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8 Appendix

8.1 Methods

8.1.1 IRL Simplification

We first consider the state-only imitation learning objective given in Torabi et al. [39, Equation 7]:

IRL (⇡E) = argmax
c
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We note that the expected cost of a policy can be written as:

E⇡
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We assume that the environment state s is composed of n dimensions, i.e. s = [d1, d2, ..., dn]. We further
assume that the cost function of the expert agent cE is sparse in the environment dimensions. To simplify
notation, we assume that cE is only a function of the first m dimensions, i.e.

c(d1, d
0
1, .., dn, d0n) = c(d1, d

0
1.., dm, d0m),

where we overload c to take inputs of both dimensionalities. Note that the same reasoning applies to different
sparsity patterns without loss of generality. We denote the expert encoder as f : SE ! ZE , mapping the expert
state sE of dimension n to the expert state embedding zE of dimension m. We define f as the operation that
truncates the first m dimensions, i.e. it includes all dimensions for which cE is non-zero. Hence z = [d1, .., dm].
We can now redefine cE as a function of z. We can then express the expected cost as:
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This allows to rewrite the adversarial imitation learning problem as:

IRL(⇡E) = argmax
c
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By exchanging the expert cost function cE for the expert reward function rE and flipping the optimization
objectives we arrive at equation 4 (which further omits the cost regularizer  for reasons of simplicity).

8.1.2 Time Invariance Constraint

We consider a 2-dimensional example problem to demonstrate the trivial solutions that can arise when a time-
invariance constraint is not imposed on the learner encoder g. The expert’s embedded state transitions (ztE , z

t+1
E )

consist of two numbers drawn from a uniform distribution, obeying zt+1
E < ztE (e.g. by rejection sampling).

SE =
�
(ztE , z

t+1
E ) : zt+1

E < ztE , (z
t
E , z

t+1
E ) 2 [0, 1]2

 
(9)

The learner’s state transitions (stL, s
t+1
L ) also consist of two numbers drawn from a random distribution, but in

contrast st+1
L > stL, i.e. their ordering is reversed.

SL =
�
(ztL, z

t+1
L ) : zt+1

L > ztL, (z
t
L, z

t+1
L ) 2 [0, 1]2

 
(10)

These represent two minimal, but different, distributions to be mapped. We now consider two alternative mapping
function domains, one which enforces time-invariance and one which does not. Both are affine functions. The
most general, without time-invariance, is

gaffine(stL, s
t+1
L ) = (a · stL + b, c · st+1

L + d),

parameterized by a, b, c and d. A time-invariant specialization of it would be:

ginvariant(stL, s
t+1
L ) = (g0(stL), g

0(st+1
L )), g0(s) = a · s+ b,

which essentially applies the same function g0 at both time steps t and t+ 1.
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Figure 7: Estimated cumulative mutual information between state transitions (z, z0) and labels
(random, expert) for increasing size of the expert embedding z. The dashed grey line indicates the
elbow.

We now analyze the possible solutions that can map SE and SL under both models. With gaffine, we can simply
set a = c = 0 (i.e. ignore the input entirely) and b > d, to obey the constraint in the learner (eq. 10). This is
clearly a trivial solution, since it satisfies the constraint of the output space but ignores the input space entirely
(i.e. the output distribution is degenerate).

On the other hand, with ginvariant we cannot set the bias term b independently for different time steps. As a result,
the previous trivial solution is not expressible in this model. Instead, we must set a < 0 (i.e. negate the input) to
map it to the output space while obeying eq. 10.

While this analysis uses a simple model, recall that in practice g is parameterized by a deep network, which
are a superset of the set of conforming affine functions. As such, the same trivial solutions must also occur in
higher-dimensional settings when time invariance is not enforced.

8.2 Experiments

8.3 Finding the expert embedding

To find the expert embedding function f , we first generate pseudo-random transitions from the set of expert
demonstrations, compute the mutual information between the individual state dimensions and the label of a
transition (either random or expert) and finally use the elbow method to determine the task-relevant dimensions,
which yield the embedding of the expert state.

Generating sets of random and expert transitions. We first generate two sets of transitions, one set
of expert transitions TE and one set of pseudo-random transitions Trand. TE is assembled from the transitions
contained in the set of expert observations DE with a frameskip of 15. We introduce this frameskip to make
transitions more distinct, as it ensures that the difference between the two states contained in a transition is
substantial. We then generate a set of pseudo-random transitions of the same size as TE by randomly sampling
two states from DE and adding these as a new transition to the set of pseudo-random transitions Trand, until it
contains the same number of transitions as TE .

Computing mutual information for individual dimensions. We first compute the estimated mutual
information between individual state dimensions and transition labels (random or expert) for which we first
define random variables as described in section 4.3 and use the method of Ross [31] to compute the mutual
information for each state dimension n, arriving at a vector of size n that describes the mutual information
between a transition in each state dimension and the label.

Finding the task-relevant dimensions with the elbow method. We now compute the cumulative
mutual information for all k 2 {0, .., n} by summing up the mutual information of the k dimensions with
largest information. This is plotted in Figure 7. We use the implementation of Satopaa et al. [33] to find
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Figure 8: We evaluate the reward achieved by both learner agents when trained on demonstrations of
either one of the remaining three embodiments, using either our algorithm UDIL, or the XIRL [45]
baseline.

the elbow in the curve, a method commonly used to identify the number of clusters for dimension reduction
[19]. The found elbows are likewise displayed in Figures 7.We then estimate the objective stated in eq. 6, i.e.
argmaxf I((Z,Z

0);Y ), by defining f such that is reduces the expert state sE to those dimensions top the left
of the elbow, including the elbow itself.

Background on elbows found. For XIRL (see sec. 5.1), the task-relevant embedding dimensions found,
i.e. those to the left of the elbow, are those 9 dimensions that describe the task-relevant objects. That is, these
dimensions describe the three x positions of the blocks seen in Figure 2 (left), the three y positions and the
distances between the objects and the target zone. In the Gym environments hopper, walker and halfcheetah
(see sec. 5.2), the found task-relevant dimensions describe properties of the torso. That is, for the hopper, they
describe the x and the z position of the torso, for the halfcheetah they describe the x coordinate of the torso and
the x coordinate of the front tip, and for the walker they describe the x coordinate of the torso and the velocity
of the torso in x direction.

8.3.1 XIRL Experiments

Setup. We use the X-Magical environment [45, 40], as implemented by the authors. 3 We further use the
XIRL [45] baseline implementation as implemented by the authors. 4 We use the agents gripper and longtstick,
as these have the largest difference in embodiment. In contrast to XIRL, we only train on demonstrations of
one other agent. We do not use the pixels as observations, but use the environment state vector directly. We
increase training time by a factor of two, as we found that convergence was not reached otherwise, and leave all
other parameters unchanged. We evaluate UDIL and XIRL for six different random seeds and report mean and
standard error in Figure 2.

Results for additional embodiments. We further evaluated both UDIL and XIRL on demonstrations of
the remaining embodiments of the X-Magical benchmark [41, 45]. Results for the embodiments Gripper and
Longstick, trained cross-domain from demonstrations from three of the four given embodiments (Gripper,
Longstick, Shortstick, Mediumstick) are shown in Figure 8. We find that UDIL outperforms XIRL
consistently across all tested pairings of embodiments.

Results for UDIL with adversarial training. We further evaluated both the simplified version of UDIL
(which, analogously to XIRL [45], rewards the agent for minimizing the distance to the pre-computed goal state),
and the performance of the original implementation of UDIL (see eq. 7) that uses adversarial training. It can be
observed in Figure 9 that the adversarial implementation of UDIL outperforms the XIRL baseline in both cases.

3
https://github.com/kevinzakka/x-magical

4
https://x-irl.github.io
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Figure 9: We evaluate the reward achieved by both learner agents when trained on demonstrations of
the other, using either the simplified version of UDIL, the unmodified adversarial version of UDIL,
or the XIRL [45] baseline, which uses a simplified implementation by design.

Table 1: Hyperparameters used to train learner encoder g.
Hopper HalfCheetah Walker

Learning rate encoder (↵-enc) 0.001 0.001 0.0001
Use bias with encoder (enc-use-bias) False True False
Train every n-enc steps 0.01 0.01 0.1

However, it performs inconsistently with respect to the simplified version of UDIL (once performing better, once
worse).

8.3.2 Gym Experiments

Setup. We train the learner policy ⇡L, the mapping g between the learner agent’s states sL and the expert
agent’s task-relevant state embedding zE , and the discriminator D jointly (see blue components in Figure 1). We
reimplement the discriminator-actor-critic algorithm [21], resembling the original implementation given by the
authors as close as possible, 5. We keep all parameters unchanged and refer to the original implementation for
further details. We further use the StableBaselines3 6 package to implement the reinforcement learning agents
and the Seals package 7 to implement the gym environments with fixed episode length. We do not alter any
parameters given in these implementations.

We introduce a minimal set of additional hyperparameters that all regard the learner encoder g, which are given
in Table1. We appended the discriminator-actor-critic framework by the expert encoder g (described in the next
section), which is trained by backpropagating the negative discriminator loss, i.e. the encoder g is trained to fool
the discriminator D. We train the learner encoder g every n-encoder steps of the discriminator, i.e. the encoder
is trained less frequently than the discriminator, and use a learning rate ↵-enc. We train the learner agent with
20 expert trajectories, which were generated by an expert agent trained with the ground truth reward in the
respective environment. We run each experiment for six seeds (zero to five) to ensure robustness to different
random instantiations and report the mean and standard error in Figure 4.

Learner Encoder. We parameterise the learner encoder g such that it learns an affine transformation, i.e. it
applies an affine transformation to the learner state sL. To stabilize learning, we apply a sigmoid that scales the
transformation weights (and the bias), such that they do not exceed a maximum magnitude of five. The learner
encoder g is implemented as a single layer neural network that outputs a weight for each input dimension, which
may be appended by a bias (indicated by enc-use-bias).

GWIL Baseline. We run the GWIL baseline [10] using the authors implementation. 8 We evaluated different
combinations for the hyperparameters gw-entropic and gw-normalize and found that the author’s original
implemtation worked best. We evaluated the baseline likewise for the random seeds zero to five and report mean
and standard error in Figure 4. We found results to be highly stochastic, to the extent that not a single positive
result was achieved in some, as also described by the authors [10, Remark 1].
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Figure 10: Achieved reward (travelled distance) by both hopper and halfcheetah, when trained on
only a single demonstrations of the other. See section 5.3 for details.
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Figure 11: Achieved reward (travelled distance) by both hopper and halfcheetah, when trained with
an oracle approach that omits the learner encoder g. See section 8.3.3 for details.

8.3.3 Ablation Studies

Imitation from a single demonstration. We evaluated the performance of UDIL when only a single
expert demonstration (single trajectory) is given. This constitutes the closest comparison to GWIL, as it does
not scale to more than one trajectory due to its computational complexity. We can observe in Figure 11 that
UDIL also outperforms GWIL if only a single trajectory is given. We further find that the performance of the
halfcheetah, when imitating the hopper, is higher for one trajectory (as compared to the usual 20 trajectories).
We further investigated this and found it to be an outlier, as this was not the case for any other agent combination.

Comparison to an oracle baseline. We further compared the performance of UDIL to that achieved by an
oracle baseline, designed as follows. We assume that an oracle is used to choose the state dimensions of the
learner agent which match those of the expert included in the task relevant embedding, while the order of the
states remains unknown. We then run UDIL directly on the task-relevant embedding, i.e. omitting the learner
encoder g.

8.4 Videos

We provide videos of the resulting behaviours in both XMagical and Gym in the supplementary material.

5
https://github.com/google-research/google-research/tree/master/dac

6
https://github.com/DLR-RM/stable-baselines3

7
https://github.com/HumanCompatibleAI/seals

8
https://github.com/facebookresearch/gwil
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