + LMLy (/)N 72 + ¢’y N3 < (z»;gN*% :

Now we have to find p’, v/, ¢, ¢! and ¢’ that verifies the following conditions (which are a bit
stronger than thoose in the previous Equations):

Q\
IN
g\»—t =

267 - +20,5,, 2 , P+
L2 + 86, Buap’ + 181 ()7 + 6Ly < 6L EE Y
Ly + 8¢ LI(Y)* + 6,85, (0)* + ¢ucy < ¢, /ig ’
SOLLL(P)* + 50, Ly (p)? + L"Li(v')? + ¢y < ¢;5 :

As previously, we take ¢, = 1 and we denote ¢/, = ¢!/ o £ with ¢ = /3 - and ¢, = ¢ f;—/, with

// — :
= min ( 525 D% 1955 ) the equations become

/

¢ < up
/! / 1
Pv+cd < 3
L2 + Bia(p ) + 6l < 615 (o)
e,
Lo(v)? +80LLEP (V) + Biu(p)*Y + 000y < 675 ()
. I
SOLLL(P)* + 587 Ly () + LMLL(V)P + ¢ (V) < 50"

Since ¢/ < 1% and ' < g5, the second equation is verified. With 4/ < min ( (Z/éz%; 0, i’g gj)

48~

d < ”Gf/’ ensure that the forth is verified. With ' < , / g Lh 3 and/ < L

pep’ s : se / . PUuG [ 0e] e
and ¢’ < the third is verified. The conditions 7" < min ( girz P \/512¢>’;L;’p” 646;v) and

/

v

F/
SOILL(p) + 50, Ly (0)* <
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As in the proof of Theorem 3, let us denote v’ = £p’. To verify this equation and the previous bounds
on~ and ¢/, we need

+ < min e e,
- 48127\ 64L2”° 2[/ ﬂm 2L’ Bm

'7, < min HG | e sz \/;
o 64527,'[/{1{' ’ 128/37)$L/’1{ ’ 4L{I‘{/B7)'I) ’

K>
ro [Pk 1
7=\ s2erLr Vo
—_———
K3
~' < min 1 L dlue dype 1 r
- ALN’ 2Lth7 48581, 64 ’gv’ 16P"’ 8LhL;c
Ky
20(¢7L; + ¢y L)
’7/ > 50 (pl)?) ’
Ks
d < 1 11
>~ h» 167 16P’ )
Ke
< fales 1
64 & ’
~~
K7
< f;' l
—_— / .
<7
Ks

So, &, p’ and ¢’ must verify

which is possible if

o
Wl

o/ < min K (K2 7 Ks
Ks' \ K K

41

L
) K5



So let us take ¢ = min (uy, 1=, Top7) = min (Ls, to57 )

y — min ﬁ (I@) <K3) (K4> he Bea  Ma Bo: B
Ks'\Ks) '\ Ks;/) '\ Ks) '64L2" 203,, 128(L2+ L")’ 8(L2+ L")’ 2Byx
and
¢ = min(Ky, Ka(p)) "2, Ks(p) 2, Ka(p) )
We have
LA <(1—e)Lt
therefore, unrolling yields

W= b < L0 < (1= cy)'L ]

D Convergence rates with weaker regularity assumptions

To get our rates, we need stronger assumptions than in the stochastic bilevel optimization literature [19,
24, 26, 2]. In this section, we shortly present the convergence rates we can expect if we replace
Assumptions 3.1 and 3.2 by Assumptions D.1 and D.2.

Assumption D.1. The function F' is differentiable. The gradient V F' is Lipschitz continuous in
(z,z) with Lipschitz constants L{".

Assumption D.2. The function G is twice continuously differentiable on R? x R<. For any = € R<,
G(-,m) is pg-strongly convex. The derivatives VG are V2 are Lipschitz continuous in (z, z) with
respective Lipschitz constants L and LS.

With these assumptions, we are not ensured that v* is smooth, and so the descent lemmas take the
form of Lemma D.3.

Lemma D.3. Assume that p < < g We have:

5t+1<(1 p“G)5t+2 2vt+4L i
° G P

654—1 S (1 p:“G) 6t +pﬂvz(5t +2p2vt+8 * 7 Vt
G P
where L, is the maximum between the Lipschitz constants of z* and v* (see Lemma C.1) and

ﬁvz = é(LFMG + Lg)Q

Proof. Inequality for 6.

Instead of expanding the square as done in the proof of Lemma 3.9 in Equation (45), we use Young’s
inequality for some a > 0

S < (L4 B[ — 2 @) + (L4 a DE[|" @) — @7 . (14D)

Treating E[|| 2!+ — 2*(2?)||?] and E[||2* (z**1) — 2*(2?)]|?] as done in the proof of Lemma 3.9 leads
to
O < (T +a) [(1 - puc)ds + p*Vi] + (1 +a” LIV, (148)

In order to keep a decrease in J,, we might want to use a = % pliG, which gives the bound

6?'1 < (1 PMG) 5t +92 2Vt+5zx (149)
with 5Z . Indeed, this gives (1 + 2puc)(1 — puc) < 1— 7p,uG We have a < 1 since
p< 50 (1 + a)p? < 2p?. Finally, we also have 1 + a~! <2471 = 2

PHG
Inequallty for 6,. As for ¢, the difference with the proof of Lemma 3.9 is that we use we use
Young’s inequality for some b > 0 to get

Ot < M+ DE[Jo" — v (@) [P + 1+ bHE[lo" (@) — o @) . (50)
The remaining part of the proof is similar to the proof of Lemma 3.9. O
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The main difference with Lemma 3.9 is that we have O(l:) in factor of V! instead of O(7?). As a
consequence, we need that the ratio % goes to zero to get convergence, as in [24]. This prevent us in
getting rates that match rates of single level algorithms.

Hence, for SOBA, we have to choose ¥ = O(T~%) and p = O(T~%) and we end up with a

convergence rate in O(T~ 3 ). For SABA, we get a O((n + m)e 1) sample complexity, which is
actually the sample complexity of SOBA used with full batch estimated directions.
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