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Abstract

Collaborative inference leverages diverse features provided by different agents
(e.g., sensors) for more accurate inference. A common setup is where each agent
sends its embedded features instead of the raw data to the Fusion Center (FC)
for joint prediction. In this setting, we consider inference phase attacks when
a small fraction of agents is compromised. The compromised agent either does
not send embedded features to the FC or sends arbitrary embedded features. To
address this, we propose a certifiably robust COllaborative inference framework via
feature PURification (CoPur), by leveraging the block-sparse nature of adversarial
perturbations on the feature vector, as well as redundancy across the embedded
features (by assuming the overall features lie on an underlying lower dimensional
manifold). We theoretically show that the proposed feature purification method
can robustly recover the true feature vector, despite adversarial corruptions and/or
incomplete observations. We also propose and test an untargeted distributed
feature-flipping attack, which is agnostic to the model, training data, label, as
well as features held by other agents, and is shown to be effective in attacking
state-of-the-art defenses. Experiments on ExtraSensory and NUS-WIDE datasets
show that CoPur significantly outperforms existing defenses in terms of robustness
against targeted and untargeted adversarial attacks.

1 Introduction

Collaborative inference is an increasingly popular distributed prediction strategy that leverages diverse
features provided by different agents (e.g., sensors) for more accurate inference. For example, in
context-aware music recommendation, the app may wish to recommend more appropriate music based
on the user’s behavioral context (e.g., sleeping, running) (Vaizman et al., 2017). Here, it can leverage
diverse sensors from the user’s smart phone and smart watch, e.g., phone accelerometer, gyroscope,
watch accelerometer, location, audio, phone states (e.g., wifi, ringing mode), and environment sensing
(e.g., light). Thus, by combining information across sensors, much more accurate predictions can be
made. In this work, we study the scenario where Internet-of-Things (IoT) devices send embedded
features (instead of the raw data) to a Fusion Center (FC) for collaborative inference. The IoT devices
do not communicate with each other and may hold quite different raw data (e.g., image, acoustic,
Lidar data, etc). Nevertheless, as a result of distributed inference, the system is vulnerable to attack,
where a subset of sensors are corrupted by an adversary at inference time, e.g., due to the lack of
effective security mechanisms, connection errors, sensor failures, among other issues – this is also a
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common concern in defense applications (Abdelzaher et al., 2018; Xie et al., 2020). Nevertheless,
the goal of the system is robust inference based on the possibly incomplete and corrupted embedded
features received from the IoT devices.

There have been a number of works on robust parameter estimation in IoT settings, where the
robustness apparently comes from redundancy among different sensors’ linear measurements of
the same parameter. For a comprehensive overview, we refer the interested reader to (Zhang et al.,
2018). However, in our considered inference setting, each IoT device may hold quite different types
of features, and the redundancy is less apparent. We also observe that IoT applications are often
communication-limited (Ko et al., 2018), thus, using lower-dimensional embeddings to communicate
from each sensor is a common and effective approach to reduce the required communication overhead.

The problem we study here also applies to the inference phase of some Vertical Federated Learning
(VFL) frameworks (Chen et al., 2020; Liu et al., 2020), where a server similarly combines different
embedded features received from every agent to make a prediction. One difference between our
setting and VFL is: the agents in VFL are other untrusted parties, if an agent in VFL is malicious,
it will likely attack during both training and inference; while in our setting, the agents (e.g., IoT
sensors) are all owned by FC, and they can be well protected during training, and inference is more
vulnerable. So far, there are no certifiable defenses for VFL against adversarial attacks during the
inference phase. The well-known robust aggregation method (Yin et al., 2018; Guerraoui et al., 2018;
Blanchard et al., 2017; Fu et al., 2019; Pillutla et al., 2019; Fung et al., 2020; Chen et al., 2017; Xie
et al., 2021) used for Horizontal Federated Learning (HFL) is not applicable.

Other related works will be discussed in Section 4. We use the term ‘device’ and ’agent’ interchange-
ably in this paper. The main difficulty of defending against adversarial attacks in our collaborative
inference setting (as well as in VFL) is that there is no apparent redundancy across the agents. Though,
intuitively, there is some mutual information among the features held by each agent. Even worse, the
raw data held by the agents are not accessible by the FC/server to inspect, the attacker can perturb the
compromised agents’ embedded features with a very large magnitude before sending them to the
FC/server.

In this paper, we propose to improve robustness based on the underlying redundancy among the
features held by IoT devices. Specifically, we assume the combined features lie on an underlying
lower dimensional manifold. We propose a robust COllaborative inference framework via feature
PURification (CoPur), which is able to defend against many types of attacks during inference (see
the attack taxonomy in Section 2.2). During the inference, the FC receives the corrupted and/or
incomplete embedded features from agents (Figure 1a). Then CoPur purifies the embedded features
based on the learned feature subspace (Figure 1b). Finally, it feeds the purified features to FC’s
trained global model for prediction. The detailed robust inference procedures will be described in
Sections 2.3. We aim to answer the following questions: Can we make robust predictions based on
corrupted and/or incomplete features? If yes, how many compromised devices can we tolerate?

Figure 1: (a) Fusion Center receives corrupted and incomplete embedded features; (b) Feature Purification.

Technical Contributions: Our main contributions include the following:

• We propose a certifiably robust collaborative inference procedure to defend against a variety of
targeted or untargeted attacks (e.g., distributed adversarial attacks, missing-feature attack, and their
combinations) during collaborative inference.

• We propose a novel non-linear robust decomposition method that decomposes the potentially
corrupted and incomplete feature vector into two parts: one lies (exactly or approximately) on
the underlying feature manifold; the other with a block-sparse structure. Theoretically, we prove
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that the proposed method can recover the true feature vector exactly (or approximately) despite
corruptions and incomplete observations. This may be of independent interest.

• We propose and test a distributed feature-flipping attack, which is agnostic to the model, training
data, label, as well as features held by other agents. Empirical studies show that this new attack
effectively attacks existing state-of-the-art defenses.

• We conduct extensive experiments on ExtraSensory and NUS-WIDE datasets, and show that CoPur
is significantly more robust than baselines against different types of attacks.

2 Robust collaborative inference via feature purification (CoPur)
We describe the system setting, the threat models, and the proposed robust inference procedures.

2.1 Collaborative inference and system setting
We first describe the basic framework of collaborative inference, which is also similar to the inference
phase of some VFL frameworks (Chen et al., 2020; Liu et al., 2020). There are M agents, where each
agent i holds partial raw data xtesti of the overall testing sample xtest = [xtest1 ; ...;xtestM ]. Also, each
agent i has its own local feature extractor fi parameterized by θi that maps its raw data vector xtesti

to the embedded feature vector htesti ≜ fi(x
test
i ; θi). The dimension of htesti is usually smaller than

xtesti . The FC only receives the embedded features htesti , i = 1, ...,M from the agents (not the raw
data xtesti ), and concatenates them into a long column vector htest ≜ [htest1 ;htest2 ; ...;htestM ]. Then
the FC uses its pre-trained global model fθ0 to make the prediction.

While we do not focus on training, we will require an AutoEncoder, trained on uncorrupted data (e.g.,
during training) that can approximately capture the manifold of the uncorrupted embedded features,
i.e.,

∑M
i=1 ∥[Dϕ(Eψ(l∗)) − l∗]i∥2 ≤ δ for the true embedded features l∗ of the testing instance,

where Dϕ is the decoder parameterized by ϕ, and Eψ is the encoder parameterized by ψ. Further, we
assume that the global model for inference fθ0 is based on the output of the AutoEncoder and the
training labels, i.e., {Dϕ(Eψ(h(j))), y(j)}nj=1. Detailed examples of how to train such a model and
the AutoEncoder can be found in Section D of the supplemental material.

2.2 Threat model
There are M agents which hold different parts of the feature of the same set of n training instances.
We assume the training process is well-protected (attack-free). However, during the inference, the
attacker can attack αM agents. The compromised agent either is not able to send features to the FC,
or sends arbitrary embedded features to FC.

We use hbenign to denote the overall embedded features provided by the (1− α)M benign agents
(these agents are indexed by Ωbenign and |Ωbenign| = (1 − α)M ), and we use hadv to denote
the overall embedded features sent by compromised agents (indexed by Ωadv). The set Ω =
Ωbenign ∪ Ωadv is the index set of agents that provide features, and its complement, i.e., Ωc, denotes
the compromised agents which do not provide features. We categorize the inference phase attacks
into the following three types:
Threat model A (distributed adversarial attack): All the compromised agents jointly send adver-
sarial embedded features hadv , with the goal to mislead the prediction to the target label yA:

min
hadv

ℓ(fθ0({hadv,hbenign}), yA), (1)

Threat model B (missing-feature attack): All the compromised agents do not send any feature to
the FC. A such missing-feature attack may be due to damaged sensors or disconnection, and can still
affect FC’s prediction. The presence of a missing-feature attack can be viewed as the FC observing
only partial blocks (indexed by Ω) of the overall embedded features h, i.e., hΩ. Ωc denotes the index
set of agents that perform missing-feature attacks. The attacker can compromise up to αM agents to
perform such an attack:

min
Ωc

ℓ(fθ0(hΩ), y
A), s.t. |Ωc| ≤ αM (2)

Threat model C (combined attack): The attacker can also perform a combined adversarial and
missing feature attack by providing hadv , indexed by Ωadv , and missing features Ωc:

min
Ωc, hadv

ℓ(fθ0({hadv,hbenign}), yA), s.t. |Ωc|+ |Ωadv| ≤ αM (3)

Beyond these targeted attacks, the attacker can also perform untargeted attacks by maximizing the
distance between the prediction and the ground truth label.
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2.3 Inference procedures of CoPur
We propose an all-in-one solution to defend against various inference phase attacks defined in
Section 2.2. Let Ω be the index set of the observed blocks. The observed hΩ can be decomposed
as hΩ = lΩ + eΩ where l is the underlying uncorrupted features, and eΩ models the corruptions
on the observed set Ω. Finding such a decomposition seems hard, even if the learned AutoEncoder
can capture the underlying feature subspace, i.e., l = Dϕ(Eψ(l)). Fortunately, as we mentioned in
Section 4, eΩ has a block-sparse structure. We propose to solve the following:

min
l

∑
i∈Ω

1{[h− l]i ̸= 0} s.t. Dϕ(Eψ(l)) = l, (4)

where the indicator function 1{·} counts whether the block [h− l]i is nonzero. This block-sparsity
minimization shares the same spirit as the ℓ0 minimization in robust linear regression (Candes & Tao,
2005; Mitra et al., 2013). However, it is NP-hard to solve, so we relax it to the ℓ2,1-norm:

min
l

∑
i∈Ω

∥[h− l]i∥2 s.t. Dϕ(Eψ(l)) = l (5)

Our theoretical analysis in Theorems 1 & 2 shows that under certain conditions, solving the above
relaxed objective is able to recover the underlying true features exactly.

But what if the learned AutoEncoder can only approximately reconstruct the underlying features, say∑M
i=1 ∥[Dϕ(Eψ(l))− l]i∥2 ≤ δ ? In this case, we further relax the constraints in Eq. 5 and solve:

min
l

∑
i∈Ω

∥[h− l]i∥2 s.t.

M∑
i=1

∥[Dϕ(Eψ(l))− l]i∥2 ≤ δ (6)

Our theoretical analysis in Theorems 3 & 4 show that under certain conditions, solving Eq. 6 is able
to approximately recover the underlying true features, despite the corruptions and/or incomplete
observations. In our implementation, we first try to find a good initial point by simply searching the
embedded features on the manifold, i.e., minl′

∑
i∈Ω ∥[h−Dϕ(Eψ(l′))]i∥2 via gradient descend (It

is useful to notice that since Eq. 6 allows l approximately lie on the manifold, its objective value will
be slightly smaller than minl′

∑
i∈Ω ∥[h−Dϕ(Eψ(l′))]i∥2). Then we apply Lagrange Multiplier

method to solve Eq. 6, i.e., l̂ = argminl
∑
i∈Ω ∥[h− l]i∥2 + τ

∑M
i=1 ∥[Dϕ(Eψ(l)) − l]i∥2. More

implementation details can be found in the supplemental.

After obtaining l̂, we feed Dϕ(Eψ(l̂)) to FC’s trained global model for the prediction.

3 Theoretical analysis of CoPur

We first analyze the ‘noiseless case’ where the learned AutoEncoder satisfies Dϕ(Eψ(l∗)) = l∗ for
the underlying uncorrupted feature vector l∗. Next, we analyze the more challenging ‘noisy case’
where the AutoEncoder can only approximately reconstruct l∗, i.e.,

∑M
i=1 ∥[Dϕ(Eψ(l∗))−l∗]i∥2 ≤ δ.

Proofs and additional discussions can be found in Section A of the supplemental material.

3.1 Noiseless Case
To simplify the exposition, we first consider threat model B, i.e., the missing-feature attack.
Theorem 1. (Exact feature recovery under threat model B) Assume the trained AutoEncoder
satisfies Dϕ(Eψ(l∗)) = l∗ for the underlying uncorrupted feature vector l∗. For ∀r′, r′′ in the range
of the decoder Dϕ(·) where r′ ̸= r′′, if (r′ − r′′)Ω ̸= 0, then given hΩ = l∗Ω, l∗ is the unique
solution of Eq. 5 and Eq. 4.

The proof can be found in Section A.3 of the supplemental material, where we show that any feasible
point that is different from l∗ would have a larger objective value.

The condition (r′ − r′′)Ω ̸= 0 required by Theorem 1 is intuitive and necessary. Suppose there are
r′ ̸= r′′ but r′Ω = r′′Ω, then observing r′Ω is not able to tell whether it’s from r′ or r′′. In general,
when the observed set Ω gets larger, the required condition has a better chance of being satisfied.
If we have complete observations, i.e., Ω = {1, 2, ...,M}, the required condition (r′ − r′′)Ω ̸= 0
automatically holds.
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Now we consider the more challenging case where we not only have missing features but also have
corruptions on the observed features.
Theorem 2. (Exact feature recovery under threat model C) Assume the trained AutoEncoder
satisfies Dϕ(Eψ(l∗)) = l∗ for the underlying uncorrupted feature vector l∗. For ∀r′, r′′ in the range
of the decoder Dϕ(·) where r′ ̸= r′′, define v = r′ − r′′, if for any partition {SΩ, S̄Ω} of Ω with
|S̄Ω| = q < |Ω|/2, it holds that

∑
i∈SΩ

∥vi∥2 >
∑
i∈S̄Ω

∥vi∥2, then for any hΩ = l∗Ω + e∗Ω with∑
i∈Ω 1{e∗i ̸= 0} ≤ q, l∗ is the unique solution of Eq. 5 and Eq. 4.

The proof can be found in Section A.4 of the supplemental material. We first show that any feasible
point of Eq. 5 that is different from l∗ would have a larger objective value. Then we use contradiction
to show that there does not exist any global optimal solution of Eq. 4 that is different from l∗.
Remark 1. Theorem 2 not only requires vΩ ̸= 0 like Theorem 1, but also requires

∑
i∈SΩ

∥vi∥2 >∑
i∈S̄Ω

∥vi∥2. This is due to the presence of corruptions in the observed blocks (indexed by S̄Ω).
When there is no corruption, i.e., q = 0, the corresponding set S̄Ω is empty and the required condition
reduces to

∑
i∈Ω ∥vi∥2 > 0, i.e., vΩ ̸= 0. Second, Theorem 2 is a universal certification, where

any subset S̄Ω of the observations can be malicious, as long as |S̄Ω| = q. In practice, once the
attacker chooses q agents to perform adversarial attacks, the set S̄Ω gets fixed and corresponds to
e∗i ̸= 0. Then, we only require

∑
i∈SΩ

∥vi∥2 >
∑
i∈S̄Ω

∥vi∥2 to hold for this particular fixed set S̄Ω,
to guarantee l∗ is the unique solution of Eq. 5. This can be easily seen from the proof of Theorem 2.
Third, the condition

∑
i∈SΩ

∥vi∥2 >
∑
i∈S̄Ω

∥vi∥2 prefers vΩ to be not ‘spiky’. Suppose r′ and r′′

are the same on all the observed blocks (indexed by Ω) except one, which means only one block
of vΩ is non-zero (i.e., vΩ is spiky). If that non-zero block is in the set S̄Ω, the required condition
will not be met. Intuitively, if there are two instances differing in only one block of the observed
features, and the attacker corrupts that block, the FC can not recover the original feature. In general,
we prefer vΩ to be not ‘spiky’, thus the condition can hold when the number of corrupted blocks |S̄Ω|
is sufficiently small. Such condition can be considered as the non-linear and missing-block extensions
of the Range Space Property in robust linear regression literature (Flores, 2015; Liu et al., 2018),
which we will discuss next. Finally, the fraction (q/M ) of corrupted blocks that CoPur can tolerate
not only depends on Ω, but also depends on the underlying feature subspace. It can tolerate up to
50%×|Ω| corrupted blocks if there is enough redundancy among the agents, e.g., if every agent holds
exactly the same embedded features, then every block of v = r′ − r′′ is the same, and q approaches
50%×|Ω|.
Remark 2. To draw the connections to the Range Space Property in robust linear regression, let’s
consider a typical case where there is no non-linear activation function in the last layer of the
AutoEncoder (other layers can have non-linear activation functions). Let Wend be the weight matrix
of the last layer of the AutoEncoder. Note that the difference between any two vectors from the range
of the decoder Dϕ(·) is contained in theRange(Wend), i.e., v ∈ Range(Wend)\0. Similar to the so
called ‘leverage constant’ in robust linear regression (Flores, 2015; Liu et al., 2018), we can define the

block-wise ‘incomplete’ leverage constant cΩq (Wend) := min|S̄Ω|=qminz ̸=0

∑
i∈SΩ

∥[Wendz]i∥2∑
i∈Ω ∥[Wendz]i∥2

,
which is between 0 and 1, and is monotonic increasing when the number of corrupted blocks q
decreases. A sufficient condition for

∑
i∈SΩ

∥vi∥2 −
∑
i∈S̄Ω

∥vi∥2 > 0 to hold is cΩq (Wend) > 0.5.
Lastly, it is very useful to note that Sharon et al. (2009) designed an algorithm to calculate the
leverage constant, which is possible to be extended to our block-wise incomplete leverage constant
here. Consider the toy example again where every agent holds exactly the same embedded features,
and q = 0.1× |Ω|, then cΩq

(Wend) = 0.9.
Remark 3. It is interesting to note that in the recent Generative model based compressive sensing
work (Bora et al., 2017), they also impose conditions on the difference between any two vectors in the
range of the decoder, though without missing blocks. But the conditions therein are quite different
from ours due to the different purposes.

3.2 Noisy case
Now we analyze the ‘noisy case’ where the learned AutoEncoder can only approximately reconstruct
the underlying uncorrupted feature vector l∗, i.e.,

∑M
i=1 ∥[Dϕ(Eψ(l∗))− l∗]i∥2 ≤ δ. Again, to help

the reader understand step-by-step, our analyses start from the threat model B.
Theorem 3. (Stable feature recovery under threat model B) Assume the trained AutoEncoder
satisfies

∑M
i=1 ∥[Dϕ(Eψ(l∗)) − l∗]i∥2 ≤ δ for the underlying uncorrupted feature vector l∗. Let l̂
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be the solution of Eq. 6. Given the incomplete observations hΩ = l∗Ω, where Ω is the index set of
observed agent blocks. For ∀r′, r′′ in the range of the decoder Dϕ(·), define v = r′ − r′′, if it holds
that

∑
i∈Ω ∥vi∥2 > 2δ for ∀∥v∥2 > ∆, then ∥Dϕ(Eψ(l̂))−Dϕ(Eψ(l∗))∥2 ≤ ∆.

The proof can be found in Section A.5 of the supplemental material.

Remark 4. First, note that
∑M
i=1 ∥vi∥2 ≥

√∑M
i=1 ∥vi∥22 = ∥v∥2. When ∥v∥2 > ∆, we have∑M

i=1 ∥vi∥2 > ∆. Again, we prefer v to be not ‘spiky’, thus the condition
∑
i∈Ω ∥vi∥2 > 2δ can be

satisfied as long as |Ω| is large enough (assume ∆ > 2δ).

Now we consider the most challenging case where we not only have missing features but also have
corruptions in the observed features.
Theorem 4. (Stable feature recovery under threat model C) Assume the trained AutoEncoder
satisfies

∑M
i=1 ∥[Dϕ(Eψ(l∗))− l∗]i∥2 ≤ δ for the underlying uncorrupted feature vector l∗. Let l̂ be

the solution of Eq. 6. Given the incomplete observations hΩ = l∗Ω + e∗Ω, where Ω is the index set of
observed agent blocks. For ∀r′, r′′ in the range of the decoder Dϕ(·) where r′ ̸= r′′, define v = r′−
r′′, if for any partition {SΩ, S̄Ω} of Ω with |S̄Ω| = q, it holds that

∑
i∈SΩ

∥vi∥2−
∑
i∈S̄Ω

∥vi∥2 > 2δ

for ∀∥v∥2 > ∆, then ∥Dϕ(Eψ(l̂))−Dϕ(Eψ(l∗))∥2 ≤ ∆ as long as
∑
i∈Ω 1{e∗i ̸= 0} ≤ q.

The proof can be found in Section A.6 of the supplemental material.

Robust prediction. Recall that the server has learned a classifier fθ0 during the training. We can
further smooth this classifier fθ0 to get fs (e.g., via Randomized Smoothing (Cohen et al., 2019;
Lecuyer et al., 2019; Li et al., 2018)) such that fs(Dϕ(Eψ(l̂))) = fs(Dϕ(Eψ(l̂)) + v) for ∀∥v∥2 ≤
∆. As we have ∥Dϕ(Eψ(l̂)) − Dϕ(Eψ(l∗))∥2 ≤ ∆, then it is guaranteed that fs(Dϕ(Eψ(l̂))) =
fs(Dϕ(Eψ(l∗))).
Remark 5. The condition

∑
i∈SΩ

∥vi∥2 −
∑
i∈S̄Ω

∥vi∥2 > 2δ required by Theorem 4 is stronger
than the condition

∑
i∈Ω ∥vi∥2 > 2δ required by Theorem 3. This is due to the presence of corruption

in the observed blocks. As discussed in Remark 4, when ∥v∥2 > ∆, we have
∑M
i=1 ∥vi∥2 > ∆.

Again, we prefer v to be not ‘spiky’, thus
∑
i∈Ω ∥vi∥2 can have a significant portion of mass

from
∑M
i=1 ∥vi∥2 when the number of observed blocks |Ω| is large. Further, when the number

of corrupted blocks q = |S̄Ω| is small enough, we can have
∑
i∈SΩ

∥vi∥2 −
∑
i∈S̄Ω

∥vi∥2 > 2δ.
To draw the connections to the Range Space Property in robust linear regression, we continue
on the discussions in Remark 2. Let’s say

∑
i∈Ω ∥vi∥2 = ∆′, then a sufficient condition for∑

i∈SΩ
∥vi∥2−

∑
i∈S̄Ω

∥vi∥2 > 2δ to hold is [cΩq
(Wend)−(1−cΩq

(Wend))] > 2δ/∆′. Intuitively,
the smaller number q of corrupted blocks and smaller δ (i.e., better recovered feature subspace) as
well as larger observed set Ω (then ∆′ approaches ∆), can lead to smaller recovery error bound ∆.

4 Related work and discussion
Handling missing data and outliers in IoT. Sanyal & Zhang (2018) model the underlying uncor-
rupted IoT data as a low-dimensional linear subspace, i.e., low-rank, and try to clean the corrupted
sensor data by projecting them onto the estimated linear subspace. There is no guarantee of recovering
the underlying uncorrupted sensor data. This approach is a linear version of the manifold projection
method that we will discuss in detail.

Kekatos & Giannakis (2011) studied the robust sensing problem where each sensor i has a linear
measurement of the unknown parameter x, i.e., bi = Aix, where both bi and Ai are known and
some sensors are additionally corrupted by large measurement errors, but without any missing values.
They showed that it is possible to recover the true parameter x despite outlier corruptions. They also
consider the scenario with dense inlier noise in the measurements, i.e., where the measurements bi
only approximately lie on the range space of matrix Ai, but their corresponding method does not
have any recovery guarantee in such a noisy case.

There are also some works that study the scenario where the sensors observe different noisy versions
of the same data vector, and they show it is possible to find a set of unattacked sensors based on
the assumption that the fraction of attacked sensors is small, e.g., (Zhang et al., 2018) or utilizing
additional knowledge that some sensors are not attacked (Wilson & Veeravalli, 2016). We refer
interested readers to the survey paper (Zhang et al., 2018) for additional details on this line of work.
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Certified robustness for defending against adversarial attacks. In the adversarial machine learning
literature, many defense methods have been proposed to deal with adversarial perturbations. We
refer the reader to Chakraborty et al. (2018) for a comprehensive survey. However, most of the
existing defenses can only deal with small adversarial perturbations. Even worse, as new defenses
are proposed, corresponding new attacks are also developed to adaptively attack them. Experimental
demonstrations of a defense’s efficacy based on currently existing attacks do not provide general
proof of security. Therefore, certifiably robust defenses are of great interest. Randomized Smoothing
(RS) is a promising technique (Cohen et al., 2019; Lecuyer et al., 2019; Li et al., 2018) which
smoothes a base classifier to get a robust classifier, such that the prediction of this robust classifier
on adversarially perturbed input is the same as its prediction on the original input when the ℓp-norm
of the adversarial perturbation is sufficiently bounded. Unfortunately, in our setting, the adversarial
perturbation on compromised devices’ embedded features can be very large. Further, RS does not
have robustness guarantees when there are missing features.

Another promising defense is Randomized Ablation (Levine & Feizi, 2020), which was proposed to
defend against sparse adversarial attacks where a small number of pixels in an image are changed to
some arbitrary values in [0,1]. We extend this to the collaborative inference setting for comparison:
the FC learns to make predictions based on randomly selected subsets of agent features during the
training; and in the inference phase, FC randomly selects a subset of agents to make a prediction.
The final prediction is by majority voting over the random trials. However, it is hard to design a base
classifier that is able to train on randomly ablated input features1. Another limitation of this method is
that its robust prediction (based on randomly ablated features) may not be the same as the attack-free
vanilla setting (i.e., the prediction of the vanilla classifier on the uncorrupted data). Further, to choose
how many pixels to ablate, one needs knowledge of the number of corrupted pixels.

Manifold Projection vs. Feature Purification. In the centralized setting, several works (Meng &
Chen, 2017; Ilyas et al., 2017; Lindqvist et al., 2018) proposed to project the adversarial perturbed
image onto the manifold of the normal data to defend against adversarial attacks. A natural question
is: why do we propose a feature purification method, instead of using manifold projection? First,
the manifold projection approach can not guarantee the recovery of the underlying features. In
fact, the resulting projected features can be arbitrarily far from the underlying true features if the
adversarial perturbation can be arbitrarily large. To make this concrete, consider the linear manifold,
i.e., subspace. Suppose the underlying true feature vector l is generated from the column space
of a d by r tall matrix U . We observe the corrupted feature vector h, which can be decomposed
as l + e, where e models the adversarial perturbations. Projecting h onto the column space of U
will get PUh = PU l + PUe = l + PUe, where PU = U(UTU)−1UT . So the recovery error
is PUh − l = PUe. Apparently, if the adversarial perturbation vector e is not orthogonal to this
subspace (which is often the case), the recovery error would be proportional to the magnitude of the
perturbation! It’s hard to recover the underlying true feature even if we have a perfect subspace, and
the problem looks even more challenging when the underlying manifold is non-linear. Fortunately,
in our collaborative inference setting, there is important prior information about the pattern of
the corruptions that we can leverage: the perturbation e has a block-wise structure (each block
corresponds to an agent), and the fraction of the perturbed blocks is small. Therefore, e has a
block-sparse structure. By exploring this fact, our proposed feature purification method can provably
recover the underlying feature vector exactly or with bounded error, even if the underlying manifold
is highly non-linear and the magnitude of the perturbation is arbitrarily large.

Purifier Network vs. Feature Purification. Besides the Manifold-Projection based approaches,
one recent work (Naseer et al., 2020) tries to train a purifier neural network that maps any corrupted
feature h to the underlying true feature l, in the centralized setting. However, that method needs
to generate the adversarial training examples based on the assumption that the magnitude of the
adversarial perturbation e is bounded by small ϵ (see Naseer et al. (2020, Eq.4)), which is different
from our collaborative inference setting where the adversarial perturbation is unbounded. Further, in
our collaborative inference setting, arbitrary α fraction of the blocks of feature l can be perturbed
by arbitrarily large values. Based on the high (combinatorial) cardinality of the input space, it is
highly doubtful that one can learn a magic purifier network that is able to map a combinatorial
number of different block-perturbation patterns (and with arbitrary unbounded perturbation values)

1For images, the authors designed a color channel approach to encode the absence of information (i.e.,
NULL) at ablated pixels. Though a CNN-based classifier can be trained on such data, it still does not know such
an encoding scheme of NULL.
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to the underlying true feature l. In sharp contrast, the proposed method can guarantee to recover the
underlying true feature l exactly.

5 Empirical evaluation
We first describe the experimental setup and introduce a new attack in Section 5.1, then present
experimental results in Section 5.2. More results can be found in Section B of the supplemental
material.

5.1 Experimental setup
Datasets. We study the classification task on ExtraSensory (Vaizman et al., 2017) and NUS-
WIDE (Chua et al., 2009) datasets. ExtraSensory contains the measurements from diverse sensors of
smart phone and smart watch. We divide the sensors into ten agents, which correspond to the phone
accelerometer, gyroscope, magnetometer, watch accelerometer, compass, location, audio, phone
states (e.g., battery, wifi, ringing mode), environment sensing (e.g., light, air pressure, humidity, and
temperature), and time-of-day (e.g., morning). There are naturally missing-feature problems, e.g., the
user may not permit the use of microphone and/or location. The original purpose of this dataset is
to recognize the behavioral context of the user (e.g., sitting, walking, and running) and recommend
more appropriate music. We use the first 1721 samples from a user for training, and the rest 465
samples for testing, with the binary label ‘sitting’ or not.

In NUS-WIDE, each sample has 634 image features, 1000 text features, and 5 different labels, i.e.,
‘buildings’, ‘grass’, ‘animal’, ‘water’, ‘person’. We split the features into four agents, where the 1st
agent holds 360-d image features, 2nd agent holds the rest of the image features, and the remaining
two agents each hold 500-d text features. We use 60000 samples for training, 1000 samples for
testing targeted attacks, and 10000 samples for testing untargeted attacks.

Attack Setup. We perform the inference adversarial attacks, as well as their combination with the
missing-feature attack (missing-feature attack alone is not very effective). For the adversarial attack,
we test both targeted and untargeted attacks.

For the targeted attack, we adopt the commonly used Projected Gradient Descent (PGD) attack
to generate adversarial perturbations on the embedded features held by malicious agents. However,
since in this collaborative inference setting, the magnitude of the perturbation on the embedded
features is allowed to be very large, we omit the projection step in PGD (or one can think of it as
projecting onto a very large norm ball as the maximum perturbation constraint). In the ExtraSensory
dataset, the target label is simply the opposite of the true label, since it is a binary classification. We
set the PGD attack with a learning rate of 0.5 and 30 iterations so that it can successfully attack
the unsecured model. While in the NUS-WIDE dataset, the target label is set to be ‘grass’. We
set the PGD attack with a learning rate of 0.1 and 50 iterations. Note that PGD attack is a white-
box attack, where the attacker tries to find argminhadv

ℓ(fθ0({hadv,hbenign}), yA) via using the
gradient dℓ(fθ0({hadv,hbenign}), yA)/dhadv, where hadv denotes the overall embedded features
held by malicious agents and yA is the target label. In practice, the attacker may not easily obtain
such gradient information, which usually needs to know the trained global model fθ0 and hbenign.
Nevertheless, this attack serves as a smart targeted perturbation on the embedded features to test the
robustness of the defense methods.

Motivated by the discussions in Section 4, we propose and test an untargeted attack, which is
agnostic to the model, training data, label, as well as features held by other agents. We call it
distributed feature-flipping attack. In this attack, the malicious agent(s) simply flips the sign of its
embedded feature vector li and further amplifies its magnitude. Formally, during this inference phase
untargeted attack, the malicious agent i provides the embedded features hi = −Amplification × li
to the FC, instead of providing the true embedded features li. This attack can be easily understood
in binary classification with a linear classifier since flipping the sign of the whole feature vector
will likely flip the sign of the predicted label as well. To illustrate the effectiveness of this attack
against the manifold-projection based defenses, we can look it as adding the corruption vector
ei = −(1 + Amplification) × li to the true embedded feature vector li of i-th agent, which is
malicious. So the overall perturbation vector e has many zero blocks corresponding to benign
agents. Its non-zero blocks have values ei = −(1 + Amplification) × li, ∀i corresponds to the
malicious agents. So the inner product between perturbation vector e and true embedded features
l is −(1 + Amplification)

∑
i∈Ωadv

∥li∥22. Such perturbation vector e introduces correlations with
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the underlying manifold of the uncorrupted embedded features. Therefore, projecting the corrupted
embedded features h onto the manifold is hard to get rid of such corruptions. We will see such
feature-flipping attack is very effective in attacking many existing defenses.

Baseline methods. We compare with 1) Unsecured: no defense. 2) Manifold Projection: project the
corrupted embedded features htest onto the learned manifold via Autoencoder, i.e., Dϕ(Eψ(htest)).
3) Randomized Smoothing (Cohen et al., 2019), where randomly generated Gaussian noise is added
to htest for the FC to make the prediction, the final prediction is by majority voting over 1000 such
random trials. 4) Randomized Smoothing Block: since only some block(s) of the embedded features
are corrupted, we further compare with an oracle version of Randomized Smoothing, which only adds
random Gaussian noise to the corrupted blocks of htest. 5) Randomized Ablation (Levine & Feizi,
2020) 6) Adversarial Training (AT) (Madry et al., 2018): standard adversarial training via using
PGD attacks on htrain to generate adversarial examples, but without using projection step to limit the
magnitude of adversarial perturbations. For defending against the targeted attack, it knows the target
label and leverages that to generate targeted adversarial examples. For defending against untargeted
attack, it uses untargeted PGD attack to generate adversarial examples. 7) Block-wise Adversarial
Training (BAT): since only some block(s) of htest will be corrupted, we further propose and test a
block-wise version of AT: for each training sample’s embedded features, we randomly select a block
and generate adversarial perturbations (via corresponding targeted or untargeted PGD attack) on that
block for adversarial training. 8) Oracle: where there is no attack. The implementation details of the
baselines and the proposed CoPur can be found in Section C of the supplemental material.

5.2 Empirical results

We report the Robust Accuracy of each defense method, i.e., classification accuracy on the adversarial
corrupted embedded features, against the distributed adversarial attack and its combination with the
missing-feature attack. More experiments can be found in Section B of the supplemental material.

A) Adversarial attack. We first test the robustness of the defense methods under the targeted attack.
Table 1 shows the Robust Accuracy of each method against targeted PGD attacks on NUS-WIDE and
ExtraSensory datasets, where the last agent is malicious. The Manifold Projection method (which
has no recovery guarantee) shows some resistance on the NUS-WIDE dataset but is not robust on the
ExtraSensory dataset. The proposed method achieves the best Robust Accuracy on both datasets.

In Figure 2a, we report the Robust Accuracy of the defense methods under the untargeted feature-
flipping attack on the ExtraSensory dataset, with Amplification ranging from [1, 3, 5, 10, 20], and
the last three agents perform such attack. The Robust Accuracy of the compared methods drops
significantly when the Amplification gets larger. The proposed method significantly outperforms the
baselines by a large margin.

Table 1: Robust Accuracy (%) of each defense against targeted PGD attacks on NUS-WIDE and
ExtraSensory datasets, where the last agent is malicious.

Unsecured Manifold Proj Rand Smooth Rand Smooth Block Rand Ablation Adv Train Block Adv Train Proposed

NUS-WIDE 4.5±0.3 81.3±1.2 41.8±6.3 48.7±10.1 65.3±5.3 8.0±1.9 7.3±1.2 83.7± 0.9
ExtraSensory 40.4± 16.9 53.6 ± 35.7 42.4 ± 17.9 42.0 ± 17.8 59.6± 27.5 19.8 ± 34.1 0.0± 0.0 79.0± 5.0

We are also interested in knowing the robustness limit of each defense when there are more and
more agents performing adversarial attacks. Figure 3 shows the Robust Accuracy of each defense
method w.r.t. the index set of agents that perform untargeted adversarial attack (Amplification=10)
on ExtraSensory dataset. The Robustness Accuracy of the Adversarial Training method (green solid
line) significantly drops when there are more than two malicious agents. The proposed method
keeps very high Robust Accuracy even when agents 8-10 perform attack together. When agents 7-10
perform attack together, the Robust Accuracy of the proposed method apparently drops, but it is still
significantly better than other baseline methods.

B) Combined attack. We now test the combined attack on ExtraSensory dataset, where agent 7
which holds audio MFCC features, performs missing-feature attack, and agent 10 performs untargeted
(Figure 2b) or targeted (Table 2) adversarial attack. The proposed method significantly outperforms
the baseline methods and maintains very high Robust Accuracy under both attacks.
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Figure 2: Robust Accuracy of each defense method under the untargeted adversarial attack and
combined attacks on ExtraSensory dataset with 10 agents: (a) Agents 8,9,10 provide corrupted
embedded features h8,9,10 = −Amplification × l8,9,10. (b) Agent 7 performs missing-feature attack,
while agent 10 provides corrupted embedded features h10 = −Amplification × l10.

Figure 3: Robust Accuracy (%) of each defense method w.r.t. the index set of agents that perform
untargeted adversarial attack (Amplification=10) on ExtraSensory dataset.

Table 2: Robust Accuracy (%) of each defense against combined targeted attacks (agent 7 performs
missing-feature attack and agent 10 performs adversarial targeted attack) on ExtraSensory dataset.

Unsecured Manifold Proj Rand Smooth Rand Smooth Block Rand Ablation Adv Train Block Adv Train Proposed

38.3± 15.7 52.6± 38.9 50.5± 1.3 51.0± 2.5 60.3± 28.1 24.6± 26.8 0.1± 0.1 79.1± 4.5

6 Conclusions
In this work, we proposed a novel feature purification based robust collaborative inference framework
to defend against a variety of attacks during inference, with theoretical guarantees. The proposed
non-linear robust decomposition method and its theoretical analyses may have much wider impacts.
We further validate the robustness of the proposed framework through extensive experiments on
ExtraSensory and NUS-WIDE datasets. Our future work includes extending Algorithm 1 of Sharon
et al. (2009) to calculate the block-wise incomplete leverage constant introduced in Remark 2.
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imental results (either in the supplemental material or as a URL)? [Yes] Please see
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