
Supplementary Materials for
Learning Physical Dynamics with Subequivariant

Graph Neural Networks

Contents

A Theoretical Preliminaries and Proofs 1

A.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

A.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

A.3 Theoretical Comparisons Between EGNN, GMN, and SGNN . . . . . . . . . . . . 6

B Implementation Details 7

B.1 Hyper-parameters and Training Details . . . . . . . . . . . . . . . . . . . . . . . . 7

B.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

C More Experiment Results 8

C.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

C.2 Rollout MSE on Physion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

C.3 Learning curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

C.4 Experiment on Hamiltonian-based NNs . . . . . . . . . . . . . . . . . . . . . . . 10

C.5 Experiment on Steerable SE(2) GNN . . . . . . . . . . . . . . . . . . . . . . . . . 10

D More Visualizations 11

E More Insights on Subequivariance 12

A Theoretical Preliminaries and Proofs

In the main paper, we have sketched the definitions and conclusions related to E(3) equivariance and
subequivariance. Here, we introduce more details to facilitate the understanding for these conceptions.

We first recap the orthogonal group O(3) = {O ∈ R3×3 | O⊤O = I3} and the translation group
T(3) = {t ∈ R3}. Then the Euclidean group is given by E(3) = O(3)⋉ T(3), where ⋉ denotes the
semidirect product. Basically, E(3) is a group of orthogonal transformations (rotations and reflections)
and translations.

Definition 1 is rewritten as:
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Definition 1 (Equivariance and Invariance). We call that the function f : R3×m × Rn → R3×m′
is

G-equivariant, if for any transformation g in a group G, f(g · Z⃗,h) = g · f(Z⃗,h), ∀Z⃗ ∈ R3×m,
∀h ∈ Rn. Similarly, f is invariant if f(g · Z⃗,h) = f(Z⃗,h), ∀g ∈ G.

Eq. (3) in the main paper is repeated as:

f(Z⃗,h) := Z⃗V , s.t.V = σ(Z⃗⊤Z⃗,h), (13)

where the Multi-Layer Perceptron (MLP) function σ : Rm×m+n 7→ Rm×m′
produces V ∈ Rm×m′

.
It is easy to justify that the function defined in Eq. (13) is O(3)-equivariant. Moreover, by joining the
analyses in GMN along with the conclusion by [11], we immediately have the universality of the
formulation in Eq. (13):

Proposition 1 ([5, 11]). Let f be defined by Eq. (13). For any O(3)-equivariant function f̂(Z⃗,h),
there always exists an MLP σ satisfying ∥f̂ − f∥ < ϵ for arbitrarily small positive value ϵ.

To prove this theorem, we require the following two lemmas:

Lemma 1. For any O(3)-equivariant function f̂(Z⃗,h), it must fall into the subspace spanned by the
columns of Z⃗, namely, there exists a function s(Z⃗,h), satisfying f̂(Z⃗,h) = Z⃗s(Z⃗,h).

Proof. The proof is given by [11]. Essentially, suppose Z⃗⊥ is the orthogonal complement of the
column space of Z⃗. Then there must exit functions s(Z⃗,h) and s⊥(Z⃗,h), satisfying f̂(Z⃗,h) =
Z⃗s(Z⃗,h) + Z⃗⊥s⊥(Z⃗,h). We can always find an orthogonal transformation O allowing OZ⃗ = Z⃗

while OZ⃗⊥ = −Z⃗⊥. With this transformation O, we have f̂(OZ⃗,h) = f̂(Z⃗,h) = Z⃗s(Z⃗,h) +

Z⃗⊥s⊥(Z⃗,h), and Of̂(Z⃗,h) = Z⃗s(Z⃗,h)− Z⃗⊥s⊥(Z⃗,h). The equivariance property of f̂ implies
Z⃗s(Z⃗,h) + Z⃗⊥s⊥(Z⃗,h) = Z⃗s(Z⃗,h)− Z⃗⊥s⊥(Z⃗,h), which derives s⊥(Z⃗,h) = 0. Hence, the
proof is concluded.

Lemma 2. If the O(3)-equivariant function f̂(Z⃗,h) lies in the subspace spanned by the columns of
Z⃗, then there exists a function σ satisfying f̂(Z⃗,h) = Z⃗σ(Z⃗⊤Z,h).

Proof. The proof is provided by Corollary 2 in [5]. The basic idea is that f̂(Z⃗,h) can be transformed
to f̂(Z⃗,h) = Z⃗η(Z⃗,h) where η(Z⃗,h) is O(3)-invariant. According to Lemma 1-2 in [5], η(Z⃗,h)
must be written as η(Z⃗,h) = σ(Z⃗⊤Z⃗,h), which completes the proof.

With Lemma 1-2, we always have f̂(Z⃗,h) = Z⃗σ(Z⃗⊤Z⃗,h). Since σ can be universally approxi-
mated by MLP, then the conclusion in Proposition 1 is proved.

Nevertheless, the full symmetry is not always guaranteed and could be broken in certain directions
owing to external force fields. For example, the existence of gravity breaks the symmetry by exerting a
force field along the gravitational axis g⃗ ∈ R3, and the dynamics of the system will naturally preserve
a gravitational acceleration in the vertical direction. By this means, the orthogonal symmetry is no
longer maintained in every direction but only restricted to the subgroup Og⃗(3) := {O ∈ O(3)|Og⃗ =
g⃗}, that is, the rotations/reflections around the gravitational axis. We term such a reduction of
equivariance as a novel notion: subequivariance.

Definition 2 (Subequivariance and Subinvariance). We call the function f : R3×m × Rn → R3×m′

is O(3)-subequivariant induced by g⃗, if f(OZ⃗,h) = Of(Z⃗,h), ∀O ∈ Og⃗(3), ∀Z⃗ ∈ R3×m,
∀h ∈ Rn; and similarly, it isO(3)-subinvariant induced by g⃗, if f(OZ⃗,h) = f(Z⃗,h), ∀O ∈ Og⃗(3).

Eq. (13) is clearly O(3)-subequivariant, but the O(3)-subequivariant function is unnecessarily the
form like Eq. (13). Considering the example for the gravity itself which maps all particles to the
direction g⃗. It is natural to see that the function f by Eq. (13) fails to represent g⃗ if g⃗ does not fall
into the subsubspace spanned by the columns of Z⃗. While this example provides a failure, it also
inspires us to derive the following augmented version upon Eq. (13):

fg⃗(Z⃗,h) = [Z⃗, g⃗]Vg⃗, s.t.Vg⃗ = σ([Z⃗, g⃗]⊤[Z⃗, g⃗],h), (14)
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where σ : R(m+1)×(m+1) → R(m+1)×m′
is an MLP. Compared with Eq. (13), here we just augment

the directional input with g⃗. Interestingly, such a simple augmentation is universally expressive,
which is proved in the following section.

A.1 Proof of Theorem 1

Theorem 1. Let fg⃗(Z⃗,h) be defined by Eq. (14). Then, fg⃗ is Og⃗(3)-equivariant. More importantly,
For any Og⃗(3)-equivariant function f̂(Z⃗,h), there always exists an MLP σ satisfying ∥f̂ − fg⃗∥ < ϵ
for arbitrarily small positive value ϵ.

The proof is similar to Proposition 1 but with certain extensions. We first derive the following three
lemmas.

Lemma 3. For any Og⃗(3)-equivariant function f̂(Z⃗,h), it must fall into the subspace spanned by
the columns of [Z⃗, g⃗], namely, there exists a function s(Z⃗,h), satisfying f̂(Z⃗,h) = [Z⃗, g⃗]s(Z⃗,h).

Proof. The proof is similar to Lemma 3. Suppose Z⃗⊥ is the orthogonal complement of the column
space of [Z⃗, g⃗]. Then there must exit functions s(Z⃗,h) and s⊥(Z⃗,h), satisfying f̂(Z⃗,h) =

[Z⃗, g⃗]s(Z⃗,h) + Z⃗⊥s⊥(Z⃗,h). We can always find an orthogonal transformation O ∈ Og⃗ allowing
OZ⃗ = Z⃗, Og⃗ = g⃗ while OZ⃗⊥ = −Z⃗⊥. With this transformation O, we have f̂(OZ⃗,h) =

f̂(Z⃗,h) = [Z⃗, g⃗]s(Z⃗,h) + Z⃗⊥s⊥(Z⃗,h), and Of̂(Z⃗,h) = [Z⃗, g⃗]s(Z⃗,h) − Z⃗⊥s⊥(Z⃗,h). The
equivariance property of f̂ implies [Z⃗, g⃗]s(Z⃗,h) + Z⃗⊥s⊥(Z⃗,h) = [Z⃗, g⃗]s(Z⃗,h)− Z⃗⊥s⊥(Z⃗,h),
which derives s⊥(Z⃗,h) = 0. Hence, the proof is concluded.

Lemma 4. If the Og⃗(3)-equivariant function f̂(Z⃗,h) lies in the subspace spanned by the columns
of [Z⃗, g⃗], then there exists a Og⃗(3)-invariant function η satisfying f̂(Z⃗,h) = [Z⃗, g⃗]η(Z⃗,h).

Proof. We assume the rank of [Z⃗, g⃗] is r (r ≤ min{3,m+ 1}). By performing the compact SVD
decomposition on [Z⃗, g⃗], we devise [Z⃗, g⃗] = USrV

⊤, where Sr ∈ Rr×r is a square diagonal
matrix with positive diagonal elements, U ∈ R3×r,V ∈ R(m+1)×r, and U⊤U = V ⊤V = Ir.

Since f̂(Z⃗,h) lies in the subspace spanned by the columns of [Z⃗, g⃗], there exists a function s(Z⃗,h)
allowing f̂(Z⃗,h) = [Z⃗, g⃗]s(Z⃗,h). With applying the SVD decomposition, we have

f̂(Z⃗,h) = USrV
⊤s(Z⃗,h). (15)

Given that f̂ is Og⃗(3)-equivariant, it means f̂(OZ⃗,h) = Of̂(Z⃗,h). By substituting this equation
into Eq. (15),

OUSrV
⊤s(OZ⃗,h) = OUSrV

⊤s(Z⃗,h)

⇔V ⊤s(OZ⃗,h) = V ⊤s(Z⃗,h). (16)

As V is Og⃗(3)-invariant, V ⊤s(Z⃗,h) is an Og⃗(3)-invariant function. Define η(Z⃗,h) :=

V V ⊤s(Z⃗,h), which is apparently Og⃗(3)-invariant. Then we have f̂(Z⃗,h) = USrV
⊤s(Z⃗,h) =

USrV
⊤V V ⊤s(Z⃗,h) = [Z⃗, g⃗]η(Z⃗,h).

Lemma 5. If the function η(Z⃗,h) is Og⃗(3)-invariant, it is of the form η(Z⃗,h) = σ([Z⃗, g⃗]⊤[Z⃗, g⃗],h)
for a certain function σ.

Proof. For any two inputs Z⃗1, Z⃗2, we claim that

∃O ∈ Og⃗(3), Z⃗1 = OZ⃗2 ⇔ [Z⃗1, g⃗]
⊤[Z⃗1, g⃗] = [Z⃗2, g⃗]

⊤[Z⃗2, g⃗]. (17)

The sufficiency direction ⇒ is obvious. We only need to prove the necessity ⇐.
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Figure 7: A geometric illustration of the proof for Lemma 5.

We denote by G⃗⊥ ∈ R3×2 the orthogonal complement of g⃗. Then, we have the decompositions:

Z⃗1 = g⃗α1 + G⃗⊥β1; (18)

Z⃗2 = g⃗α2 + G⃗⊥β2; (19)

where α1,α2 ∈ R1×m, β1,β2 ∈ R2×m. The RHS of Eq. (17) indicates g⃗⊤Z⃗1 = g⃗⊤Z⃗2, and
Z⃗⊤

1 Z⃗1 = Z⃗⊤
2 Z⃗2, hence we have α1 = α2, and

β⊤
1 β1 = (G⃗⊥β1)

⊤(G⃗⊥β1)

= (Z⃗1 − g⃗α1)
⊤(Z⃗1 − g⃗α1)

= Z⃗⊤
1 Z⃗1 −α⊤

1 α1

= Z⃗⊤
2 Z⃗2 −α⊤

2 α2

= β⊤
2 β2. (20)

According to Lemma 1 in [5], β⊤
1 β1 = β⊤

2 β2 ⇔ ∃O′ ∈ O(2),β1 = O′β2.

Now we define O = g⃗g⃗⊤ + G⃗⊥O′(G⃗⊥)⊤. Clearly, O⊤O = g⃗g⃗⊤ + G⃗⊥(G⃗⊥)⊤ = I3, and
O⊤g⃗ = g⃗, which means O ∈ Og⃗(3). More interestingly,

OZ⃗2 = g⃗g⃗⊤Z⃗2 + G⃗⊥O′(G⃗⊥)⊤Z⃗2

= g⃗α2 + G⃗⊥O′β2

= g⃗α1 + G⃗⊥β1

= Z⃗1, (21)

which concludes the proof of the claim. Fig. 7 provides a geometrical explanation of our proof above,
where the transformation O′ is actually the projection of O onto the subspace G⃗⊥.

For any Og⃗(3)-invariant function η(Z⃗,h), it is a function of the equivalent class, that is, η(Z⃗,h) =
σ({Z⃗},h), where the equivalent class is defined as {Z⃗} := {OZ⃗ | O ∈ Og⃗(3)}. The above claim
in (17) states that such equivalent class {Z⃗} maps to [Z⃗, g⃗]⊤[Z⃗, g⃗] in a one-to-one way. Therefore,
we must arrive at η(Z⃗,h) = σ([Z⃗, g⃗]⊤[Z⃗, g⃗],h).

By making use of Lemma 3-5, we immediately obtain fg⃗(Z⃗,h) = [Z⃗, g⃗]σ([Z⃗, g⃗]⊤[Z⃗, g⃗],h). In
accordance with the universality of MLP [3, 4], we can always find an MLP that approximates σ
up to an accuracy ϵ

G , where G is the bound of ∥[Z⃗, g⃗]∥, which implies ∥f̂ − fg⃗∥ < ∥[Z⃗, g⃗]∥ ϵ
G < ϵ,

where fg⃗ is defined in Eq. (14). The proof of Theorem 1 is finished.

Note that f by Eq. (14) can also be considered as a function of both Z⃗ and g⃗, and it is universal
according to Proposition 1. When f reduces to a function of Z⃗ by fixing g⃗, then by Theorem 1, it is
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still universal with respect to the subgroup that leaves g⃗ unchanged. This phenomenon shows the
universality holds universally no matter which input variable of Eq. (14) we fix.

Although this paper mainly focuses on the 3-dimension group O(3), our theorems and proofs above
are generalizable to the d-dimension group O(d), when d is not restricted to 3 and the external field
that breaks the symmetry has more than 1 direction, namely the gravity vector g⃗ ∈ R3×1 becomes a
directional matrix G⃗ ∈ Rd×d′

(d′ < d).

A.2 Proof of Theorem 2

Theorem 2. The message passing φ (Eq. 4) is Og⃗(3)-equivariant.

Proof. We prove step by step in the specifications of Eq. (4) from Eq. (5)-(8). For better clarity, we
denote the variables after applying the transformation O ∈ Og⃗(3) with the superscript ∗.

For any O ∈ Og⃗(3), we immediately have (Z⃗∗
i ,h

∗
i ) = (OZ⃗i,hi), and

(C⃗∗
k , c

∗
k) =

(
1

|{i : o(i) = k}|
∑

{i:o(i)=k}
Z⃗∗

i ,
∑

{i:o(i)=k}
h∗
i

)
,

=

(
1

|{i : o(i) = k}|
∑

{i:o(i)=k}
OZ⃗i,

∑
{i:o(i)=k}

hi

)
,

= (OC⃗k, ck).

Therefore, for Eq. (5),

Z⃗∗
ij = (Z⃗∗

i ⊖ C⃗∗
o(i))∥(Z⃗

∗
j ⊖ C⃗∗

o(j))∥(Z⃗
∗
i ⊖ Z⃗∗

j ),

= (OZ⃗i ⊖OC⃗o(i))∥(OZ⃗j ⊖OC⃗o(j))∥(OZ⃗i ⊖OZ⃗j),

= O
(
(Z⃗i ⊖ C⃗o(i))∥(Z⃗j ⊖ C⃗o(j))∥(Z⃗i ⊖ Z⃗j)

)
= OZ⃗ij ,

which is Og⃗(3)-equivariant. Similarly for hij in Eq. (6), it is invariant, i.e., h∗
ij = hij . Since ϕg⃗ in

Eq. (7) is designed to be subequivariant (Og⃗(3)-equivariant), by definition we immediately derive

that (M⃗∗
ij ,m

∗
ij) = ϕg⃗

(
Z⃗∗

ij ,h
∗
ij

)
= ϕg⃗

(
OZ⃗ij ,hij

)
= (OM⃗ij ,mij).

Finally, for the aggregation and update in Eq. (8), it is derived as

(Z⃗ ′∗
i ,h

′∗
i ) = (Z⃗∗

i ,h
∗
i ) + ψg⃗

(
(
∑

j∈N (i)
M⃗∗

ij)∥(Z⃗∗
i ⊖ C⃗∗

o(i)), (
∑

j∈N (i)
m∗

ij)∥h∗
i ∥c∗o(i)

)
,

= (OZ⃗i,hi) + ψg⃗

(
(
∑

j∈N (i)
OM⃗ij)∥(OZ⃗i ⊖OC⃗o(i)), (

∑
j∈N (i)

mij)∥hi∥co(i)
)
,

= (OZ⃗i,hi) + ψg⃗

(
O((

∑
j∈N (i)

M⃗ij)∥(Z⃗i ⊖ C⃗o(i))), (
∑

j∈N (i)
mij)∥hi∥co(i)

)
,

= (OZ⃗ ′
i,h

′
i),

which concludes the proof by showing that Z⃗ ′
i is Og⃗(3)-equivariant and h′

i is Og⃗(3)-invariant.

Indeed, by leveraging Theorem 2, it is also straightforward that the resulting SGNN is also Og⃗(3)-
equivariant, since its components φ1, φ2, and φ3 are all Og⃗(3)-equivariant functions.

Remark on translation equivariance. Regarding translation equivariance, the operation “⊖” always
results in translation-invariant representations. Therefore, Z⃗ij is translation invariant, and so does hij .
Following this induction, the intermediate results until the output of ψg⃗ are all translation-invariant.
By adding (Z⃗i,hi) to the final output, it is clear to see that Z⃗ ′

i is translation-equivariant and h′
i is

translation-invariant.
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A.3 Theoretical Comparisons Between EGNN, GMN, and SGNN

In this sub-section, we theoretically reveal that both EGNN and GMN are special cases of SGNN by
choosing specific forms of MLP in ϕg⃗ of Eq. (7) and ψg⃗ of Eq. (8). We provide an illustration from
the architectural view in Fig. 8.

𝒁𝒊 ⊖ 𝑪𝒐 𝒊 𝒁𝒋 ⊖ 𝑪𝒐 𝒋 𝒁' ⊖ 𝒁(

[𝒁'(, 𝒈]𝒈

Inner
product

MLP 𝜎

𝒎'(

[𝒙', 𝒗'] [𝒙(, 𝒗(]

.

.

.

SGNN

w/o object-aware
information

and subequivariance

𝒁' ⊖ 𝒁(

𝒁'(

Inner
product

MLP 𝜎

𝒎'(

[𝒙', 𝒗'] [𝒙(, 𝒗(]

GMN

𝒙' − 𝒙(

𝒓'(

Inner
product

MLP 𝜎

𝒎'(

𝒙' 𝒙(

EGNN

Matmul Matmul Matmul

w/o multichannel

.

.

.

Figure 8: An illustration of the comparison between SGNN, GMN, and EGNN.

We first prove that SGNN can reduce to GMN by choosing specific form of the MLP σ. Intuitively,
this reduction can be realized by masking the channels related to g⃗ and the object-aware information
C⃗o(i) and C⃗o(j) from the input and the corresponding output before taking the matrix multiplication.
We summarize this into the following lemma.

Lemma 6. Consider arbitrary 3D multichannel vectors Z⃗1 ∈ R3×m1 and Z⃗2 ∈ R3×m2 . Let
fσ1

= [Z⃗1, Z⃗2]σ1

(
[Z⃗1, Z⃗2]

⊤[Z⃗1, Z⃗2]
)
, gσ2

= Z⃗1σ2

(
Z⃗⊤

1 Z⃗1

)
. Then, for any σ2, there exists σ1,

s.t. ∥fσ1
− gσ2

∥ < ϵ for arbitrary small positive value ϵ.

Proof. The input of σ1 can be rewritten as
[
Z⃗⊤

1 Z⃗1 Z⃗⊤
1 Z⃗2

Z⃗⊤
2 Z⃗1 Z⃗⊤

2 Z⃗2

]
. Denote fin(X) =

[
1 0
0 0

]
X and

fout(X) =

[
X
0

]
. Then, when choosing σ1 = fout ◦ σ2 ◦ fin, we have

fσ1
= [Z⃗1, Z⃗2]σ1

(
[Z⃗1, Z⃗2]

⊤[Z⃗1, Z⃗2]
)
,

= [Z⃗1, Z⃗2]fout ◦ σ2 ◦ fin

([
Z⃗⊤

1 Z⃗1 Z⃗⊤
1 Z⃗2

Z⃗⊤
2 Z⃗1 Z⃗⊤

2 Z⃗2

])
,

= [Z⃗1, Z⃗2]fout ◦ σ2
(
Z⃗⊤

1 Z⃗1

)
,

= [Z⃗1, Z⃗2]

[
σ2

(
Z⃗⊤

1 Z⃗1

)
0

]
,

= Z⃗1σ2

(
Z⃗⊤

1 Z⃗1

)
= gσ2

.

Therefore, by the universal approximation of MLP [3, 4], we know that for any gσ2
parameterized by

σ2, there exists σ1 = fout ◦σ2 ◦ fin that can approximate gσ2
with fσ1

by arbitrarily small error ϵ.

Leveraging this lemma directly gives the following theorem.

Theorem 3. Let the symbol fσ1
⪰ gσ2

denotes that for any gσ2
parameterized by σ2, there exists σ1

satisfying ∥fσ1
− gσ2

∥ < ϵ for arbitrarily small positive value ϵ. Then, SOMP ⪰ GMN ⪰ EGNN.

Proof. 1. SOMP ⪰ GMN. Let Z⃗1 = [Z⃗i ⊖ Z⃗j ], and Z⃗2 = [Z⃗i ⊖ C⃗o(i), Z⃗j ⊖ C⃗o(j), g⃗]. Using
Lemma 6 immediately shows that SOMP ⪰ GMN. 2. GMN ⪰ EGNN. Similarly, we choose
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Z⃗1 = [x⃗i − x⃗j ], and Z⃗2 = [v⃗i, v⃗j ], and by Lemma 6 we have GMN ⪰ EGNN, which concludes the
proof.

By these theoretical derivations we are able to show that SOMP indeed has stronger expressivity than
GMN and EGNN, by leveraging object-aware information as well as the subequivariance depicted by
vector g⃗.

B Implementation Details

B.1 Hyper-parameters and Training Details

We utilize the codebase provided by Physion [1] for particle-based methods1. This repository contains
the implementation of GNS [9] and DPI [7]. For DPI, we notice that it has been optimized in the
RigidFall task by [6]2, and we thus adopt their optimized version on RigidFall. As for EGNN [10]
and GMN [5], we resort to their original implementations34, respectively. The datasets and code
repositories are released under MIT license.

We basically follow the hyper-parameters suggested by Physion. In detail, for GNS and DPI, we
use a hidden dimension of 200 for the node update function ψ and 300 for the message computation
function ϕ, each of which consists of 3 layers with ReLU as the activation function. The iteration
step is set to 10 for GNS and 2 for DPI due to its multi-stage hierarchical modeling. We use an
Adam optimizer with initial learning rate 0.0001, betas (0.9, 0.999), and a Plateau scheduler with a
patience of 3 epochs and decaying factor 0.8. For EGNN, GMN, and SGNN, we still build upon the
above hyper-parameters with very minor modifications. We adopt hidden dimension 200 uniformly
for ψ and ϕ with SiLU activation function, and 4 iterations in φ1, φ2, and φ3 for SGNN, while 10
for EGNN and GMN. We use an early-stopping of 10 epochs. We use a batch size of 1 on Physion
due to the large size of each system and 8 on RigidFall due to its relatively small size. Besides, we
also inject noise during training for better test-time long-term rollout prediction, exactly following
the settings of Physion and RigidFall [6]. The scale is set to 3e-4 in Physion and 0.05 of the std in
RigidFall. The cutoff radius γ is set to be 0.08 on both datasets. On both datasets, we only use the
state information of last frame t as input to predict the information of frame t+ 1. The experiments
are conducted on single card NVIDIA Tesla V100 GPU.

Notably, for EGNN-S and GMN-S, we make a modification to their updates of the velocity, namely,

v⃗l+1
i = ϕv(h

l
i)v⃗

l
i + ϕg(h

l
i)g⃗ +

∑
j∈N (i)

(x⃗i − x⃗j)ϕx(mij),

where the underlined term highlights our adaptation, ϕv, ϕg, ϕx are all MLPs, and the superscript l
indicates the iteration step. The intuition of this term is similar to adding a gravitational acceleration
term to the update of velocity. This formulation meets Og⃗(3)-equivariance.

As for the data splits, we strictly follow Physion and RigidFall. In detail, for Physion, the full training
set contains 2000 trajectories in each scenario, which is then split into training and validation with the
ratio 9:1. The testing set contains 200 trajectories. For RigidFall, the full training set contains 5000
trajectories, which is also split into training and validation with ratio 9:1. Particularly, to study the
data-efficiency of different models, we sub-sample multiple training sets with sizes 200, 500, 1000,
5000, as illustrated in Table 3 in the paper.

Besides, in the implementation we also employ a normalization before feeding the inner product
into the MLP, i.e., we normalize the inner product by Z⃗⊤Z⃗/∥Z⃗⊤Z⃗∥F in Eq. (3), as suggested in
GMN [5] to control the expanding variance in scale brought by the inner product for better numerical
stability. This is similarly adopted in Eq. (9) for [Z⃗, g⃗], where we also propose to dynamically control
the scale of g⃗ by η(h) ∈ R where η is a lightweight MLP. We find these considerations generally
leads to faster convergence.

1https://github.com/htung0101/Physion-particles
2https://github.com/YunzhuLi/VGPL-Dynamics-Prior
3https://github.com/vgsatorras/egnn
4https://github.com/hanjq17/GMN
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B.2 Computational Complexity

In this sub-section, we compare the computational budget of SGNN to those of the baselines, aiming
to illustrate that the superior performance brought by SGNN stems from our design of subequivariance
and hierarchical modeling, but not more computational overhead or more parameters used.

Generally, the computational complexity of the models is approached by O(KT |E|), where K is
the number of stages, T is the number of message passing steps in each stage, and |E| measures the
number of edges in the interaction graph. Among all the models, they can be characterized into non-
hierarchical methods including GNS, EGNN, and GMN, as well as hierarchical methods including
DPI and our SGNN. For the non-hierarchical models, it has been observed in [9] that generally a
larger number of propagation iterations T is required for better performance, which is set to 10 in
the implementation. For the hierarchical methods, it does not require such a large number, which
is set to 2 for DPI following their original setup and 4 in SGNN. By this means, we have carefully
controlled the computational budget by making the total number of message passing iterations nearly
the same for all methods, since DPI requires in total K = 4 stages (leaf-leaf, leaf-root, root-root,
root-leaf) with each stage involving 2 steps, and SGNN requires K = 3 stages φ1, φ2, and φ3, with
each stage having 4 steps. GNS, EGNN, and GMN only have one stage, but need 10 steps in this
stage. Besides, it is also worth noticing that SGNN employs edge separation, which further brings
down the cost when computing message passing with |Einter|, |Einner|, |Eobj| < |E| edges. Regarding
the size of the networks, we reuse the hyper-parameters, e.g., the number of layers in MLP and the
hidden dimension, of the baselines for SGNN, which makes SGNN nearly as the same size as DPI.

To further illustrate, we provide the total number of parameters and the average training time per step
in seconds on Physion Dominoes in Table 4, which indicates that SGNN has a moderate number of
parameters and still enjoys fast training speed.

Table 4: Number of parameters (#Param) and average training time per step on Physion Dominoes.

GNS [9] DPI [7] EGNN [10] GMN [5] SGNN

#Param 0.54M 1.98M 0.45M 0.51M 1.50M
Time (seconds) 0.40 ± 0.02 0.35±0.03 0.08±0.01 0.09±0.01 0.11± 0.02

C More Experiment Results

C.1 Motivating Example

Rotation

Ground Truth GNS EGNN Our SGNN

�⃗�

Figure 9: A motivating example on Physion Dominoes. GNS is able to produce accurate prediction
only in the same direction as the training trajectories. EGNN fails to learn the complex interactions
with gravity involved. Our model predicts very accurately regardless of any valid rotations applied.

We provide a motivating example in Fig. 9. We have the following observations: 1. Physical laws
abide by symmetry. The dynamics of the dominoes falling from left to right will exactly be preserved
the same way if we apply a rotation along the gravitational axis g⃗; 2. Without any guarantee of
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equivariance, models like GNS fail to preserve such symmetry. For example, if all dominoes in the
training data are falling from left to right, GNS might be able to produce accurate prediction if the
testing trajectory is also aligned from left to right, but will perform poorly if a rotation is adopted; 3.
Equivariant models like EGNN and GMN are able to preserve the symmetry, i.e., their prediction
will rotate/translate together with the input. However, they are enforcing E(3)-equivariance, which is
too strong that limits the expressivity of the model when the equivariance is violated by the existence
of gravity; 4. Our model SGNN takes into consideration the desirable subequivariance as well as
object-aware message passing, yielding very accurate prediction while being invulnerable to any
test-time rotation along the vertical axis.

C.2 Rollout MSE on Physion

Table 5: Rollout MSE on Physion when t = 10.

Dominoes Contain Link Drape Support Drop Collide Roll

GNS* [9] 0.19 3.76 9.89 18.51 4.12 2.59 1.58 0.60
DPI* [7] 0.15 2.41 6.56 18.43 3.67 2.39 1.66 0.63

GNS [9] 1.01 4.25 16.23 23.72 4.20 2.57 5.35 0.80
DPI [7] 1.04 3.13 12.88 35.05 4.37 1.9 8.02 2.05

GNS-Rot [9] 0.27 3.95 10.39 29.85 4.69 2.04 1.53 0.63
DPI-Rot [7] 0.22 2.27 6.37 26.94 4.61 1.88 1.64 1.41

EGNN [10] 0.31 5.91 12.93 39.81 5.25 1.86 4.22 1.01
GMN [5] 0.59 8.88 19.36 39.70 9.08 3.16 6.13 2.03

SGNN 0.09 2.32 4.98 17.23 4.52 1.37 1.34 0.53

Table 6: Rollout MSE (×101) on Physion when t = 35.

Dominoes Contain Link Drape Support Drop Collide Roll

GNS* [9] 0.16 4.83 10.95 9.04 9.59 4.78 3.28 0.39
DPI* [7] 0.14 2.36 9.49 32.97 28.97 1.73 4.07 0.38

GNS [9] 0.53 5.28 16.56 9.53 9.74 5.92 8.10 0.43
DPI [7] 0.56 3.39 16.29 30.21 17.07 0.98 11.40 1.54

GNS-Rot [9] 0.22 4.32 15.54 12.13 9.80 1.79 3.02 0.37
DPI-Rot [7] 0.35 4.65 11.04 12.02 53.69 1.24 3.68 1.54

EGNN [10] 0.30 6.36 19.99 13.41 14.81 0.96 5.96 0.66
GMN [5] 0.39 7.25 22.97 12.33 16.60 1.53 7.93 0.84

SGNN 0.07 2.16 7.01 8.14 13.55 0.70 2.80 0.31

We provide the rollout MSE when t = 10 and t = 35 on Physion in Table 5 and 6, respectively. Our
SGNN gives the best results in 7 out of all 8 scenarios, especially favorable on long-term prediction.

C.3 Learning curves

We provide the learning curves including training loss and validation loss on RigidFall in Fig. 10
with training data size 200 and 500, respectively. Our core observations here include 1. The non-
equivariant model DPI tends to suffer from overfitting, since it lacks the inductive bias of symmetry.
This can be observed from the curve that its training loss can reach a very low level (e.g., better than
SGNN when |Train| = 200), but the validation is not promising. There is generally a big gap between
training and validation. Without the equivariance constraint, it may overfit the directions only existing
in the training data and fail to generalize to validation set; 2. The E(3)-equivariant model EGNN may
underfit the training data, since it is restricted by an over-strong constraint that indeed fails to capture
the real dynamics in the training data, though its generalization is desirable with a very small gap
between training and validation; 3. Our SGNN, by leveraging subequivariance, fits the training data
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Figure 10: Learning curve comparisons on RigidFall. Left: |Train| = 200; Right: |Train| = 500.

well while yields strong generalization, achieving the lowest validation loss. These observations from
the learning curves well align with our analyses and verify the efficacy of our design.

C.4 Experiment on Hamiltonian-based NNs

We augment SGNN and EGNN by a Hamiltonian integrator. Details of the implementation include:

• We leverage a sum-pooling over the output scalar feature (hi) as the Hamiltonian of the
system, i.e., H ∈ R =

∑N
i=1 hi.

• We employ a RK1 integrator to conduct Hamiltonian update, i.e., ( ˙⃗q, ˙⃗p) = (∂H∂p⃗ ,−
∂H
∂q⃗ ).

One thing worth noticing here is that we are assuming the particles possess uniform mass, so that
q⃗, p⃗ can be derived from x⃗, v⃗, respectively. We name the variants as SGNN-H and EGNN-H ("H"
stands for Hamiltonian), and evaluate them on Physion. The results are displayed in Table 7.

Table 7: Comparison with the Hamiltonian-based variants.

Domino Contain Link Drape Support Drop Collide Roll

EGNN [10] 61.3 66.0 52.7 54.7 60.0 63.3 76.7 79.8
EGNN-H [10, 8] 52.0 58.1 54.0 54.3 51.1 54.7 75.7 75.3
SGNN 89.1 78.1 73.3 60.6 71.2 74.3 85.3 84.2
SGNN-H 69.9 66.0 61.1 60.3 55.3 62.0 79.3 78.7

Table 8: Average training time per step (in seconds) on Physion Dominoes.

EGNN [10] EGNN-H [10, 8] SGNN SGNN-H

0.08±0.01 0.44±0.02 0.11±0.02 0.48±0.03

Adding Hamiltonian into EGNN and SGNN generally leads to detrimental performance. We speculate
that it is probably due to the dissipative forces as well as highly complex interactions in Physion.
Moreoever, as illustrated in Table 8, the Hamiltonian module brings significant computation overhead
during training. This result suggests that it may not be beneficial to involve such strong physical
inductive bias for the scenarios in Physion.

C.5 Experiment on Steerable SE(2) GNN

We also implement a baseline that leverages the idea in [12, 2] but extends from CNN to GNN.
Indeed, [12, 2] are steerable CNNs, and these works have not offered available implementations on
GNNs. We have tried our best to compare this idea with our model. Specifically, we implement
”Steerable-SE(2)-GNN”, that iterates the message passing as specified below. Consider the message
computation for the edge eij ∈ E connecting node i and j.

10



• Compute the translation-invariant radial vector: x⃗ij = x⃗i − x⃗j .

• Project x⃗ij onto g⃗: v ∈ R =
x⃗ij ·g⃗
∥g⃗∥ , and u⃗ ∈ R2 = ((x⃗ij − vg⃗) · m⃗, ((x⃗ij − vg⃗) · n⃗), where

m⃗, n⃗ are two orthonormal bases vertical to g⃗.
• Derive the type-0 message as mij = MLP1(

∑
l w

01
l k

01
l (u⃗) · u⃗, v, ∥u⃗∥,hi,hj).

• Derive the type-1 message as M⃗ij = (
∑

l w
10
l k

10
l (u⃗)mij+

∑
l w

11
l k

11
l (u⃗)·u⃗)·MLP2(mij).

• Aggregate and update type-0 feature: h′
i = MLP3(

∑
j∈N (i) mij ,hi).

• Aggregate and update type-1 feature: M⃗i =
∑

j∈N (i) M⃗ij , x⃗′
i = x⃗i +

MLP4(∥M⃗i∥) M⃗i

∥M⃗i∥+ϵ
.

Particularly, w10
l , w

01
l , w

11
l ∈ R are the learnable coefficients and k10l , k

01
l , k

11
l are the steerable

kernel bases that transform irreps from type 1 to 0, type 0 to 1, and type 1 to 1, respectively (c.f.
Table 8 in [12] for more details); MLP2(mij) ∈ R,MLP4(∥M⃗i∥) ∈ R. It is proved that the above
implementation is equivariant with respect to the subgroup SOg⃗(3).

We compare Steer-SE(2)-GNN with EGNN, EGNN-S (the subequivariant version of EGNN), and
SGNN on Physion in Table 9.

Table 9: Comparison with Steerable SE(2) GNN.

Dominoes Contain Link Drape Support Drop Collide Roll

EGNN [10] 61.3 66.0 52.7 54.7 60.0 63.3 76.7 79.8
Steer-SE(2)-GNN [12] 59.1 66.7 54.0 51.1 62.5 66.7 77.0 77.3
EGNN-S 72.0 64.6 55.3 55.3 60.5 69.3 79.3 81.6
SGNN 89.1 78.1 73.3 60.6 71.2 74.3 85.3 84.2

Steer-SE(2)-GNN outperforms EGNN on 5 out of 8 tasks and obtains comparable results on the other
3 tasks, which indicates the reliability of our implementation. The reason why Steer-SE(2)-GNN
is generally better than EGNN lies in the involvement of the gravity constraint. If considering this
constraint as well, EGNN-S consistently surpasses Steer-SE(2)-GNN. Overall, our SGNN achieves
the significantly best performance.

D More Visualizations

Please refer to our Supplementary Video, presented at our project page https://hanjq17.github.
io/SGNN/.

Moreover, to further evaluate the generalization of different models toward unseen scenes and assess
whether they properly learn the effect of gravity, we conduct extra experiments by applying a rotation
around a non-gravity axis, resulting in such scenarios where dominoes are placed on an incline while
gravity still points downwards vertically.

The video is also presented at our project page. It is worth noticing that all models are only trained
with the original data (horizontal table with vertical gravity) and none of them have seen any scenario
placed like these. We have the following observations.

• Very interestingly, SGNN well generalizes to these novel scenarios and reasonably simulates
the effect of gravity. Particularly, the domino at the bottom starts to slide down along the
table driven by gravity. The dominoes at the top reach an equilibrium between friction and
gravity and keep still. The small bottle placed on the table also falls down due to gravity.

• EGNN, as an E(3)-equivariant model, does not perceive the changes in scenarios, producing
the same trajectory as if the table is horizontal. GNS and DPI, by not incorporating rotation
symmetry, do not properly learn the effect of gravity as well.

This experiment interestingly reveals that our SGNN is able to learn how gravity acts on physical
dynamics effectively from data and can thus generalize to novel scenes, verifying the validity of our
motivation and design of subequivariance.
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E More Insights on Subequivariance

In the paper we term subequivariance as a relaxation of equivariance. In order to help understanding
the position of our work, we provide more explanations and comparisons between full-equivariant
models, non-equivariant models, and our subequivariant models.

Non-equivariant
ℱ"#

Hypothesis Class ℱ"
ℱ" = {𝑓: ∀𝒙, ∀𝑔 ∈ 𝐺, 𝑔 ⋅ 𝑓 𝒙 = 𝑓(𝑔 ⋅ 𝒙)}

O(3)-equivariant
𝐺2 = {𝑶 ∈ ℝ5×5: 𝑶7𝑶 = 𝑰}

Constraint Group 𝐺

Subequivariant
𝐺9 = {𝑶 ∈ ℝ5×5: 𝑶7𝑶 = 𝑰,𝑶𝒈 = 𝒈}

Non-equivariant
𝐺5 = ∅

Subequivariant
ℱ"<

O(3)-equivariant
ℱ"=

Figure 11: The comparison between O(3)-equivariant, subequivariant, and non-equivariant models.

As depicted in Fig. 11, equivariance is exerted by a group G that serves as a constraint over the
corresponding possible functions, or so called the hypothesis class FG. The functions in FG must
satisfy that for any group element g ∈ G, the output of the function should be transformed the same
way as the input by g, or formally, FG = {f : ∀x⃗, g ∈ G, g · f(x⃗) = f(g · x⃗)}. Particularly, if
two groups satisfy G1 ⊆ G2, it is straightforward to see that the corresponding hypothesis class
FG2

⊆ FG2
.

Specifically, we consider O(3)-equivariant models with the constraint group G1 = {O ∈ R3×3 :
O⊤O = I} including all orthogonal matrices, and non-equivariant models with G3 = ∅. Clearly
the non-equivariant models possess a larger hypothesis class, which are usually easier to optimize
during training. However, the drawback is the weaker generalization since the optimized function
might not obey the proper constraint that is implied in the data. This is experimentally verifies by
the training and validation curve of DPI in Fig. 10. The O(3)-equivariant models, on the other hand,
always satisfy the constraint G and thus have a much smaller F . In the existence of gravity, the
symmetry is violated in the vertical direction, and not all g ∈ O(3) should still serve as a constraint,
but only those among G2 = {O ∈ R3×3 : O⊤O = I,Og⃗ = g⃗}. Therefore, FG1

becomes over-
constrained, which significantly impedes the training (see the training curve of EGNN in Fig. 10).
Our subequivariant model, instead, leverages G2 as the constraint with G3 ⊆ G2 ⊆ G1 and therefore
FG1 ⊆ FG2 ⊆ FG3 . With this proper relaxation, we expect the subequivariant models, equipped
with the appropriate constraint, to have an ideal trade-off between training and generalization, which
is also verified by our favorable experimental results of SGNN and the learning curve in Fig. 10.
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