
Supplemental Material for CoPur

A Additional theoretical results, definitions, and proofs

A.1 Exact recovery when there is no attack

The reader may wonder how the proposed feature purification method behaves when there is no
attack, i.e., h = l∗. The following theorem shows that we can recover l∗ exactly even if it only
approximately lies on the manifold.
Theorem 5. (Exact feature recovery ) For the uncorrupted feature vector h = l∗, assume the
learned AutoEncoder satisfies

∑M
i=1 ∥[Dϕ(Eψ(l∗))− l∗]i∥2 ≤ δ. Let l̂ be the solution of Eq. 6. Then

we have l̂ = l∗.

Proof. Since there is no attack, Ω = {1, 2, ...,M} in Eq. 6. It is straightforward to see l̂ = l∗ is the
unique global minimum of Eq. 6, as it achieves the minimal zero value of the loss function.

A.2 Block-wise incomplete leverage constant

In robust linear regression literature, for characterizing the robustness of the ℓ1 estimator, the following
‘leverage constant’ of a matrix AM×D is introduced in Flores (2015):
Definition 1. (leverage constant) Define for every q ∈ {1, ...,M} the leverage constant cq of
AM×D as

cq(A) := min
|S̄|=q

min
z∈RD\{0}

∑
i∈S |aTi z|∑M
i=1 |aTi z|

,

where aTi denotes the i-th row of matrix A, set S̄ = {1, ...,M} \ S.

The leverage constant cq is between 0 and 1, and is monotonic increasing when q decreases.

In our analysis, we introduce the block-wise ‘incomplete’ leverage constant of matrix W , whose
rows are divided into M blocks (each block corresponds to an agent), and we use Ω to denote the
index set of observed blocks:

cΩq
(W ) := min

|S̄Ω|=q
min

z∈RD\{0}

∑
i∈SΩ

∥[Wz]i∥2∑
i∈Ω ∥[Wz]i∥2

,

where [Wz]i denotes i-th block of the vector Wz, and S̄Ω = Ω \ SΩ. cΩq (W ) is between 0 and 1,
and is monotonic increasing when the number of corrupted blocks q decreases.

As mentioned in Remark 2, a sufficient condition for the condition
∑
i∈SΩ

∥vi∥2−
∑
i∈S̄Ω

∥vi∥2 > 0

that required by Theorem 2 to hold is cΩq (Wend) > 0.5, where Wend denotes the weight matrix of
the last layer of the AutoEncoder. Consider the toy example where every agent holds exactly the
same embedded features, and q = 0.1× |Ω|, then cΩq

(Wend) = 0.9.

A.3 Proof of Theorem 1

Proof. Let l′ be any feasible point of Eq. 5 (i.e., satisfies Dϕ(Eψ(l′)) = l′) that is different from l∗.
Let v = Dϕ(Eψ(l∗))−Dϕ(Eψ(l′)) = l∗ − l′. By the assumption of Theorem 1, we have vΩ ̸= 0.
Then,

∑
i∈Ω

∥[h− l′]i∥2 (7)

=
∑
i∈Ω

∥[h−Dϕ(Eψ(l′))]i∥2 (8)

=
∑
i∈Ω

∥[h−Dϕ(Eψ(l∗)) + v]i∥2 (9)
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=
∑
i∈Ω

∥[h− l∗ + v]i∥2 (10)

=
∑
i∈Ω

∥vi∥2 (11)

>0 (12)

=
∑
i∈Ω

∥[h− l∗]i∥2, (13)

Therefore, l∗ is the unique global optimal solution of Eq. 5.

Similarly, let l′ be any feasible point of Eq. 4 (i.e., satisfies Dϕ(Eψ(l′)) = l′) that is different from l∗.
Let v = Dϕ(Eψ(l∗))−Dϕ(Eψ(l′)) = l∗ − l′. By the assumption of Theorem 1, we have vΩ ̸= 0.
Then,

∑
i∈Ω

1{[h− l′]i ̸= 0} (14)

=
∑
i∈Ω

1{[h−Dϕ(Eψ(l′))]i ̸= 0} (15)

=
∑
i∈Ω

1{[h−Dϕ(Eψ(l∗)) + v]i ̸= 0} (16)

=
∑
i∈Ω

1{[h− l∗ + v]i ̸= 0} (17)

=
∑
i∈Ω

1{vi ̸= 0} (18)

>0 (19)

=
∑
i∈Ω

1{[h− l∗]i ̸= 0} (20)

Therefore, l∗ is the unique global optimal solution of Eq. 4.

A.4 Proof of Theorem 2

Proof. A) Let l′ be any feasible point of Eq. 5 (i.e., satisfies Dϕ(Eψ(l′)) = l′) that is different
from l∗. Let Dϕ(Eψ(l′)) = Dϕ(Eψ(l∗)) − v. Let SΩ be any subset of Ω of size |Ω| − q such that
e∗i = 0,∀i ∈ SΩ. Denote the set difference Ω \ SΩ as S̄Ω.∑

i∈Ω

∥[h− l′]i∥2 (21)

=
∑
i∈Ω

∥[h−Dϕ(Eψ(l′))]i∥2 (22)

=
∑
i∈Ω

∥[h−Dϕ(Eψ(l∗)) + v]i∥2 (23)

=
∑
i∈Ω

∥[h−Dϕ(Eψ(l∗))]i + vi∥2 (24)

=
∑
i∈SΩ

∥[h−Dϕ(Eψ(l∗))]i + vi∥2 +
∑
i∈S̄Ω

∥[h−Dϕ(Eψ(l∗))]i + vi∥2 (25)

=
∑
i∈SΩ

∥[h− l∗]i + vi∥2 +
∑
i∈S̄Ω

∥[h−Dϕ(Eψ(l∗))]i + vi∥2 (26)

=
∑
i∈SΩ

∥vi∥2 +
∑
i∈S̄Ω

∥[h−Dϕ(Eψ(l∗))]i + vi∥2 (27)
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≥
∑
i∈SΩ

∥vi∥2 +
∑
i∈S̄Ω

∥[h−Dϕ(Eψ(l∗))]i∥2 −
∑
i∈S̄Ω

∥vi∥2 (28)

>
∑
i∈S̄Ω

∥[h−Dϕ(Eψ(l∗))]i∥2 (29)

=
∑
i∈S̄Ω

∥[h− l∗]i∥2 (30)

=
∑
i∈Ω

∥[h− l∗]i∥2 (31)

Therefore, l∗ is the unique global optimal solution of Eq. 5.
B) First, note that hΩ = l∗Ω + e∗Ω and

∑
i∈Ω 1{e∗i ̸= 0} ≤ q. Suppose l′ is a global optimal solution

of Eq. 4 that is different from l∗. Let hΩ = l′Ω + e′Ω, then we have∑
i∈Ω

1{e′i ̸= 0} ≤
∑
i∈Ω

1{e∗i ̸= 0} ≤ q (32)

and l′Ω + e′Ω = l∗Ω + e∗Ω.

From Eq. 32 we know that∑
i∈Ω

1{[l∗ − l′]i = 0} ≥|Ω| −
∑
i∈Ω

1{e∗i ̸= 0} −
∑
i∈Ω

1{e′i ̸= 0} (33)

≥|Ω| − q − q = |Ω| − 2q (34)

Let v = Dϕ(Eψ(l∗)) − Dϕ(Eψ(l′)) = l∗ − l′, so we have
∑
i∈Ω 1{vi = 0} ≥ |Ω| − 2q. Now

split Ω into 3 disjoint sets {Ω0,Ω1,Ω2}, where Ω0 is any subset of Ω with size |Ω| − 2q such
that vΩ0

= 0, and |Ω1| = |Ω2| = q. Since |Ω0 ∪ Ω1| = |Ω| − q, by our assumption, we have∑
i∈Ω0∪Ω1

∥vi∥2 >
∑
i∈Ω2

∥vi∥2. Since |Ω0 ∪ Ω2| = |Ω| − q, by our assumption, we have∑
i∈Ω0∪Ω2

∥vi∥2 >
∑
i∈Ω1

∥vi∥2. However, this leads to a contradiction since
∑
i∈Ω0

∥vi∥2 =
0.

A.5 Proof of Theorem 3

Proof. Consider any feasible point l′ of Eq. 6 such that Dϕ(Eψ(l′)) ̸= Dϕ(Eψ(l∗)), and let v =
Dϕ(Eψ(l∗))−Dϕ(Eψ(l′)).∑

i∈Ω

∥[h− l′]i∥2 (35)

=
∑
i∈Ω

∥[h−Dϕ(Eψ(l′)) +Dϕ(Eψ(l′))− l′]i∥2 (36)

≥
∑
i∈Ω

∥[h−Dϕ(Eψ(l′))]i∥2 −
∑
i∈Ω

∥[Dϕ(Eψ(l′))− l′]i∥2 (37)

≥
∑
i∈Ω

∥[h−Dϕ(Eψ(l′))]i∥2 − δ (38)

=
∑
i∈Ω

∥[h−Dϕ(Eψ(l∗))]i + vi∥2 − δ (39)

=
∑
i∈Ω

∥[h− l∗ + l∗ −Dϕ(Eψ(l∗))]i + vi∥2 − δ (40)

=
∑
i∈Ω

∥[l∗ −Dϕ(Eψ(l∗))]i + vi∥2 − δ (41)

≥
∑
i∈Ω

∥vi∥2 −
∑
i∈Ω

∥[l∗ −Dϕ(Eψ(l∗))]i∥2 − δ (42)

≥
∑
i∈Ω

∥vi∥2 − 2δ (43)
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=
∑
i∈Ω

∥[h− l∗]i∥2 +
∑
i∈Ω

∥vi∥2 − 2δ (44)

where the last equality follows from the fact that
∑
i∈Ω ∥[h− l∗]i∥2 = 0. If ∥v∥2 > ∆, the condition∑

i∈Ω ∥vi∥2 > 2δ means
∑
i∈Ω ∥vi∥2 − 2δ > 0, and from Eq. 44 we have

∑
i∈Ω ∥[h− l′]i∥2 >∑

i∈Ω ∥[h− l∗]i∥2. Then, the optimal solution must satisfy ∥v∥2 ≤ ∆, which completes the
proof.

A.6 Proof of Theorem 4

Proof. Consider any feasible point l′ of Eq. 6 such that Dϕ(Eψ(l′)) ̸= Dϕ(Eψ(l∗)), and let v =
Dϕ(Eψ(l∗)) − Dϕ(Eψ(l′)). Let SΩ be any subset of Ω of size |Ω| − q such that e∗i = 0,∀i ∈ SΩ.
Denote the set difference Ω \ SΩ as S̄Ω.

∑
i∈Ω

∥[h− l′]i∥2 (45)

=
∑
i∈Ω

∥[h−Dϕ(Eψ(l′)) +Dϕ(Eψ(l′))− l′]i∥2 (46)

≥
∑
i∈Ω

∥[h−Dϕ(Eψ(l′))]i∥2 −
∑
i∈Ω

∥[Dϕ(Eψ(l′))− l′]i∥2 (47)

≥
∑
i∈Ω

∥[h−Dϕ(Eψ(l′))]i∥2 − δ (48)

=
∑
i∈Ω

∥[h−Dϕ(Eψ(l∗))]i + vi∥2 − δ (49)

=
∑
i∈Ω

∥[h− l∗ + l∗ −Dϕ(Eψ(l∗))]i + vi∥2 − δ (50)

=
∑
i∈SΩ

∥[h− l∗ + l∗ −Dϕ(Eψ(l∗))]i + vi∥2 (51)

+
∑
i∈S̄Ω

∥[h− l∗ + l∗ −Dϕ(Eψ(l∗))]i + vi∥2 − δ (52)

=
∑
i∈SΩ

∥[l∗ −Dϕ(Eψ(l∗))]i + vi∥2 (53)

+
∑
i∈S̄Ω

∥[h− l∗ + l∗ −Dϕ(Eψ(l∗))]i + vi∥2 − δ (54)

≥
∑
i∈SΩ

∥vi∥2 −
∑
i∈SΩ

∥[l∗ −Dϕ(Eψ(l∗))]i∥2 +
∑
i∈S̄Ω

∥[h− l∗]i∥2

−
∑
i∈S̄Ω

∥[l∗ −Dϕ(Eψ(l∗))]i∥2 −
∑
i∈S̄Ω

∥vi∥2 − δ (55)

=
∑
i∈SΩ

∥vi∥2 −
∑
i∈Ω

∥[l∗ −Dϕ(Eψ(l∗))]i∥2 +
∑
i∈S̄Ω

∥[h− l∗]i∥2 −
∑
i∈S̄Ω

∥vi∥2 − δ (56)

≥
∑
i∈SΩ

∥vi∥2 − δ +
∑
i∈S̄Ω

∥[h− l∗]i∥2 −
∑
i∈S̄Ω

∥vi∥2 − δ (57)

=
∑
i∈SΩ

∥vi∥2 − δ +
∑
i∈Ω

∥[h− l∗]i∥2 −
∑
i∈S̄Ω

∥vi∥2 − δ (58)

=
∑
i∈Ω

∥[h− l∗]i∥2 +
∑
i∈SΩ

∥vi∥2 −
∑
i∈S̄Ω

∥vi∥2 − 2δ (59)
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If ∥v∥2 > ∆, the condition
∑
i∈SΩ

∥vi∥2 −
∑
i∈S̄Ω

∥vi∥2 > 2δ means
∑
i∈SΩ

∥vi∥2 −∑
i∈S̄Ω

∥vi∥2 − 2δ > 0, and from Eq. 59 we have
∑
i∈Ω ∥[h− l′]i∥2 >

∑
i∈Ω ∥[h− l∗]i∥2. Then,

the optimal solution must satisfy ∥v∥2 ≤ ∆, which completes the proof.

B Ablation studies

We first do an ablation study by comparing the recovered embedded features with the underlying
uncorrupted embedded features on the NUS-WIDE dataset. Only the Manifold Projection method
and the proposed method can reconstruct embedded features. Figure 4-5 show the reconstruction
error of the embedded features on first 1000 testing instances by Manifold Projection method (i.e.,
∥Dϕ(Eψ(h))−Dϕ(Eψ(l∗))∥2) and by the proposed feature purification method (i.e., ∥Dϕ(Eψ(l̂))−
Dϕ(Eψ(l∗))∥2), where l∗ is the underlying uncorrupted embedded features. Apparently, the proposed
feature purification method has a much smaller reconstruction error on almost every testing instance
than the Manifold Projection method.

Figure 4: Reconstruction error of the embedded features by Manifold Projection (i.e., ∥Dϕ(Eψ(h))−
Dϕ(Eψ(l∗))∥2, in red) and Feature Purification (i.e., ∥Dϕ(Eψ(l̂))−Dϕ(Eψ(l∗))∥2, in green) on first
1000 testing samples of NUS-WIDE dataset, under the untargeted adversarial attack by agent 4 with
Ampilification=10.

We then do some ablation studies by comparing the adversarial attack with the combined attack on
NUS-WIDE and ExtraSensory datasets. In Table 3, the first row shows the Robust Accuracy of each
defense against the targeted attack by agent 4 on NUS-WIDE dataset, while the second row shows
the Robust Accuracy of each defense against the combined targeted attack (agent 4 performs targeted
attack while agent 1 performs missing-feature attack). We can see that the Robust Accuracies of most
methods drop when agent 1 additionally performs the missing-feature attack.

Table 3: Robust Accuracy (%) of each defense against targeted attack (by agent 4, first row) and
the combined targeted attack (in addition, agent 1 performs missing-feature attack, second row) on
NUS-WIDE dataset.

Unsecured Manifold Proj Rand Smooth Rand Smooth Block Rand Ablation Adv Train Block Adv Train Proposed

#4 target 4.5±0.3 81.3±1.2 41.8±6.3 48.7±10.1 65.3±5.3 8.0±1.9 7.3±1.2 83.7±0.9
#1 miss, #4 target 4.2± 0.4 70.7 ± 2.5 5.1 ± 1.1 44.4 ± 9.3 60.9± 1.3 4.6 ± 0.3 4.3± 0.3 71.8± 2.0

In Table 4, the first row shows the Robust Accuracy of each defense against the untargeted attack
(with Amplification=10) by agent 4 on NUS-WIDE dataset, while the second row shows the Robust
Accuracy of each defense against the combined untargeted attack (agent 4 performs such untargeted
attack while agent 1 performs missing-feature attack). Again, the Robust Accuracies of most methods
drop when agent 1 additionally performs the missing-feature attack. The Manifold Projection method
almost fails under this combined attack. The proposed method is still resistant to such combined
attack.
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Figure 5: Reconstruction error of the embedded features by Manifold Projection (i.e., ∥Dϕ(Eψ(h))−
Dϕ(Eψ(l∗))∥2, in red) and Feature Purification (i.e., ∥Dϕ(Eψ(l̂))−Dϕ(Eψ(l∗))∥2, in green) on first
1000 testing samples of NUS-WIDE dataset, under the combined attacks with Ampilification=10: (a)
Agent 1 performs missing-feature attack, Agent 3 performs adversarial untargeted attack; (b) Agent 1
performs missing-feature attack, Agent 4 performs adversarial untargeted attack; (c) Agent 2 performs
missing-feature attack, Agent 3 performs adversarial untargeted attack; (d) Agent 2 performs missing-
feature attack, Agent 4 performs adversarial untargeted attack; (e) Agent 4 performs missing-feature
attack, Agent 3 performs adversarial untargeted attack; (f) Agent 3 performs missing-feature attack,
Agent 4 performs adversarial untargeted attack.
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Table 4: Robust Accuracy (%) of each defense against untargeted attack (agents 4 provides corrupted
embedded features h4 = −10× l4, first row) and the combined untargeted attack (in addition, agent
1 performs missing-feature attack, second row) on NUS-WIDE dataset.

Unsecured Manifold Proj Rand Smooth Rand Smooth Block Rand Ablation Adv Train Block Adv Train Proposed

#4 untarget 68.4± 17.5 64.3 ± 11.1 68.8 ± 16.9 70.8 ± 13.4 77.2± 2.1 80.8 ± 2.5 80.8± 2.5 82.1± 0.7
#1 miss, #4 untarget 61.7±15.6 52.1±16.7 62.8±16.4 62.3±12.2 73.6±4.6 69.2±5.6 69.2±5.6 74.1±2.3

Table 5: Robust Accuracy (%) of each defense against targeted attack and the combined targeted
attack on ExtraSensory dataset. First row: agent 10 performs targeted attack; Second row: agent 10
performs targeted attack while agent 7 performs missing-feature attack; Third row: agent 10 performs
targeted attack while agents 7&8 perform missing-feature attack; Last row: agent 10 performs
targeted attack while agents 1&7 perform missing-feature attack.

Unsecured Manifold Proj Rand Smooth Rand Smooth Block Rand Ablation Adv Train Block Adv Train Proposed

#10 target 40.4± 16.9 53.6 ± 35.7 42.4 ± 17.9 42.0 ± 17.8 59.6± 27.5 19.8 ± 34.1 0.0± 0.0 79.0± 5.0
#7 miss, #10 target 38.3± 15.7 52.6± 38.9 50.5± 1.3 51.0± 2.5 60.3± 28.1 24.6± 26.8 0.1± 0.1 79.1± 4.5

#7,8 miss, #10 target 36.0 ± 17.7 75.2 ± 7.6 38.4 ± 19.0 37.3± 18.9 59.7± 29.4 35.3± 30.6 0.0± 0.0 81.1 ± 2.6
#1,7 miss, #10 target 25.2 ± 17.3 65.6 ± 6.6 26.0 ± 18.3 25.9± 17.9 61.0± 28.6 10.7± 18.6 0.0± 0.0 71.6 ± 9.0

In Table 5, the first row shows the Robust Accuracy of each defense against the targeted attack
by agent 10 on ExtraSensory dataset. The second row shows the Robust Accuracy when agent 10
performs targeted attack while agent 7, which holds the audio features, performs missing-feature
attack; The third row shows the Robust Accuracy when agent 10 performs targeted attack, while
agents 7&8 perform missing-feature attack; The last row shows the Robust Accuracy when agent 10
performs targeted attack while agents 1&7 perform missing-feature attack. The Robust Accuracy of
the Unsecured method significantly drops when the adversarial attack is combined with more agents
that perform missing-feature attack. Adversarial Training and Randomized Smoothing type methods
almost fail under targeted attacks. Though the Robust Accuracy of the proposed method drops a bit
when agents 1 & 7 additionally perform missing-feature attack, it still significantly outperforms other
baseline defense methods.

In Table 6, the first row shows the Robust Accuracy of each defense against the untargeted attack
by agent 10 on ExtraSensory dataset, where agent 10 provides corrupted embedded features h10 =
−10× l10. The second row shows the Robust Accuracy when agent 10 performs such untargeted
attack while agent 7, which holds the audio features, performs missing-feature attack; The third row
shows the Robust Accuracy when agent 10 performs untargeted attack while agents 7&8 perform
missing-feature attack; The last row shows the Robust Accuracy when agent 10 performs untargeted
attack while agents 1&7 perform missing-feature attack. The Robust Accuracy of the Unsecured
method drops when the adversarial attack is combined with more agents that perform missing-feature
attack. The proposed method keeps a very high Robust Accuracy, e.g., its Robust Accuracy in the
last row is even higher than the baselines’ Robust Accuracy in the first row.

Table 6: Robust Accuracy (%) of each defense against untargeted attack and the combined untargeted
attack on ExtraSensory dataset. First row: agent 10 performs untargeted attack (by providing
corrupted embedded features h10 = −10× l10); Second row: agent 10 performs untargeted attack
while agent 7 performs missing-feature attack; Third row: agent 10 performs untargeted attack while
agents 7&8 perform missing-feature attack; Last row: agent 10 performs untargeted attack while
agents 1&7 perform missing-feature attack.

Unsecured Manifold Proj Rand Smooth Rand Smooth Block Rand Ablation Adv Train Block Adv Train Proposed

#10 untarget 69.6± 8.8 75.0 ± 4.4 70.4 ± 8.0 70.2 ± 8.2 69.7± 12.0 78.9 ± 6.8 71.1± 5.7 82.6± 2.7
#7 miss, #10 untarget 68.6± 9.7 76.0± 3.7 69.1± 9.4 69.3± 9.4 69.8± 11.5 77.9± 6.1 70.7± 5.2 82.7± 2.8

#7,8 miss, #10 untarget 68.1 ± 8.3 75.1 ± 5.1 68.9 ± 8.0 68.9± 7.9 75.3± 11.4 75.1± 10.4 64.2± 15.0 81.9 ± 2.7
#1,7 miss, #10 untarget 60.1 ± 6.2 68.8 ± 8.2 60.4 ± 6.7 60.4± 6.7 69.8± 11.5 68.7± 8.7 60.7± 13.7 80.1 ± 4.0
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We further do some ablation studies by testing the Robust Accuracy of each defense when there
are only missing-feature attacks, the results are shown in Table 7. The first row shows the Robust
Accuracy when only agent 7 (which holds audio features) performs missing-feature attack; The
second row shows the Robust Accuracy when agent 7&8 perform missing-feature attack; The last
row shows the Robust Accuracy when agent 1&7 perform missing-feature attack. Comparing the
last two rows, agent 1 seems to be more effective in performing missing-feature attack than agent
8. This makes sense since agent 1 corresponds to phone accelerometer, which is more useful than
agent 8 (which holds phone state features like battery level) in predicting whether the user is sitting
or not. Comparing with Tables 5-6, we can see that though missing-feature attack alone seems not
very effective, by combining with adversarial targeted attack, the Robust Accuracy of many defenses
further drop significantly.

Table 7: Robust Accuracy (%) of each defense under the missing-feature attacks by different agents
on ExtraSensory dataset.

Unsecured Manifold Proj Rand Smooth Rand Smooth Block Rand Ablation Adv Train Block Adv Train Proposed

# 7 miss 84.2± 1.0 86.2± 1.0 84.4± 0.9 84.4± 0.8 82.4± 3.7 84.4± 3.8 82.6± 2.5 86.1± 0.8

#7,8 miss 83.2± 0.8 85.5± 1.5 83.4± 0.4 83.4± 0.5 80.6± 3.0 84.4± 4.0 84.0± 1.1 85.5± 0.3
#1,7 miss 78.9± 3.1 81.5± 0.7 79.8± 2.3 79.7± 2.4 82.4± 3.7 82.3± 2.0 75.0± 10.6 82.2± 2.0

Lastly, we do ablation studies by testing the Clean Accuracy of each defense method, which is the
classification accuracy when there is no attack. Table 8 shows the Clean Accuracy of each defense on
ExtraSensory dataset. All the methods perform well when there is no attack. The manifold projection
method and the proposed method have even higher Clean Accuracy than the Unsecured method. This
is likely due to the help of the learned feature subspace.2

Table 8: Clean Accuracy (%) of each defense on ExtraSensory dataset, where there is no attack.

Unsecured Manifold Proj Rand Smooth Rand Smooth Block Rand Ablation Adv Train Block Adv Train Proposed

83.5 ± 0.7 86.2 ± 0.8 83.6 ± 0.6 83.7 ± 0.5 82.2 ± 2.9 84.9 ± 3.7 80.3 ± 6.4 85.7 ± 0.4

C Implementation details

C.1 Datasets and computing resources

ExtraSensory dataset (Vaizman et al., 2017) (License CC BY-NC-SA 4.0) contains the measurements
from diverse sensors of smart phone and smart watch. We divide the sensors into 10 agents, which cor-
respond to phone accelerometer, gyroscope, magnetometer, watch accelerometer, compass, location,
audio, phone states (e.g., battery, wifi, ringing mode), environment sensing (e.g., light, air pressure,
humidity, and temperature), and time-of-day (e.g., morning). There are naturally missing-feature
problems, e.g., the user may not permit the use of microphone and/or location. The original purpose
of this dataset is to recognize the behavioral context of the user (e.g., sitting, walking, and running)
and recommend more appropriate music. We use first 1721 samples from a user for training, and the
rest 465 samples for testing, with the binary label ’sitting’ or not. We split 221 training samples as
validation set to tune the hyperparameters of each method. After obtained the hyperparameters, the
models are re-trained on all the 1721 training samples.

In NUS-WIDE dataset (Chua et al., 2009), each sample has 634 image features, 1000 text features,
and 5 different labels, i.e., ‘buildings’, ‘grass’, ‘animal’, ‘water’, ‘person’. We split the features into 4
agents, where the 1st agent holds 360-d image features, 2nd agent holds the rest of the image features,
and the remaining 2 agents each hold 500-d text features. We use 60000 samples for training, 1000

2It is well-known that subspace projection methods like PCA can help clean the small inlier noise on the
sensor measurements and lead to better performance. While robust subspace methods like Robust PCA are not
necessary, since there are no large corruptions.
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samples for testing targeted attack, and 10000 samples for testing untargeted attack. We split 10000
training samples as validation set to tune the hyperparameters of each method. After obtaining the
hyperparameters, the models are re-trained on all the 60000 training samples.

These two datasets are publicly available. Especially the license of ExtraSensory dataset implies
it is free to copy, redistribute, remix, transform, and build upon that dataset. The license of the
NUS-WIDE dataset is unknown, but we have signed the Agreement and Disclaimer Form of this
dataset for use. The datasets do not contain personally identifiable information or offensive content.
In particular, the dataset owner of ExtraSensory has removed the personally identifiable information
before releasing this dataset.

The experiment was run on a Linux machine with Intel® Xeon® Gold 6132 CPU and 8 NVidia®
1080Ti GPUs. Our code is based on Tensorflow 2.0. The training and testing source codes,
as well as the pre-processed ExtraSensory dataset can be found in this GitHub link: https:
//github.com/anonymous-github-account-Neurips2022/CoPur.git. Using one GPU, run-
ning the whole training procedure takes a couple of hours on NUS-WIDE dataset and less than an
hour on ExtraSensory dataset. Testing each sample takes a few seconds.

C.2 Implementation details of each method

Unsecured: We use the synchronized version of Algorithm 1 in Chen et al. (2020) to jointly train the
local feature extractors of each agent as well as FC’s global model. More specifically, all theM agents
connect to the FC to jointly train their local feature extractors fi parameterized by θi, i = 1, ...,M .
In t-th iteration, every agent i sends embedded features h

(j)
i ≜ fi(x

(j)
i ; θ

(t)
i ) to the FC. The FC

receives {h(j)
1 ,h

(j)
2 , ...,h

(j)
M } from all the M agents, and concatenates them into a long column

vector h(j) ≜ [h
(j)
1 ;h

(j)
2 ; ...;h

(j)
M ]. Then the FC uses h(j) and corresponding label y(j) to update

its global model fθ0 (whose input dimension equals that of h(j)) with learning rate 0.005 and batch
size 64. After that, for each i, the FC calculates ∂ℓ/∂h(j)

i and sends it back to agent i. Each agent i

then updates its local feature extractor parameterized by θi using the combined gradient ∂ℓ

∂h
(j)
i

∂h
(j)
i

∂θi

with learning rate 0.005 and batch size 64. The local feature extractors are trained 100 epochs. The
dimension of the embedded features of each local feature extractor is set to be 60 on NUS-WIDE
dataset, and set to be 32 on ExtraSensory dataset. All other methods use the same local feature
extractors as the Unsecured method.

Oracle: using the same local feature extractors and global model as the Unsecured method, but the
testing instance is uncorrupted (no attack).

Randomized Smoothing (Cohen et al., 2019), it uses the same local feature extractors and global
model as the Unsecured method. It adds randomly generated Gaussian noise to htest for the FC to
make the prediction, the final prediction is by majority voting over 1000 such random trials.

Randomized Smoothing Block: the only difference with Randomized Smoothing is that it knows
which blocks of htest are corrupted, and only adds random Gaussian noise to the corrupted blocks.

Randomized Ablation (Levine & Feizi, 2020), the FC learns to make predictions based on randomly
selected K agent/block features during the training; and in the inference phase, FC randomly selects
K agents to make a prediction. The final prediction is by majority voting over T random trials.
However, it’s hard to design a base classifier that is able to train on randomly ablated input features.
For images, the authors designed a color channel approach to encode the absence of information (i.e.,
NULL) at ablated pixels: the original 3 channels (red; green; blue) are augmented to (red; green; blue;
1-red; 1-green; 1-blue), while NULL is encoded as (0; 0; 0; 0; 0; 0). The CNN-based classifier can be
trained on such data, however, it still does not know such encoding scheme of NULL. It’s not clear
how to represent the NULL for more general data (e.g., audio) for training a CNN-based classifier.
Nevertheless, we use zero value for the ablated features to make it work, for comparison purposes.
We tuned K = 2 for NUS-WIDE dataset with 4 agents, and K = 4 for ExtraSensory dataset with 10
agents.

Adversarial Training (AT) (Madry et al., 2018): standard adversarial training via using T iterations
of PGD attacks with step-size η on htrain to generate adversarial examples, but without using
projection step to limit the magnitude of adversarial perturbations. For defending against the
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targeted attack, it knows the target label and leverages that to generate targeted adversarial examples.
For defending against untargeted attack, it uses untargeted PGD attack to generate adversarial
examples. On NUS-WIDE dataset with 4 agents, we tuned η = 0.1, T = 50 for targeted attack
and η = 0.1, T = 10 for untargeted attack. On ExtraSensory dataset with 10 agents, we tuned
η = 0.5, T = 30 for targeted attack and η = 0.1, T = 30 for untargeted attack.

Block-wise Adversarial Training (BAT): since only some block(s) of htest will be corrupted, we
further propose and test a block-wise version of AT: for each training sample’s embedded features,
we randomly select a block and generate adversarial perturbations (via corresponding targeted
or untargeted PGD attack) on that block for adversarial training. On NUS-WIDE dataset with
4 agents, we tuned η = 0.1, T = 50 for targeted attack and η = 0.1, T = 10 for untargeted
attack. On ExtraSensory dataset with 10 agents, we tuned η = 0.5, T = 30 for targeted attack and
η = 0.1, T = 30 for untargeted attack.

CoPur: we use the same local feature extractors as the Unsecured method. After that, as described in
Section D, the FC trains an AutoEncoder based on the embedded features of the training samples.
The AutoEncoder is a four-layer fully connected neural network with leaky ReLU as the activation
function, the dimension of the coding layer is 150. We train 400 epochs with a learning rate of
0.001. Then, FC trains its own global model fθ0 , which has the same architecture as the global
model of the Unsecured method, based on the output of the AutoEncoder and the training labels, i.e.,
{Dϕ(Eψ(h(j))), y(j)}nj=1 (200 epochs with learning rate 0.001). We notice that further smoothing
the global model via Randomized Smoothing makes little difference in the Robust Accuracy (usually
within 1%). The empirical results we reported did not use smoothed model. During the inference, the
FC receives the embedded features htesti , i = 1, ...,M from the agents (not the raw data xtesti ), and
concatenates them into a long column vector htest ≜ [htest1 ;htest2 ; ...;htestM ] for feature purification.
In feature purification, we aim to solve Eq. 6, i.e., finding the embedded features that approximately
lie on the learned feature subspace (or call manifold) while having the smallest objective value. We
first try to find a good initial point by simply searching the embedded features on the manifold,
i.e., minl′

∑
i∈Ω ∥[h−Dϕ(Eψ(l′))]i∥2 via gradient descend (the stopping rule is the ℓ2-norm of the

gradient less than 0.1, or reach 100 iterations). This strategy is motivated by the observation that
since the solution l∗ of Eq. 6 satisfies its constraint

∑M
i=1 ∥[Dϕ(Eψ(l∗)) − l∗]i∥2 ≤ δ, by triangle

inequality, the objective values of
∑
i∈Ω ∥[h− l∗]i∥2 satisfies

∑
i∈Ω ∥[h−Dϕ(Eψ(l∗))]i∥2 − δ ≤∑

i∈Ω ∥[h − l∗]i∥2 ≤
∑
i∈Ω ∥[h − Dϕ(Eψ(l∗))]i∥2 + δ. Then using Dϕ(Eψ(l′)) as the initial

point, we apply Lagrange Multiplier method to solve Eq. 6, i.e., l̂ = argminl
∑
i∈Ω ∥[h− l]i∥2 +

τ
∑M
i=1 ∥[Dϕ(Eψ(l))− l]i∥2 (the stopping rule is the ℓ2-norm of the gradient less than 0.1, or reach

T iterations). We notice that 10 iterations are enough, it is not necessary to run too many iterations,
as the initial point that we searched on the manifold is quite close to our desired solution (It is also
useful to notice that since Eq. 6 allows l approximately lie on the manifold, its objective value will
be slightly smaller than minl′

∑
i∈Ω ∥[h−Dϕ(Eψ(l′))]i∥2). We tuned τ to be 1000. After that, we

feed Dϕ(Eψ(l̂)) to FC’s trained global model for the prediction.

Manifold Projection: It simply projects the corrupted embedded features htest onto the learned
manifold via AutoEncoder (the same AutoEncoder as CoPur). Then, it feeds Dϕ(Eψ(h)) to FC’s
trained global model for the prediction (the same global model as CoPur).

D Training Procedure

While we do not focus on training, we will require an AutoEncoder, trained on uncorrupted data (e.g.,
during training) that can approximately capture the manifold of the uncorrupted embedded features,
i.e.,

∑M
i=1 ∥[Dϕ(Eψ(l∗))− l∗]i∥2 ≤ δ for the true embedded features l∗ of the testing instance, where

Dϕ is the decoder parameterized by ϕ, and Eψ is the encoder parameterized by ψ. Further, we assume
that the global model for inference fθ0 is based on the output of the AutoEncoder and the training
labels, i.e., {Dϕ(Eψ(h(j))), y(j)}nj=1. Here we provide an example of how to train such a model and
the AutoEncoder.

During training, there are a set of n training instances {x(j)
1 , ...,x

(j)
M , y(j)}nj=1. The FC holds the

label y(j), while agent i holds partial data x
{j}
i of the j-th instance x(j) ≜ [x

(j)
1 ; ...;x

(j)
M ]. Each

23



agent i has its own local feature extractor fi parameterized by θi that maps the original data vector
x
(j)
i to embedded feature vector h(j)

i ≜ fi(x
(j)
i ; θi).

Feature subspace learning: The FC receives {h(j)
1 ,h

(j)
2 , ...,h

(j)
M } from all the M agents, and

concatenates them into a long column vector h(j) ≜ [h
(j)
1 ;h

(j)
2 ; ...;h

(j)
M ]. Therefore, for each

instance x(j), the FC holds corresponding embedded features h(j). Let H =
[
h(1), ...,h(n)

]
, where

the j-th column of H corresponds to h(j).

Based on above H, the FC can train an AutoEncoder by minimizing the following objective:

min
ϕ,ψ

∥H −Dϕ(Eψ(H))∥F (60)

where Dϕ is the decoder parameterized by ϕ, and Eψ is the encoder parameterized by ψ.

Fusion center training: The fusion center trains its own global model fθ0 based on the output of the
AutoEncoder and the training labels, i.e., {Dϕ(Eψ(h(j))), y(j)}nj=1, with learning rate η0 and batch
size B0.

So far we assumed each agent’s local feature extractor is fixed/given. Depending on the applications,
the local feature extractors may be trainable. If they are trainable, one can adopt Algorithm 1 of Chen
et al. (2020) where FC/server uses its training label to help agents jointly train their local feature
extractors, in either synchronized or asynchronous way.

E Discussions

E.1 Why CoPur can do better?

CoPur not only empirically significantly outperforms the baselines, but also has certified robustness
guarantees. Interested readers may wonder why CoPur can do better than the baselines. The key lies
in its utilization of the block-sparse nature of adversarial perturbations on the feature vector, as well
as the underlying redundancy across the embedded features. The closely related Manifold-Projection
method utilizes the underlying redundancy across the embedded features, but does not make use
of the block-sparse nature of the adversarial perturbations. While the Randomized Smoothing and
Adversarial Training type methods do not explore the redundancy across the embedded features,
nor the block-sparse nature of adversarial perturbations. Randomized Ablation method implicitly
utilizes the block-sparse nature of the adversarial perturbations, but does not explore the underlying
redundancy across the embedded features.

E.2 Limitations of this work

The fraction (q/M ) of corrupted blocks that the proposed feature purification method can tolerate
not only depends on the index set of observed blocks Ω, but also depends on the underlying feature
subspace. This is intuitive, for example, if every agent holds exactly the same embedded features
(huge redundancy), then every block of v = r′ − r′′ (defined in Theorem 2) is the same, and q can
approach 50%×|Ω|. However, it’s not straightforward to calculate q for the general case. The required
condition

∑
i∈SΩ

∥vi∥2 >
∑
i∈S̄Ω

∥vi∥2 in Theorem 2 can be looked as the non-linear extension of
the Range Space Property (RSP) in robust linear regression (Flores, 2015; Liu et al., 2018), where the
RSP is analogy to another well-known Null Space Property (NSP) in compressive sensing literature.
NSP is a fundamental property in compressive sensing, but hard to compute. Fortunately, RSP can be
computed by some algorithm (Sharon et al., 2009), though the complexity is very high.

As discussed in Remark 2, we consider a typical case where there is no non-linear activation
function in the last layer of the AutoEncoder (other layers can have non-linear activation functions).
Let Wend be the weight matrix of the last layer of the AutoEncoder. Note that the difference
between any two vectors from the range of the decoder Dϕ(·) is contained in the Range(Wend),
i.e., v ∈ Range(Wend)\0. We extended the so called ‘leverage constant’ for RSP in robust linear
regression (Flores, 2015; Liu et al., 2018) to the block-wise ‘incomplete’ leverage constant cΩq (Wend)
in order to help further characterize our required condition. For example, a sufficient condition for
our required condition

∑
i∈SΩ

∥vi∥2−
∑
i∈S̄Ω

∥vi∥2 > 0 to hold is cΩq (Wend) > 0.5. Currently we
can only calculate some extreme cases, e.g., if every agent holds exactly the same embedded features,
and q = 0.1× |Ω|, then cΩq

(Wend) = 0.9. One of our future directions is to extend Algorithm 1 of
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Sharon et al. (2009) to calculate such block-wise ‘incomplete’ leverage constant, which is promising,
but non-trivial to extend.

E.3 Motivation for feature-flipping attack

The proposed feature recovery method (CoPur) utilizes the underlying manifold of the uncorrupted
features, which is also utilized by several Manifold-Projection based defense methods. This motivates
us to design the distributed feature-flipping attack where the corruption vector e aims at introducing
correlations with the underlying feature manifold (see detailed discussion in Section 5.1). Fortunately,
the proposed defense is still certifiably robust to this attack, owing to making use of the block-sparse
structure of the corruption vector e. Another motivation for proposing this feature-flipping attack is
to make the attack more realistic in practice, which is agnostic to the Fusion Center’s global model,
label, gradients, as well as the data and local models held by other agents. Since in a collaborative
inference setting, it is difficult for the malicious agent to know this information.

E.4 Broader Impact

This work focuses on defense, which has a positive societal impact. During our study of the weakness
of the existing Manifold Projection based defense, we proposed and tested a distributed feature-
flipping attack that can successfully attack the baseline defense methods. Our motivation is to use
it as a security checking tool for defense methods, though it is possible to be used maliciously.
Nevertheless, we further proposed our new defense method CoPur that successfully defends against
this attack, both in theory and practice, to eliminate the potential negative societal impact.
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