
Contents

1 Introduction 1

2 Literature Review 2

3 Preliminaries 2

3.1 Few-Shot Supervised Learning . 3

3.2 Meta Reinforcement Learning . 3

4 Model & Algorithm 3

4.1 Mixture of Expert Neural Processes . 4

4.2 Scalable Training & Prediction . 4

4.3 Module Details for Meta Learning . 5

4.3.1 Inference Modules in MoE-NPs . 5

4.3.2 Meta RL Modules in MoE-NPs. 6

5 Experiments and Analysis 6

5.1 General Settings . 6

5.2 Illustration in Toy Regression . 7

5.3 Few-Shot Supervised Learning . 7

5.4 Meta Reinforcement Learning . 8

5.5 Ablation Studies . 9

6 Conclusions 9

A Pseudo Code of Algorithms in Meta Learning 17

B Frequently Asked Questions 19

C Probabilistic Graphs in Meta Training/Testing 19

D More Descriptions of NP Family Models and Meta RL 20

E MoE-NPs as Exchangeable SPs 21

E.1 Generative Processes . 21

E.2 Consistency Properties . 21

F Summary of Existing NP Related Models 22

F.1 Comparison in Technical Details . 22

F.2 Time Complexity . 22

F.3 Additional Literature Review . 22

G Formulation of Evidence Lower Bounds 23

G.1 Variational Distributions . 24

15

G.2 Lower Bound on the Evidence for Few-Shot Supervised Learning 24

G.3 Selection of Categorical Approximate Posteriors/Priors 26

G.4 Stochastic Gradient Estimates . 26

G.5 Estimates of Statistics . 27

H Experimental Settings and Neural Architectures 27

H.1 Dataset & Environments . 28

H.1.1 Dataset in Few-shot Supervised Learning 28

H.1.2 Environments in Meta Reinforcement Learning 28

H.2 Implementations in Meta Learning Tasks . 28

H.2.1 Toy Experiments . 28

H.2.2 Few-Shot Supervised Learning . 29

H.2.3 Meta Reinforcement Learning . 29

H.3 Neural Architectures . 30

I Additional Experimental Results 35

I.1 Additional Analysis of Learned Latent Variables 35

I.2 Additional Results of NP Variants in Toy Regression 36

I.3 Additional Results of NP Variants in System Identification 37

I.4 Comparison with Attentive Neural Processes . 37

I.5 Augmenting MoE-NPs with Convolutional Modules 37

I.6 More Visualization Results . 38

J Computational Devices 38

16

A Pseudo Code of Algorithms in Meta Learning

Algorithm 1: MoE-NPs for Few-Shot Su-
pervised Learning.

Input :Task distribution p(T); Task batch
size B; Length of mini-batch
instances Nmax; Epochs m;
Learning rates λ1 and λ2.

Output :Meta-trained parameters
ϕ = [ϕ1, ϕ2] and θ.

1 Initialize parameters ϕ and θ;
2 for i = 1 to m do
3 Sample a random value

NC ∼ U [1, Nmax]
4 as the number of context points;
5 Sample mini-batch instances D
6 to split dataset

{(xC , yC , xT , yT)bs}Bbs=1;
// generative process

7 Sample expert latent variables
z1:K ∼ qϕ1

(z1:K |DT);
8 Compute distribution parameters α

with Eq. (11);
9 Compute negative ELBOs LMC(θ, ϕ)

in Eq. (8);
// amortized inference

process
10 ϕ← ϕ− λ1∇ϕLMC(θ, ϕ) in Eq. (8);
11 θ ← θ − λ2∇θLMC(θ, ϕ) in Eq. (8);
12 end

Algorithm 2: MoE-NPs for Few Shot Su-
pervised Learning (Meta-Testing Phases).

Input :Task τ ; Meta-trained
ϕ = [ϕ1, ϕ2,2] and θ.

Output :Predictive distributions.
1 Initialize parameters ϕ and θ;
2 Set the number of context points NC ;
3 Split test dataset into the context/target
4 {(xC , yC , xT , yT)bs}Bbs=1 ∼ D;
// generative process

5 Sample expert latent variables of
6 the mini-batch z1:K ∼ qϕ1(z1:K |DC

τ);
7 if discrete l.v.s for hard assignment then
8 Sample assignment latent variables of
9 the mini-batch e ∼ pϕ2,2

(e|xT , z1:K);
10 Output the distribution

pθ(yT |xT , z1:K , e);
11 else
12 Compute the distribution parameters α
13 of assignment latent variables via Eq.

(11);
14 Output the predictive distribution
15 pθ(yT |xT ,DC

τ) via Eq. (9);
16 end

17

Algorithm 3: MoE-NPs for Meta RL.
Input :MDP distribution p(T); Batch size of tasks B; Training steps m; Learning rates λ1, λ2

and λ3.
Output :Meta-trained parameters ϕ, θ and φ.

1 Initialize parameters ϕ, θ, φ and replay buffer{MC
τ }B;

2 while Meta-Training not Completed do
3 Sample a batch of tasks {τ}B ∼ p(T);

// collect context transitions
4 for each τ ∈ {τ}B do
5 Initialize the context DC

τ = {};
6 Execute Algorithm (4) in Appendix
7 to update DC

τ

8 end
// actor critic learning in batchs

9 for i = 1 to m do
10 for each τ ∈ {τ}B do
11 Sample context points DC

τ ∼ Sc(MC
τ)

12 & batch of transitions bτ ∼Mτ ;
13 Sample z1:K ∼ qϕ1

(z1:K |DC
τ);

14 for each s ∈ bτ do
15 Sample e ∼ qϕ2

(e|z1:K , s) to select z
16 and augment the state as [s, z] ∈ bτ ;
17 end

// run forward propagation
18 Lτ

A = Lτ
A(bτ) in Eq. (12);

19 Lτ
C = Lτ

C(bτ) in Eq. (13);
20 Lτ

KL = Lτ
KL(DC

τ , bτ) in Eq. (14)
21 end

// run back propagation
22 ϕ← ϕ− λ1∇ϕ

∑
τ (Lτ

C + Lτ
KL) in Eq. (13/14);

23 φ← φ− λ2∇φ

∑
τ Lτ

A in Eq. (12);
24 θ ← θ − λ3∇θ

∑
τ Lτ

C in Eq. (13);
25 end
26 end

Algorithm 4: MoE-NPs for Meta RL (Meta-Testing Phases).
Input :MDP distribution p(T); meta-trained parameters ϕ, θ.
Output :Cumulative rewards.

1 Sample a test task τ ∼ p(T);
2 Initialize parameters ϕ, θ, φ and replay bufferMC

τ ;
// collect transitions for memory buffers

3 Initialize the context DC
τ = {};

4 for k = 1, 2, . . . ,K do
5 Sample z1:K ∼ qϕ1(z1:K |DC

τ);
6 for state s of each time step do
7 Sample e ∼ qϕ2

(e|s, z1:K);
8 Gather data from πφ(a|[s, z1:K , e]) to updateMC

τ ;
9 Update DC

τ = {(sj , aj , s′j , rj)}Nj=1 ∼MC
τ ;

10 end
11 end

18

B Frequently Asked Questions

Here we collect some frequently asked questions from reviewers and other literature researchers. We
thank these reviewers for these precious questions and add more explanation.

Selection of Benchmarks. Admittedly, NP variants can be applied a series of downstream tasks.
Our selection of benchmark missions is based on existing literature for NP models. The system
identification task was previously investigated with NP variants in work [43; 47], in which learning
transferable physics dynamics with NPs is a crucial application. The image completion task is more
commonly used in work [9; 2; 1]. The meta reinforcement learning task can also be studied within
NP framework [3; 48].

NP Family in Classification Tasks. We have tried to search neural architectures for few-shot image
classification tasks, but the performance is not ideal in comparison to other metrics based methods.
Meanwhile, we have gone through most NP related work, and it is challenging to achieve SOTA
few-shot image classification results with standard neural architectures in NPs, e.g. multi-layer
perceptrons (MLPs). Maybe this is due to the nature of stochastic processes, which can address
regression problems more efficiently. Unless specialize modules instead of MLPs are used, we do not
expect NP variants with MLPs can achieve SOTA performance. The aim of this paper focuses more
on mixture expert inductive biases and place less attention on neural architecture search. So MLPs
are shared across all baselines to enable fair comparison.

Expressiveness of Mixture of Expert Inductive Biases. A natural question about learning diverse
functional representation is whether these multiple expert latent variables will collapse into one. We
refer the collapsed representation to vanilla (C)NPs, and the previous empirical results show the
collapsed ones work poorer than mixture of expert ones in both few-shot regression tasks and meta
reinforcement learning tasks. Also, from the multimodal simulation result, we discover both latent
assignment variables and expert variables are meaningful, which reflects the effectiveness of mixture
expert inductive biases. That means, we have not encountered meta representation collapse issues in
experiments.

Extension with other Mixture of Experts Models. Our work is the first time to examine MoEs
inductive biases in NPs family, and the used MoE module is an amortized inference one. We
have not found a trivial implementation of MoEs in meta learning domain. But in MoEs literature,
there exist other more effective MoE models, which can better trade off communication/memory
and performance. So NPs family can also be combined with these models, such as GShard [49],
Deepsepeed MoEs [50] and etc.

Potential Applications in Industry. Here we provide two available applications with MoE-NPs in
the industry. One is in multilingual machine translation or multilingual language auto-completion. In
this case, a mixture of experts corresponds to multilingual functional priors for multi-modal signals
[51] and enables the prediction with partial observations. Another application lies in modelling
irregular time series [52; 53]. In this case, diverse experts can handle discontinuous components in a
rich family of stochastic functions. Meanwhile, the entropy of learned assignment latent variables
can tell us the regions likely to be discontinuous, which is quite helpful in anomaly detection in a
black-box system.

C Probabilistic Graphs in Meta Training/Testing

As exhibited in Fig. (10)/(11), shown are computational diagrams when implementing MoE-NPs in
meta learning tasks.

Variational Posteriors. Since the real posteriors for both {zk}Kk=1 and eT are computationally
intractable, the approximate ones are used in practice. These are called variational posteriors, e.g.
qϕ1,k

for an expert latent variable zk and qϕ2,1
(e|x, y, z1:K) for assignment latent variables e. For the

sake of simplicity, we denote {qϕ1,k
}Kk=1 by qϕ1

in some time. Importantly, the Gumbel-softmax
trick [54] is used to sample assignment latent variable e from categorical approximate distributions.

Variational Priors. In some cases, the prior distributions for {zk}Kk=1 and eT are set to constrain the
scope of prior distributions. For example, in few-shot supervised learning, since the context and the
target have the same form, the variational prior is selected to be qϕ1

as well to ensure the consistency

19

and this works in meta testing phases. For the assignment latent variable e, this uses the same form in
conditional VAE [55] as pϕ2,2 .

(a) Inference Process (b) Generative Process
Figure 10: Computational Diagram in Few-shot Supervised Learning. Blue dotted lines are for expert latent
variables while red dotted lines are for assignment latent variables in inference.

Figure 11: Computational Diagram in Meta Reinforcement Learning. This is in an information bottleneck form
[6; 3]. The variational posteriors are pϕ,k = qϕ1,k (z|D

C
τ) and qϕ2 = qϕ1,k (e|s, z1:K). As for the variational

prior, we use the same strategy as that in [6]. They are respectively the fixed normal p(z) = N (0, I) and the
categorical p(e) = Cat(e;K, [1

K
, 1
K
, . . . , 1

K
]).

D More Descriptions of NP Family Models and Meta RL

In the main paper, we unify the description of NP family models in both few-shot supervised learning
and meta reinforcement learning. This is the same with that in FCRL [3]. Meta learning in NP related
models is to learn functional representations of different tasks and formulate the fast adaptation via
inferring the task specific conditional distribution p(DT

τ |DC
τ) =

∫
p(DT

τ |z)p(z|DC
τ)dz (equivalent

to Eq. (1)).

To make the downstream reinforcement learning task using NP family models clearer, we add the
following explanations. In few-shot supervised learning, DC

τ and DT
τ are of the same form. However,

in context-based meta reinforcement learning, DC
τ is a set of task specific transitions and DT

τ is a set
of state (action) values. As the result, the approximate posteriors and the selected priors to resolve
Eq. (1) are distinguished in separate meta learning cases.

In context-based meta reinforcement learning, we can translate our problem into finding the distribu-
tion of optimal value functions in Eq. (5), this corresponds to learning meta critic modules with NP
family models. Given a transition sample [s, a, r(s, a), s′], the target input is the state xT = s and the
target output is the temporal difference target yT = Q̂(s, a) = r(s, a) + γV ([s′, z′]). The standard
Gaussian distribution is used as the prior p(zk) = N (0, I) in Eq. (14), while the approximate
posterior is learned from DC

τ with permutation invariant functions. In total, sampling from the state
dependent approximate posterior z ∼ qϕ(z|s,DC

τ) corresponds to Eq. (15), where the operator ⊙
denotes the selection process with help of Hadamard products.

z1:K ∼ qϕ1
(z1:K |DC

τ), e ∼ qϕ2
(e|s, z1:K), z = z1:K ⊙ e (15)

20

E MoE-NPs as Exchangeable SPs

E.1 Generative Processes

To better understand our developed model in meta learning scenarios, we translate Eq. (6) into a
step-wise generative process. The same with that in the main paper, the task distribution is denoted
by p(T) and we presume K-experts to summarize the stochastic traits of a task.

τ ∼ p(T), zk ∼ p(zk|T) ∀k ∈ {1, 2, . . . ,K} (16a)

x ∼ p(x), e ∼
K∏

k=1

αk(x, z1:K)I[ek=1], z = [z1, z2, . . . , zK]T ⊙ e (16b)

[µx,Σx] = gθ(x, z), y ∼ N (µx,Σx + ϵ2I) (16c)

Here a MoE-NP for the task τ is specified with K-expert latent variables z1:K in Eq. (16.a). The
probability mass function for a data point related categorical distribution Cat(K,α(x, z1:K)) is
denoted by p(e|x, z1:K) =

∏K
k=1 αk(x, z1:K)I[ek=1] in Eq. (16.b), and e is an assignment latent

variable to select an expert for the generative process. After that, the distributional parameters for the
output of a data point are learned via a function gθ in Eq. (16.c), followed by the output distribution
N (µx,Σx + ϵ2I).

Note that a collection of sampled functional experts are represented in a vector of variables z1:K =
[z1, z2, . . . , zK]T and e = [0, · · · , 1︸︷︷︸

k-th position

, · · · , 0]T ⇔ ek = 1 is a one-hot vector in Eq. (16.b). In

Eq. (16.c), the expert is selected in a way z = z1:K ⊙ e. For the sake of generality, irreducible noise
N (0, ϵ2I) is injected in the output. In experiments, K-expert latent variables z1:K as well as discrete
assignment latent variables e are non-observable.

E.2 Consistency Properties

Definition 1. (Exchangeable Stochastic Process) Given a probability space be (Ω,F ,P), let
µx1,...,xN

be a probability measure on Rd with {x1, . . . , xN} as a finite index set. The defined process
is called an exchangeable stochastic process (SP), S : X × Ω → Rd such that µx1,...,xN

(F1 ×
· · · × FN) = P(Sx1

∈ F1, . . . ,SxN
∈ FN) when it satisfies the exchangeable consistency and

marginalization consistency.

Remember that the generative model is induced in the main paper as follows. And we claim that our
designed generative model MoE-NP formulates a family of exchangeable SP in Definition 1.

ρx1:N
(y1:N) =

∫ K∏
k=1

p(zk)

N∏
i=1

[
K∑

k=1

p(yi|xi, z1:K , ek = 1)p(ek = 1|xi, z1:K)

]
dz1:K (17)

So it is necessary to verify two formerly mentioned consistencies according to Kolmogorov Extension
Theorem [35] and de Finetti’s Theorem [56]. This is to show the existence of SPs in Eq. (17).

Exchangeability Consistency. For N data points from Eq. (17), we impose any permutation
operation σ over their indices, and this results in σ : [1, 2, . . . , N] → [σ1, σ2, . . . , σN]. Then we
can check the following equation is satisfied since the element-wise product of probabilities can be
swapped.

21

ρx1:N
(y1:N) =

∫ [
K∏

k=1

p(zk)

]
dz1:K

N∏
i=1

[
K∑

k=1

p(yσi
|xσi

, z1:K , ek = 1)p(ek = 1|xσi
, z1:K)

]

=

∫ [
K∏

k=1

p(zk)

]
N∏
i=1

[
K∑

k=1

p(yσi |xσi , z1:K , ek = 1)p(ek = 1|xσi , z1:K)

]
dz1:K

= ρxσ(1:N)
(yσ(1:N)) □

(18)

Marginalization Consistency. Given the assumption that the integral in Eq. (17) is finite, we pick
up a subset of indices [M + 1,M + 2, . . . , N] and make M < N without difference in orders. And
the result after marginalization over y-variable in the selected indices can be verified based on the
following equation.

∫
ρx1:N

(y1:N)dyM+1:N =

∫ [
K∏

k=1

p(zk)

]
dz1:K

[∫ N∏
i=1

p(yi|xi, z1:K)dyM+1:N

]

=

∫∫ M∏
i=1

p(yi|xi, z1:K)

N∏
i=M+1

(p(yi|xi, z1:K)

K∏
k=1

p(zk)dz1:KdyM+1:N

=

∫ [
K∏

k=1

p(zk)

]
dz1:K

M∏
i=1

[
K∑

k=1

p(yi|xi, z1:K , ek = 1)p(ek = 1|xi, z1:K)

]
= ρx1:M

(y1:M) □

(19)

Built on these two sufficient conditions, our developed MoE-NP is a well defined exchangeable SP .

F Summary of Existing NP Related Models

F.1 Comparison in Technical Details

Here we give a brief summary on difference between MoE-NPs and existing typical Neural Process
models in Table (2). Some crucial traits include forms of encoders and decoders structures, types of
latent variable and inductive biases injected in modelling. Especially, the inductive bias for MoE-NP
is reduced to be multiple functional priors, which means a collection of expert neural processes
to induce the generated dataset. Since a general inductive bias behind NPs related models is the
modelling of exchangeable stochastic processes with cheap computations. This corresponds to a
distribution of functions, termed as functional in the Table. Note that the recognition model of
NP models in Meta Training Scenarios is replaced with qϕ(z|[xT , yT]) since all target points can be
available, but in Meta Testing Scenarios, only [xC , yC] are accessible.

F.2 Time Complexity

As for running time complexity, the vanilla NPs and CNPs are with O(N +M), while MoE-NPs
are with O(K ∗ (N +M)) (making M predictions with N observations). In practice, the number of
experts is small, so the increase of running time complexity can be ignored in practice. In contrast,
traditional Gaussian processes are O((N +M)3) in terms of running time complexity.

F.3 Additional Literature Review

Due to page limit in the main paper, we include other related works in this subsection. In unsupervised
learning, the Neural Statistician Model [57] is introduced to compute summary statistics inside the
dataset. The Generative Query Network [48], a variant of NPs for visual sensory dataset, makes use
of a latent variable to abstract scenes in high dimensions. To capture heteroscedastic noise inside the
stochastic process, DSVNP [58] induces latent variables at different levels. The functional neural

22

Table 2: Summary of Typical Neural Process Related Models (Meta-Testing Scenarios). The recognition
model and the generative model respectively correspond to the encoder and the decoder in the family of neural
processes.

Models Recognition Model Generative Model Latent Variable Inductive Bias

CNP [2] z = fϕ(xC , yC) pθ(y|[x, z]) continuous conditional functional

NP [1] qϕ(z|[xC , yC]) pθ(y|[x, z]) continuous global functional

ANP [14; 15] qϕ1(z|[xC , yC]) pθ(y|[x, z, z∗]) continuous global functional
fϕ2(z∗|[xC , yC], x∗) continuous local embedding

FCRL [3] fϕ(z|[xC , yC]) pθ(y|[x, z]) continuous contrastive functional

ConvNP [16] pϕ(z|[xC , yC]) pθ(y|[x, z]) continuous convolutional functional

Conv-CNP [17] fϕ(z∗|[xC , yC], x∗) pθ(y|[x, z∗]) continuous convolutional functional

MoE-NP (Ours) qϕ1(z1:K |[xC , yC]) pθ(y|[x, z1:K , e]) continuous multiple functional
qϕ2,1(e|z1:K , x, y) pϕ2,2(e|z1:K , x) categorical

processes infer the directed acyclic graph in the latent space and formulate flexible exchangeable
stochastic processes for single task problems [59]. Inspired by self-supervised learning, [3; 60]
propose to augment the neural process with contrastive losses. [61] combines context memories and
recurrent memories to formulate sequential neural processes (SNPs). Though there exist a number of
NP variants, none of them consider to inject multiple functional inductive bias in modeling.

G Formulation of Evidence Lower Bounds

Since functional priors reflected in the K-expert latent variables z1:K are learned via approximate
distributions, this can be directly optimized within the framework of variational inference. So we leave
these out in this discussion. The difficulty of optimization principally comes from the involvement
of discrete latent variables. We therefore discuss chance of using another traditional optimization
algorithm, called Expectation Maximization (EM) [62], in our settings. Omitting the K-expert latent
variables z1:K and corresponding variational distributions, we take a closer look at the assignment
latent variable e in the logarithm likelihood as ln

(∑K
k=1 p(y|x, z1:K , ek = 1)p(ek = 1|x, z1:K)

)
and derive the corresponding EM algorithm.

Expectation(E)-Step: Note that the assignment variable e is discrete with the categorical probability
function p(e|x, z1:K) = Cat(e;K,α(x, z1:K)). This step is to update the posterior of the proportional
coefficients α(x, z1:K) based on the last time step model parameters θ(t).

α
(t+1)
k = p(ek = 1|x, z1:K , y) ∝ p(ek = 1)pθ(t)(y|x, z1:K , ek = 1) (20)

Here the prior distribution p(e) can be a commonly used one Cat(K, [1K , 1
K , . . . , 1

K]) or the last time
updated one p(t)(e). As a result, updated categorical distribution parameters are:

α(t+1) =

α
(t+1)
1

α
(t+1)
2

...
α
(t+1)
K

 =

exp((ln(p
θ(t)

(y|x,z1:K ,e1=1)))/τ)∑K
k=1 exp((ln(p

θ(t)
(y|x,z1:K ,ek=1)))/τ)

exp((ln(p
θ(t)

(y|x,z1:K ,e2=1)))/τ)∑K
k=1 exp((ln(p

θ(t)
(y|x,z1:K ,ek=1)))/τ)

...
exp((ln(p

θ(t)
(y|x,z1:K ,eK=1)))/τ)∑K

k=1 exp((ln(p
θ(t)

(y|x,z1:K ,ek=1)))/τ)

 (21)

where τ is the temperature parameter.

Maximization(M)-Step: Once the distributional parameter of assignment latent vari-
ables are updated, the next step is to maximize the logarithm likelihood as θ(t+1) =

23

argmaxθ
∑

(x,y)∈D ln [pθ(t)(y|x, z1:K , e)] given the last time updated model parameter θ(t). With
help of gradient ascent, this can be written as follows,

θ(t+1) ← θ(t) + λ
∑

(x,y)∈D

∇θ ln [pθ(t)(y|x, z1:K , e)] , e = one_hot[argmax
k

α(t+1)] ∀(x, y) ∈ D

(22)

where λ is the learning rate.

Note that the coefficient α is data point dependent and the derivation of EM algorithms considers
a subset of data points D. However, in meta learning scenarios, we handle large-scale dataset and
the above-mentioned EM framework is computationally expensive and impractical. Due to these
considerations, we do not apply EM algorithms to estimate the discrete distribution and instead
variational inference is employed for the assignment latent variable in optimization.

G.1 Variational Distributions

For continuous latent variables, diagonal Gaussians are commonly used as variational distribu-
tions. With Gaussian variational posteriors N (z;µ,Σ) and corresponding priors N (z;µp,Σp), the
Kullback–Leibler Divergence can be analytically computed as follows.

DKL[N (z;µ,Σ) ∥ N (z;µp,Σp)] =
1

2
[ln
|Σp|
|Σ|
− d+ (µ− µp)

TΣ−1
p (µ− µp) + Tr{Σ−1

p Σ}]

(23)

Meanwhile, when it comes to categorical distributions, the corresponding prior distribution is selected
as Cat(K,α0) with distribution parameters α0 = [α0,1, α0,2, . . . , α0,K]. And the Kullback–Leibler
Divergence is computed as follows.

DKL[Cat(K,α∗) ∥ Cat(K,α0)] =

K∑
k=1

α∗,k ln

[
α∗,k

α0,k

]
(24)

When α0 = [1K , 1
K , . . . , 1

K], the divergence is further simplified as follows.

DKL[Cat(K,α∗) ∥ Cat(K,α0)] =

K∑
k=1

α∗,k ln

[
α∗,k

1/K

]
=

K∑
k=1

lnα∗,k + lnK (25)

G.2 Lower Bound on the Evidence for Few-Shot Supervised Learning

Since K-expert latent variables are independent in settings, we denote the corresponding varia-
tional parameters by qϕ1 = {qϕ1,1 , qϕ1,2 , . . . , qϕ1,K

}. ϕ1,k denotes parameters of encoders for
k-th expert model. Hence, the distribution follows that qϕ1

(z1:K |DC
τ) =

∏K
k=1 qϕ1,k

(zk|DC
τ) and

qϕ1
(z1:K |DT

τ) =
∏K

k=1 qϕ1,k
(zk|DT

τ).

Note that (x, y) ∈ DT
τ and the variational posterior for expert latent variables are qϕ1(z1:K |DT

τ)
in the general NPs. As for the variational posterior for assignment latent variables, we choose
qϕ2,1

(e|x, y, z1:K) as default. We will use these notations to formulate the evidence lower bound
(ELBO) as follows.

24

ln p(y|x,DC
τ) = ln

∫
p(y|x, z1:K)p(z1:K |DC

τ)dz1:K

(26a)

≥ Eqϕ1
(z1:K |DT

τ) [ln p(y|x, z1:K)]−DKL[qϕ1
(z1:K |DT

τ) ∥ p(z1:K |DC
τ)]

(26b)

= Eqϕ1
(z1:K |DT

τ)

[
ln

K∑
k=1

p(y, ek = 1|x, z1:K)

]
−DKL[qϕ1

(z1:K |DT
τ) ∥ p(z1:K |DC

τ)]

(26c)

= Eqϕ1
(z1:K |DT

τ)

[
ln

K∑
k=1

p(y|x, zk)p(ek = 1|x, z1:K)

]
−DKL[qϕ1

(z1:K |DT
τ) ∥ p(z1:K |DC

τ)]

(26d)

≥ Eqϕ1
(z1:K |DT

τ)

[
Eqϕ2,1

(e|x,y,z1:K) [ln pθ(y|x, z1:K , e)]
]

(26e)

−Eqϕ1
(z1:K |DT

τ)

DKL[qϕ2,1
(e|x, y, z1:K)︸ ︷︷ ︸

variational discrete posteriors

∥ p(e|x, z1:K)]

(26f)

−
K∑

k=1

DKL[qϕ1,k
(zk|DT

τ)︸ ︷︷ ︸
K functional experts

∥ p(zk|DC
τ)]

(26g)

≈ Eqϕ1
(z1:K |DT

τ)

[
Eqϕ2,1

(e|x,y,z1:K) [ln pθ(y|x, z1:K , e)]
]

(26h)

−Eqϕ1
(z1:K |DT

τ)

DKL[qϕ2,1
(e|x, y, z1:K)︸ ︷︷ ︸

variational discrete posteriors

∥ pϕ2,2
(e|x, z1:K)︸ ︷︷ ︸

variational discrete priors

]

(26i)

−
K∑

k=1

DKL[qϕ1,k
(zk|DT

τ)︸ ︷︷ ︸
K functional experts

∥ qϕ1,k
(zk|DC

τ)] = −L(θ, ϕ1, ϕ2) □

(26j)

By introducing the variational distribution qϕ2
for the discrete assignment latent variable e, Eq.(26.d)

is further bounded by Eq. (26.e-g). Recall that when vanilla NP modules are used here, the
approximate posterior in Eq. (26) in meta training should be substituted with qϕ1

(z1:K |DT
τ) with the

corresponding approximate prior p(zk) = qϕ1,k
(zk|DC

τ). And this matches the general form in the
main paper for −L(θ, ϕ1, ϕ2) in Eq. (7). When Dirac delta distributions are used in MoE-NPs, the
divergence term about the continuous latent variable is removed as default. Denoting the approximate
posterior by qϕ2,1

(e|x, y, z1:K) = Cat(e; [α1(x, y, z1:K), α2(x, y, z1:K), . . . , αK(x, y, z1:K)]), we
rewrite the log-likelihood inside the ELBO as Eq. (27).

Eqϕ2,1
(e|x,y,z1:K) [ln p(y|x, z1:K , e)] =

K∑
k=1

αk ln p(y|x, zk) (27)

25

As for the approximate posterior of the assignment latent variable qϕ2,1(e|x, y, z1:K), we provide
two ways of implementations in our experiments: (i) use the target input y as the additional input
to formulate qϕ2,1(e|x, y, z1:K) (ii) use the same form as the conditional prior qϕ2,1(e|x, y, z1:K) =
pϕ2,2

(e|x, z1:K).

G.3 Selection of Categorical Approximate Posteriors/Priors

As previously observed in Acrobot system identification results, increasing the number of expert
latent variables tends to weaken the generalization capability. This also happens in image completion,
so we set the number of experts used is 2 in the task. We can attribute this to inference sub-optimality
in categorical approximate posteriors/priors.

Remember that in image completion and Acrobot system identification, the used approximate
posterior for the categorical latent variable is qϕ2,1

(e|x, y, z1:K) with the target information y for the
input. Since the developed MoE-NP is a VAE-like models [30], the number of expert latent variables
K decides the dimension of the assignment latent variable e. In auto-encoder models, when the
dimension of latent variables in all hidden layers is higher than that of the input, the model tends to
copy the input to the output and fails to learn effective representations. This is the direct source of
overfitting and applies to conditional VAE methods [55]. For example, the dimension of output in
Acrobot is 6, which implies the bottleneck constraint is weaker when the number of experts is greater
than 6.

It is reasonable to alleviate such sub-optimality by directly using the conditional prior as the approxi-
mate posterior qϕ2,1(e|x, y, z1:K) = pϕ2,2(e|x, z1:K). You can find more clues from the following
stochastic gradient estimates for the assignment latent variables in Eq. (31). Meanwhile, we report
empirical results in image completion when qϕ2,1

(e|x, y, z1:K) = pϕ2,2
(e|x, z1:K) in Sec. (I.1). And

you can see inference in this way does not suffer the overfitting issue caused by more experts.

G.4 Stochastic Gradient Estimates

Here the stochastic gradient estimates with respect to parameters in the negative ELBO L(θ, ϕ1, ϕ2)
in Eq. (7) are provided as follows.

∂

∂θ
L(y;x, θ, ϕ1, ϕ2) = Eqϕ1

(z1:K |DT
τ)

K∑
k=1

qϕ2,1
(ek = 1|x, y, z1:K)

∂

∂θ
ln pθ(y|x, zk) (28)

∂

∂ϕ1,k
L(y;x, θ, ϕ1, ϕ2) =

∫ [
∂

∂ϕ1,k
qϕ1,k

(zk|DT
τ)

]
ln pθ(y|x, zk)dzk

− ∂

∂ϕ1,k
DKL[qϕ1,k

(zk|DT
τ) ∥ qϕ1,k

(zk|DC
τ)]

(29)

∂

∂ϕ2
L(y;x, θ, ϕ1, ϕ2) = Eqϕ1

(z1:K |DT
τ)

[
K∑

k=1

[
∂

∂ϕ2
qϕ2,1

(ek = 1|x, y, z1:K)

]
ln pθ(y|x, zk)

]

−Eqϕ1
(z1:K |DT

τ)

[
∂

∂ϕ2
DKL[qϕ2,1

(e|x, y, z1:K) ∥ pϕ2,2
(e|x, z1:K)]

] (30)

The reparameterization trick [30] is used to sample values from variational distributions of expert la-
tent variables throughout the inference process and stochastic gradient estimates in Eq. (28)/(29)/(30).
In prediction processes, the way to get values of assignment latent variables follows that in [63].

Besides, we provide the stochastic gradient estimate for another case when the variational
posterior for the assignment latent variable is selected as the variational prior, which means
qϕ2,1(e|x, y, z1:K) = pϕ2,2(e|x, z1:K). This case can drop off the divergence term for the
discrete variable. Let the conditional prior for the discrete variable be pϕ2,2

(e|x, z1:K) =

26

Cat(e; [α1(x, z1:K), α2(x, z1:K), . . . , αK(x, z1:K)]), we apply the log-derivative trick in a REIN-
FORCE estimator [64] to Eq. (30) and can obtain the following equation as the gradient estimator1.

∂

∂ϕ2,2
L(y;x, θ, ϕ1, ϕ2) = Eqϕ1

(z1:K |DT
τ)

[
K∑

k=1

[
∂

∂ϕ2,2
pϕ2,2

(ek = 1|x, z1:K)

]
ln pθ(y|x, zk)

]

= Eqϕ1
(z1:K |DT

τ)

K∑

k=1

pϕ2,2
(ek = 1|x, z1:K)

 ∂

∂ϕ2,2
ln pϕ2,2

(ek = 1|x, z1:K) ln pθ(y|x, zk)︸ ︷︷ ︸
Score Function

= Eqϕ1
(z1:K |DT

τ)

[
K∑

k=1

αk
∂

∂ϕ2,2
ln pϕ2,2

(ek = 1|x, z1:K) ln pθ(y|x, zk)

]
(31)

As can be seen from Eq. (31), the posterior update implicitly exploits supervision information.

G.5 Estimates of Statistics

Momentum. Given the pre-trained MoE-NPs, we can formulate the statistical momentum in
predictive distributions. For the first order momentum, equivalently mean of the predictive distribution,
we need to compute the conditional version E[Y |X = x,DC

τ] in meta learning scenarios. Here the
predictive distribution of one expert is parameterized in the form p(y|x, zk) = N (y;m(x, zk),Σk),
where m is the learned mean function using a neural network and σ2 is a variance parameter. Using
a single stochastic forward pass in expert latent variable z1:K , we can derive the estimate of the
predictive mean m̂ = E[Y |X = x,DC

τ].

m̂ =

K∑
k=1

αk ·m(x, zk), αk = pϕ2,2
(ek = 1|z1:K , x) (32)

The second order moment can be estimated accordingly. Here we consider the case when the output
is one dimensional and Σk = σ2

k.

V[Y |X = x,DC
τ] = E[Y 2]− E[Y]2 =

K∑
k=1

αk(σ
2
k +m(x, zk)

2)− m̂2 (33)

Entropy. Note that our developed MoE-NPs can also be applied to out of detection (O.O.D) tasks. In
this case, the entropy of predictive distribution plays a crucial role. Though the exact estimate of the
predictive entropy for MoE-NPs is intractable due to the complexity inside the mixture components,
we can measure the expected result of the entropy E[H(Y)|X = x,DC

τ] in prediction. We still use a
single stochastic forward pass in expert latent variable z1:K in estimation. If H(Yk|X = x, zk) =
−
∫
p(Y = y|X = x, zk) ln p(Y = y|X = x, zk)dY is bounded ∀k ∈ {1, . . . ,K}, the estimate of

entropy term is as follows.

Ê[H(Y)|X = x,DC
τ] =

K∑
k=1

αk

∫
p(Y = y|X = x, zk)H(Y = y)dy =

K∑
k=1

αkE[H(Yk|X = x, zk)]

(34)

H Experimental Settings and Neural Architectures

In this section, we provide with more experimental details. Importantly, neural modules
of MoE-NPs in the PyTorch version are listed. For the few-shot regression, we pro-
vide an example of our implementation of MoE-NPs from the anonymous Github link

1For discrete latent variables, we can obtain the analytical form of the stochastic gradient.

27

https://github.com/codeanonymous233/ICMoENP. For the context-based meta RL algo-
rithms, you can find the implementation of MoE-NPs from the anonymous Github link
https://github.com/codeanonymous233/MoENP.

H.1 Dataset & Environments

H.1.1 Dataset in Few-shot Supervised Learning

System Identification. Note that in the used Acrobot simulator 2, the observation is the pre-
processed state as a 6 dimensional vector [sin(θ1), cos(θ1), sin(θ2), cos(θ2), θ

′
1, θ

′
2]. The in-

put of the Acrobot system is the concatenation of the observation and the executed action
[sin(θ1), cos(θ1), sin(θ2), cos(θ2), θ

′
1, θ

′
2, a]. The output of Acrobot system is the predicted tran-

sited state. We generate 16 meta training tasks by varying the masses of two pendulums m1 and
m2, which means the hyper-parameters of the system come from the Cartesian combination of the
set m1 ∈ {0.75, 0.85, 0.95, 1.15} and m2 ∈ {0.75, 0.85, 0.95, 1.15}. In meta training processes, a
complete random policy interacts with batch of sampled MDPs to formulate transition dataset. As for
meta testing tasks, we follow the same way to generate tasks by setting m1 ∈ {0.85, 1.05, 1.25} and
m2 ∈ {0.85, 1.05, 1.25}.
Image Completion. CIFAR10 dataset consists of 60000 32x32 color images in 10 categories.
Among these images, 50000 are for meta training with the rest for meta testing as the default in image
completion tasks. CIFAR10 images are processed via torchvision modules to normalize the pixel
values between [0, 1].

H.1.2 Environments in Meta Reinforcement Learning

Note that 2-D point robot navigation tasks, the distribution for meta training is a mixture of uniform
distributions [0, 2π/12] ∪ [5π/12, 7π/12] ∪ [10π/12, π]. The rest of regions along the arc is for out
of distribution tasks. The tasks in Mujoco [7] follows adaptations from [6; 65], where goals/velocities
or multiple hyper parameters of simulation systems are sampled from mixture distributions. The
horizon of an episode for mixture of point robots is 20, while that for Mujoco environments is 500.
The required numbers of environment steps in meta training processes are respectively 2.5 ∗ 1e6 for
point robots, 7.5 ∗ 1e6 for Half-Cheetah-CD and 6.5 ∗ 1e6 for Slim-Humanoid-CG. We leave more
details and settings of each environment in the above github code link.

2-D Point Robot. 2-D robots attempt to reach goals located in specified regions of the arc.

Cheetah-Complex-Direction. 2-D Cheetah robots aim at running in given directions. The task
includes multiple target directions and these change with split steps of episodes.

Humanoid-Complex-Goals. 3-D Humanoid robots aim at running towards goals. The task includes
multiple goals and these change with split steps of episodes.

H.2 Implementations in Meta Learning Tasks

H.2.1 Toy Experiments

The input of functions is in a range [−π, π] ∪ [π, 2π]. The general implementations of MoE-NPs are
as follows. The x-domain for the function f1(x) = sin(x) + ϵ1 with ϵ1 ∼ N (0, 0.032) is [−π, π],
while that for f2(x) = cos(x) + ϵ2 with ϵ2 ∼ N (0, 0.012) is [π, 2π]. Sampling from these two
components leads to a mixture dataset. The Encoder for all continuous latent variables is with two
hidden layers (32 neuron units each). The Gaussian distribution is used for continuous latent variables
in MoE-NPs. The Encoder for the discrete assignment latent variable in MoE-NPs corresponds to a
softmax-output neural network with two hidden layers (16 neuron units each). The Decoder is with
three hidden layers (128 neuron units each) as well. The number of data points in each sampled task
is 100.

2https://github.com/openai/gym/blob/master/gym/envs/classic_control/acrobot.py

28

H.2.2 Few-Shot Supervised Learning

For gradient based methods, we use implementations of MAML3 and CAVIA4.

System Identification. The general implementations are as follows. For all NP related models,
the dimension of a latent variable is set to be 16. The Encoder for all continuous latent variables
is with two hidden layers (32 neuron units each). Note that Dirac delta distributions are used for
continuous latent variables in MoE-NPs since this case works best in few-shot supervised learning.
For MoE-NPs, we use three expert latent variables as the default, and the Encoder for the discrete
assignment latent variable in MoE-NPs corresponds to a softmax-output neural network with two
hidden layers (32 neuron units each). The Decoder is with four hidden layers (200 neuron units
each) as well. The number of tasks in batch training is 4, batch size in training is 200 transition steps
(for each task). The horizon for each episode of transitions is 200 time steps. In each iteration of
meta training, 4 different environments are randomly selected, and the uniform random controller is
used to interact for the collection of 5 episodes (for each task). In training dynamics systems, the
training batch size in transition buffer is 200, the training epoch is 5, and the whole process iterates
until convergence (the iteration number is 25). The learning rate for Adam optimizer is 1e− 3 as the
default.

Image Completion. The general implementations follow that in [9; 2] and are applied to all baselines
and MoE-NPs. The dimension of a latent variable is set to be 128. The Encoder for all NP variants
is with three hidden layers (128 neuron units each). Note that Dirac delta distributions are used for
continuous latent variables in MoE-NPs since this case works best in few-shot supervised learning.
The Decoder is with five hidden layers (128 neuron units each) as well. For MoE-NPs, we use three
expert latent variables as the default, and the Encoder for the discrete assignment latent variable
corresponds to a softmax-output neural network with two hidden layers (32 neuron units each). Adam
[30] is used as the optimizer, where the learning rate is set to be 5e− 4. The batch size in training is
8 images, and we meta train the model until convergence (the maximum epoch number is 50). Also
note that the number of context pixels in CAVIA is 10 for fast adaptation in default implementations,
and this leads to the best testing result of CAVIA in 10 pixel cases in Fig. (4). Note that, to train
NP models, including CNP/NP/FCRL/MoE-NP, we set the form of negative log-likelihood objective
consistent based on that in [66]. But in evaluation, to keep results of all methods consistent, we follow
that in [2; 9; 3] and report the MSEs in Fig. (4) in the testing phase.

H.2.3 Meta Reinforcement Learning

In terms of implementations of baselines, we directly use the following open sourced code: PEARL5,
MAML6 and CAVIA7. Note that the TRPO algorithm [67] is used for MAML/CAVIA as the default.
We do not change too much except the replacement of our environments when running experiments.

Further we provide more details on how to modify MoE-NPs in meta RL domains. Notice that
MoE-NP can also be seen as a latent variable model, and there exists a close relationship with PEARL
algorithms [6] when it comes into meta RL. Implementations of MoE-NPs are the same as that in
PEARL [6] except latent variable distributions and the inference way. Note that Soft Actor Critic
(SAC) algorithm [39] is used in policy optimization, which requires parameterization of both actor
and critic functions. As for the number of experts in MoE-NPs, we use 3 for all environments as
default. You can find more details about neural architectures/optimizers for each modules from the
above mentioned link.

As mentioned before, we use p(zk) = N (0, I) as the prior distribution for expert latent variables. The
approximate posterior is parameterized with a diagonal Gaussian distribution. The coefficient for KL
divergence terms in Eq. (14) are β0 = 1.0, β1 = 1.0. The meta-training processes for reinforcement
learning can be found in Algorithm (3) in the main paper. In terms of meta-testing processes, we
report the pseudo code in Algorithm (4).

3https://github.com/cbfinn/maml_rl
4https://github.com/lmzintgraf/cavia
5https://github.com/katerakelly/oyster
6https://github.com/cbfinn/maml_rl
7https://github.com/lmzintgraf/cavia

29

H.3 Neural Architectures

To help readers better understand our models, we attach the python code of the Encoder for separate
latent variables as follows. As for the Decoder, the structure is the same with that in a vanilla
NP/CNP [1; 2].

import torch
import torch.nn as nn
import torch.nn.functional as F

##
context encoders for expert latent variables

##

class Context_Encoder(nn.Module):
'''
Encoder network for [x_c, y_c]
'''
def __init__(self,

input_size,
hidden_size,
act_type,
num_layers,
output_size):

super(Context_Encoder, self).__init__()

self.emb_c_modules = []
self.emb_c_modules.append(nn.Linear(input_size,

hidden_size))
for i in range(num_layers):

self.emb_c_modules.append(nn.ReLU())
self.emb_c_modules.append(nn.Linear(hidden_size,

hidden_size))
self.emb_c_modules.append(nn.ReLU())
self.context_net = nn.Sequential(*self.emb_c_modules)

self.mu_net = nn.Linear(hidden_size,
output_size)

self.logvar_net = nn.Linear(hidden_size,
output_size)

def forward(self, x, mean_dim=1):
out = self.context_net(x)
out = torch.mean(out,dim=mean_dim)

mu, logvar = self.mu_net(out), self.logvar_net(out)

return (mu,logvar)

##
context encoders for discrete assignment latent variables

##

class Softmax_Net(nn.Module):
def __init__(self,

dim_xz,
experts_in_gates,
dim_logit_h,
num_logit_layers,
num_experts):

super().__init__()
self.dim_xz = dim_xz

30

self.experts_in_gates = experts_in_gates
self.dim_logit_h = dim_logit_h
self.num_logit_layers = num_logit_layers
self.num_experts = num_experts

self.logit_modules = []
if self.experts_in_gates:

self.logit_modules.append(nn.Linear(self.dim_xz,
self.dim_logit_h))

for i in range(self.num_logit_layers):
self.logit_modules.append(nn.ReLU())
self.logit_modules.append(nn.Linear(self.dim_logit_h,

self.dim_logit_h))
self.logit_modules.append(nn.ReLU())
self.logit_modules.append(nn.Linear(self.dim_logit_h,

1))
else:

self.logit_modules.append(nn.Linear(self.dim_xz,
self.dim_logit_h))

for i in range(self.num_logit_layers):
self.logit_modules.append(nn.ReLU())
self.logit_modules.append(nn.Linear(self.dim_logit_h,

self.dim_logit_h))
self.logit_modules.append(nn.ReLU())
self.logit_modules.append(nn.Linear(self.dim_logit_h,

self.num_experts))
self.logit_net=nn.Sequential(*self.logit_modules)

def forward(self, x_z, temperature, gumbel_max=False):

if self.experts_in_gates:
logit_output = self.logit_net(x_z)

else:
x_z = torch.mean(x_z, dim=-2)
logit_output = self.logit_net(x_z)

if not self.experts_in_gates:
logit_output = logit_output.unsqueeze(-1)

if gumbel_max:
logit_output = logit_output \

+ sample_gumbel(logit_output.size())

softmax_y = F.softmax(logit_output/temperature, dim=-2)

softmax_y = softmax_y.squeeze(-1)
shape = softmax_y.size()
_,ind = softmax_y.max(dim=-1)
y_hard = torch.zeros_like(softmax_y).view(-1, shape[-1])
y_hard.scatter_(1, ind.view(-1, 1), 1)
y_hard = y_hard.view(*shape)

y_hard = (y_hard-softmax_y).detach() \
+ softmax_y

softmax_y, y_hard = softmax_y.unsqueeze(-1), y_hard.unsqueeze(-1)

return softmax_y, y_hard

Putting the mentioned structures together, we include the MoE-NPs as follows.

31

##
mixture of expert neural processes

##

class MoE_NP(nn.Module):
def __init__(self,args):

super(MoE_NP,self).__init__()

extract parameters from args
self.dim_x=args.dim_x
self.dim_y=args.dim_y

self.dim_h_lat=args.dim_h_lat
self.num_h_lat=args.num_h_lat
self.dim_lat=args.dim_lat
self.num_lat=args.num_lat
self.experts_in_gates=args.experts_in_gates
self.num_logit_layers=args.num_logit_layers
self.dim_logit_h=args.dim_logit_h
self.temperature=args.temperature
self.gumbel_max=args.gumbel_max
self.info_bottleneck=args.info_bottleneck

self.dim_h=args.dim_h
self.num_h=args.num_h
self.act_type=args.act_type
self.amort_y=args.amort_y

encoding networks
self.expert_modules=nn.ModuleList([Context_Encoder(self.dim_x+self.dim_y,

self.dim_h_lat,
self.act_type,
self.num_h_lat,
self.dim_lat).cuda()

for i in range(self.num_lat)])

if self.experts_in_gates:
self.logit_net_post=Softmax_Net(self.dim_x+self.dim_y+self.dim_lat,

self.experts_in_gates,
self.dim_logit_h,
self.num_logit_layers,
self.num_lat)

self.logit_net_prior=Softmax_Net(self.dim_x+self.dim_lat,
self.experts_in_gates,

self.dim_logit_h,
self.num_logit_layers,
self.num_lat)

else:
self.logit_net_post=Softmax_Net(self.dim_x+self.dim_y,

self.experts_in_gates,
self.dim_logit_h,
self.num_logit_layers,
self.num_lat)

self.logit_net_prior=Softmax_Net(self.dim_x,
self.experts_in_gates,
self.dim_logit_h,
self.num_logit_layers,
self.num_lat)

decoding networks
self.dec_modules=[]
self.dec_modules.append(nn.Linear(self.dim_x+self.dim_lat,

self.dim_h))

32

for i in range(self.num_h):
self.dec_modules.append(get_act(self.act_type))
self.dec_modules.append(nn.Linear(self.dim_h,

self.dim_h))
if self.amort_y:

self.dec_modules.append(get_act(self.act_type))
self.dec_modules.append(nn.Linear(self.dim_h,

2*self.dim_y))
else:

self.dec_modules.append(get_act(self.act_type))
self.dec_modules.append(nn.Linear(self.dim_h,

self.dim_y))
self.dec_net=nn.Sequential(*self.dec_modules)

def get_context_idx(self,M):
generate the indeces of the N context points from M points
N = random.randint(1,M)
idx = random.sample(range(0, M), N)
idx = torch.tensor(idx).cuda()

return idx

def idx_to_data(self,data,sample_dim,idx):
get subset of an array
ind_data= torch.index_select(data, dim=sample_dim, index=idx)

return ind_data

def reparameterization(self,mu,logvar):
std=torch.exp(0.5*logvar)
eps=torch.randn_like(std)

return mu+eps*std

def encoder(self,x_c,y_c,x_t,y_t):
if self.training:

memo_c,memo_t=torch.cat((x_c,y_c),dim=-1),torch.cat((x_t,y_t),dim=-1)
emb_c_list_mu=torch.cat([expert_module(memo_c)[0].unsqueeze(0)

for expert_module
in self.expert_modules])

emb_c_list_logvar=torch.cat([expert_module(memo_c)[1].unsqueeze(0)
for expert_module

in self.expert_modules])
emb_t_list_mu=torch.cat([expert_module(memo_t)[0].unsqueeze(0)

for expert_module
in self.expert_modules])

emb_t_list_logvar=torch.cat([expert_module(memo_t)[1].unsqueeze(0)
for expert_module

in self.expert_modules])

emb_c_list_mu,emb_c_list_logvar=emb_c_list_mu.permute(1,0,2),\
emb_c_list_logvar.permute(1,0,2)

emb_t_list_mu,emb_t_list_logvar=emb_t_list_mu.permute(1,0,2),\
emb_t_list_logvar.permute(1,0,2)

else:
memo_c=torch.cat((x_c,y_c),dim=-1)
emb_c_list_mu=torch.cat([expert_module(memo_c)[0].unsqueeze(0)

for expert_module
in self.expert_modules])

33

emb_c_list_logvar=torch.cat([expert_module(memo_c)[1].unsqueeze(0)
for expert_module

in self.expert_modules])
emb_c_list_mu,emb_c_list_logvar=emb_c_list_mu.permute(1,0,2),\

emb_c_list_logvar.permute(1,0,2)

emb_t_list_mu,emb_t_list_logvar=0,0

return emb_c_list_mu,emb_c_list_logvar,emb_t_list_mu,emb_t_list_logvar

def forward(self,x_c,y_c,x_t,y_t,x_pred,y_pred,
whether_acrobot=False,whether_image=True):

mu_c,logvar_c,mu_t,logvar_t=self.encoder(x_c, y_c, x_t, y_t)

if self.training:
if self.info_bottleneck:

z_experts=self.reparameterization(mu_t,logvar_t)
else:

z_experts=mu_c
else:

assert y_pred==None
if self.info_bottleneck:

z_experts=self.reparameterization(mu_c,logvar_c)
else:

z_experts=mu_c

z_experts_unsq=z_experts.unsqueeze(1).expand(-1,x_pred.size()[1],-1,-1)

x_exp=x_pred.unsqueeze(2).expand(-1,-1,z_experts_unsq.size()[2],-1)

if self.training:
y_exp=y_pred.unsqueeze(2).expand(-1,-1,z_experts_unsq.size()[2],-1)
if self.experts_in_gates:

xz_exp=torch.cat((x_exp,z_experts_unsq),dim=-1)
xy_exp=torch.cat((x_exp,y_exp),dim=-1)
xyz_exp=torch.cat((xy_exp,z_experts_unsq),dim=-1)
alpha_post,y_hard_post=self.logit_net_post(x_z=xyz_exp,

temperature=self.temperature,
gumbel_max=self.gumbel_max)

alpha_prior,y_hard_prior=self.logit_net_prior(x_z=xz_exp,
temperature=self.temperature,
gumbel_max=self.gumbel_max)

else:
xy_exp=torch.cat((x_exp,y_exp),dim=-1)
alpha_post,y_hard_post=self.logit_net_post(x_z=xy_exp,

temperature=self.temperature,
gumbel_max=self.gumbel_max)

alpha_prior,y_hard_prior=self.logit_net_prior(x_z=x_exp,
temperature=self.temperature,
gumbel_max=self.gumbel_max)

else:
if self.experts_in_gates:

xz_exp=torch.cat((x_exp,z_experts_unsq),dim=-1)
alpha_post,y_hard_post=0,0
alpha_prior,y_hard_prior=self.logit_net_prior(x_z=xz_exp,

temperature=self.temperature,
gumbel_max=self.gumbel_max)

else:
alpha_post,y_hard_post=0,0
alpha_prior,y_hard_prior=self.logit_net_prior(x_z=x_exp,

temperature=self.temperature,
gumbel_max=self.gumbel_max)

output=self.dec_net(torch.cat((x_exp,z_experts_unsq),dim=-1))

34

if whether_acrobot:
if self.amort_y:

y_mean,y_std=output[...,:self.dim_y],\
F.softplus(output[...,self.dim_y:])

return mu_c,logvar_c,mu_t,logvar_t,\
y_mean,y_std,alpha_post,alpha_prior

else:
y_pred=torch.cat((torch.cos(output[...,0:1]),

torch.sin(output[...,0:1]),
torch.cos(output[...,1:2]),
torch.sin(output[...,1:2]),
4*pi*torch.tanh(output[...,2:3]),
9*pi*torch.tanh(output[...,3:4])),axis=-1)

return mu_c,logvar_c,mu_t,logvar_t,\
y_pred,alpha_post,alpha_prior

elif whether_image:
if self.amort_y:

y_mean,y_std=F.sigmoid(output[...,:self.dim_y]),\
F.softplus(output[...,self.dim_y:])

return mu_c,logvar_c,mu_t,logvar_t,\
y_mean,y_std,alpha_post,alpha_prior

else:
y_pred=F.sigmoid(output)
return mu_c,logvar_c,mu_t,logvar_t,\

y_pred,alpha_post,alpha_prior
else:

if self.amort_y:
y_mean,y_std=output[...,:self.dim_y],\

F.softplus(output[...,self.dim_y:])
return mu_c,logvar_c,mu_t,logvar_t,\

y_mean,y_std,alpha_post,alpha_prior
else:

y_pred=output
return mu_c,logvar_c,mu_t,logvar_t,\

y_pred,alpha_post,alpha_prior

I Additional Experimental Results

I.1 Additional Analysis of Learned Latent Variables

Here we give more detailed analysis w.r.t. learned latent variables in MoE-NPs.

Entropy of Assignment Latent Variables. Still we take the 1-dimensional toy stochastic function
as example because it is intuitive to understand the latent variable meanings of different levels.
Remember that the role of the discrete latent variable e is to assign the diverse functional prior z1:K
to a given data point. With the learned conditional prior pϕ2,2

(e|z1:K , xi) for a data point xi, we can
quantify the uncertainty of assignment via the entropy of such a Bernoulli latent variableH[e].

H[e] =
K∑

k=1

−pϕ2,2(ek = 1|z1:K , xi) ln pϕ2,2(ek = 1|z1:K , xi) =

K∑
k=1

−αk lnαk (35)

This has a practical significance in discontinuous functions. For example, in regions close to
demarcation points, it should be difficult to judge the best expert z1:K to handle these data points,
which means the set ofH[e] theoretically exhibits higher uncertainty. Similarly, in regions without
context points, it is hard to determine the function as well.

Interestingly, we observe that MoE-NPs are able to exhibit the above effect on the right side of Fig.
(12). The sampled function consists of two components respectively in the interval [−π, π] and
[π, 3π]. The entropy values of our interest are computed via Eq. (35). Here K = 2 and the learned
conditional prior pϕ2,2

(e|z1:K , xi) has highest entropy around the demarcation data point π and the

35

Ground Truth MoE-NP

Figure 12: Entropy of Assignment Latent Variables in MoE-NPs. From left to right are respectively the sampled
ground truth function, MoE-NP fitting results and the entropy value of discrete latent variable for each data point
H[pϕ2,2(e|z1:K , xi)].

data point −2.0 with no context points nearby. This finding further verifies the role of the assignment
latent variable in MoE-NPs.

Number of Expert Latent Variables. By setting the approximate posterior of assignment latent
variables as qϕ2,1

(e|x, y, z1:K) = pϕ2,2
(e|x, z1:K), we further investigate the scalability issue of

MoE-NPs in CIFAR10 image completion. As reported in Table (3), we can find with more experts
(>= 3), the performance can be further improved and no overfitting issue occurs. It can also be
inferred when the number of experts reaches a certain level, the improvement from the increase of
expert numbers is quite limited. So in general, when the output dimension is lower, the best choice of
the approximate posterior for assignment latent variables is in a form without y as the input.

Table 3: Pixel-wise mean squared errors (MSEs) with varying number of experts in CIFAR10 image completion.
The number of random context points is varied in a range (10, 200, 500, 800, 1000) to test performance at
different levels.

10 200 500 800 1000

MoE-NPs (3 experts) 0.0482 0.0183 0.0170 0.0166 0.0165

MoE-NPs (5 experts) 0.0362 0.0103 0.0071 0.0061 0.0057

MoE-NPs (7 experts) 0.0359 0.0095 0.0062 0.0052 0.0048

I.2 Additional Results of NP Variants in Toy Regression

Note that the variation of tasks in the previous toy regression is quite limited and its goal is to show the
role of latent variables. To further examine the performance, we construct the mixture of sinusoidal
functions by varying the amplitude and the phase as follows.

The learning data points are randomly sampled in x-domain and merged from a mixture of randomized
functions f1(x) = A sin(x−B)+ϵ in x-domain [−π, π] and f2(x) = A cos(x−B)+ϵ in x-domain
[π, 3π] with equal probability, where ϵ ∼ N (0, 0.032). The range of the amplitude is A ∈ [0.1, 5.0]
while that of the phase is B ∈ [0, π].

In each training iteration, we sample a batch of data points and randomly partition context points and
target points for learning. Each task consists of 100 randomly sampled data points from the mixture of
sinusoidal functions with the random number of context points between [5, 50]. The default number
of tasks in a meta batch is 25 and we set the number of iteration steps at most 50000. As for neural
architectures of all baselines, we retain that in the previous toy regression in Sec. (H.2.1). Still we
use two experts for MoE-NPs as default to fit mixture sinusoidal functions.

Table 4: Test Performance in Mixture Sinusoidal Functions. Shown are mean square errors and standard
deviations in fitting 500 sampled tasks. The best results in 5 runs are in bold with standard deviations in bracket.

CNP NP FCRL ANP MoE-NP

0.053(±1E-4) 0.070(±3E-4) 0.040(±0.0) 0.027(±2E-4) 0.032(1E-4)

In meta testing phase, we draw up 500 tasks with 15 random data points selected as the con-
text. These testing tasks are generated in the way: the couple of the amplitude and the phase
[A,B] are orderly set from the amplitude list numpy.linspace(0.1, 5.0, num = 500) and phase

36

list numpy.linspace(0.0, π, num = 500). The sampled x-values for these tasks are a list
torch.linspace(−π, 3π, steps = 500). As shown in Table (4), ANP achieves best performance
in meta testing, followed by MoE-NP.

I.3 Additional Results of NP Variants in System Identification

To understand how performance evolves with more context transitions in Acrobot system, we extend
the result of 50 context points in the main paper to Fig. (13). As can be seen, MoE-NP still
outperforms all NP baselines in all cases. And with the increase of context transitions, we can find
the predictive MSEs degrade accordingly.

20 40 60 80 100
Number of Context Transitions

2

3

4

5

6

7

8
M

SE
(x

E-
3)

Testing in Acrobot System Identification
NP
CNP
FCRL
MoE-NP

Figure 13: Asymptotic Performance in System Identification of NPs Family. The numbers of random transitions
as the context are respectively {15, 25, 50, 100}.

I.4 Comparison with Attentive Neural Processes

Since neural architectures for attentive neural processes (ANPs) [14] are bit different from used
baselines and cannot be trivially modified to meta RL cases, we report additional results in this
subsection.

We implement ANPs with dot attention networks (since ANPs have more model complexity and
can easily lead to cuda out of memory in practice, we choose the basic version of ANPs), the input
embedding dimension of to compute attention weights is 32 and 4 layers are used to transform the
deterministic embedding zattn. The local embedding is concatenated with the input x and the global
latent variable z for the decoder. We use three heads for system identification tasks and one head
for image completion tasks. The related results are reported as follows. It can be seen in Table (5),
MoE-NPs still outperform ANPs, while ANPs beat NPs a lot in predicting Acrobot system dynamics.
As for CIFAR10 image completion, we can draw the same conclusion in Table (6) that Mixture
Expert inductive biases are more effective than local latent variables embedded in attention modules.

Table 5: System identification in Acrobot. Meta testing results are reported. We use the number of random
transitions as the context and test performance for ANPs to compare. Figures in the Table are scaled by
multiplying E-3 for means and standard deviations.

15 25 50 100

ANP 3.0(±0.36) 2.8(±0.41) 2.5(±0.14) 2.8(±0.19)

MoE-NP 2.0(±0.45) 1.9(±0.28) 1.4(±0.06) 1.5(±0.06)

I.5 Augmenting MoE-NPs with Convolutional Modules

In this section, we examine the chance of Since neural architectures of encoders are quite different
between ConvCNPs [17] and previous mentioned NP baselines, we only report the results of NP
related models with the same functional encoder structures in the main paper. Note that the translation
equivariance is injected in ConvCNPs, which is a strong inductive bias for image dataset. Naturally,

37

Table 6: Pixel-wise mean squared errors (MSEs) in the image completion tasks on the CIFAR10 dataset. The
number of random context points is varied in a range (10, 200, 500, 800, 1000) to test performance at different
levels.

10 200 500 800 1000

ANP 0.0377 0.0223 0.0217 0.0215 0.0215

MoE-NP 0.0377 0.0142 0.0117 0.0110 0.0107

we also develop the convolutional version of MoE-NPs. And we report the separate results in image
completion here. In our settings, MoE-ConvCNPs use 3 experts in convolutional modules. The
implementation of ConvCNPs can be found in [17]. It can be seen that in Table. (7), in comparison
to ConvCNP, the image completion performance is further improved with help of multiple experts.

Table 7: Pixel-wise mean squared errors (MSEs) in the image completion tasks on the CIFAR10 dataset. The
number of random context points is varied in a range (10, 200, 500, 800, 1000) to test performance at different
levels.

10 200 500 800 1000

ConvCNPs 0.036 0.0062 0.002 0.0011 0.0019

MoE-ConvCNPs 0.035 0.0057 0.0017 0.0007 0.0009

I.6 More Visualization Results

Here we include more visualized CelebA images by varying the number of observed pixels. These
are produced using CNN Augmented MoE-NPs (MoE-ConvCNPs). Fig.s (14)/(15)/(16)/(17) are
image completion results given the fixed number of random context pixels. Fig.s (18)/(19)/(20)/(21)
are image completion results given the fixed number of ordered context pixels.

0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200

Figure 14: Image Completion Results using CNN Augmented MoE-NPs.

J Computational Devices

Throughout the research process, we use NVIDIA 1080-Ti GPUs and Pytorch is used as the deep
learning toolkit.

38

0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200

Figure 15: Image Completion Results using CNN Augmented MoE-NPs.

0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200

Figure 16: Image Completion Results using CNN Augmented MoE-NPs.

0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200

Figure 17: Image Completion Results using CNN Augmented MoE-NPs.

0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200

Figure 18: Image Completion Results using CNN Augmented MoE-NPs.

0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200

Figure 19: Image Completion Results using CNN Augmented MoE-NPs.

39

0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200

Figure 20: Image Completion Results using CNN Augmented MoE-NPs.

0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200

Figure 21: Image Completion Results using CNN Augmented MoE-NPs.

40

	Introduction
	Literature Review
	Preliminaries
	Few-Shot Supervised Learning
	Meta Reinforcement Learning

	Model & Algorithm
	Mixture of Expert Neural Processes
	Scalable Training & Prediction
	Module Details for Meta Learning
	Inference Modules in MoE-NPs
	Meta RL Modules in MoE-NPs.

	Experiments and Analysis
	General Settings
	Illustration in Toy Regression
	Few-Shot Supervised Learning
	Meta Reinforcement Learning
	Ablation Studies

	Conclusions
	Pseudo Code of Algorithms in Meta Learning
	Frequently Asked Questions
	Probabilistic Graphs in Meta Training/Testing
	More Descriptions of NP Family Models and Meta RL
	MoE-NPs as Exchangeable SPs
	Generative Processes
	Consistency Properties

	Summary of Existing NP Related Models
	Comparison in Technical Details
	Time Complexity
	Additional Literature Review

	Formulation of Evidence Lower Bounds
	Variational Distributions
	Lower Bound on the Evidence for Few-Shot Supervised Learning
	Selection of Categorical Approximate Posteriors/Priors
	Stochastic Gradient Estimates
	Estimates of Statistics

	Experimental Settings and Neural Architectures
	Dataset & Environments
	Dataset in Few-shot Supervised Learning
	Environments in Meta Reinforcement Learning

	Implementations in Meta Learning Tasks
	Toy Experiments
	Few-Shot Supervised Learning
	Meta Reinforcement Learning

	Neural Architectures

	Additional Experimental Results
	Additional Analysis of Learned Latent Variables
	Additional Results of NP Variants in Toy Regression
	Additional Results of NP Variants in System Identification
	Comparison with Attentive Neural Processes
	Augmenting MoE-NPs with Convolutional Modules
	More Visualization Results

	Computational Devices

