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Abstract

Neural processes (NPs) formulate exchangeable stochastic processes and are
promising models for meta learning that do not require gradient updates during
the testing phase. However, most NP variants place a strong emphasis on a global
latent variable. This weakens the approximation power and restricts the scope
of applications using NP variants, especially when data generative processes are
complicated. To resolve these issues, we propose to combine the Mixture of Expert
models with Neural Processes to develop more expressive exchangeable stochastic
processes, referred to as Mixture of Expert Neural Processes (MoE-NPs). Then
we apply MoE-NPs to both few-shot supervised learning and meta reinforcement
learning tasks. Empirical results demonstrate MoE-NPs’ strong generalization
capability to unseen tasks in these benchmarks.

1 Introduction

Figure 1: Generative Process of MoE-
NPs. Here DC

τ refers to dataset of con-
text points in the paper. {zk}Kk=1 are
a set of expert latent variables and e
is an assignment latent variable. Ob-
served variables are grey in circles
with latent variables white.

Humans can naturally accommodate themselves to new environ-
ments after developing related skills, and this kind of adaptability
relies on the good abstraction of environments. Similarly, meta
learning or learning to learn tries to leverage past experiences,
and with help of the incorporated meta learned knowledge, a
new skill can be mastered rapidly with a few instances.

During the past decade, an increasing number of methods have
emerged in meta learning domains. In this paper, we concentrate
on a special branch of meta learning methods, referred to as
context-based meta learning [1; 2]. A representative one is a
neural process (NP) [1], which was initially proposed to approx-
imate Gaussian processes with lower computational cost. The
core purpose of NPs is to learn meta-representations [3], which
encode context points into latent variables and represent the
task in a functional form. In comparison to gradient-based meta
learning algorithms, e.g. model-agnostic meta learning (MAML)
[4], the NP directly learns a functional representation and does
not require additional gradient updates in fast adaptation.

Research Motivations. Fundamentally, vanilla NPs employ
global Gaussian latent variables to specify different tasks. This setting raises several concerns in
some scenarios. (i) When observations originate from a mixture of stochastic processes [5], a single
Gaussian latent variable is faced with deficiencies in formulating complex functional forms. (ii) In
context-based meta reinforcement learning, the uncertainty of value functions revealed from latent
variables encourages effective exploration in environments [6]. But when tasks are governed by
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multiple variate, e.g. velocities, masses or goals in Mujoco robots [7], the use of a unimodal Gaussian
latent variable restricts the flexibility of randomized value functions [8], leading to sub-optimality in
performance.

Developed Methods. Instead of using a global latent variable in modeling, we employ multiple
latent variables to induce a mixture of expert NPs to specify diverse functional priors. Meanwhile,
the discrete latent variables as assignment variables are introduced to establish connections between
a single data point and expert NPs. To optimize this model with hybrid types of latent variables, we
utilize variational inference to formulate the evidence lower bound. Additionally, special modules are
designed to accommodate few-shot supervised learning and meta reinforcement learning tasks.

Outline & Contributions. We overview the properties of NPs and general notations for context-based
meta learning tasks in Section 3. Section 2 summarizes related work in meta learning and the NP
family. In Section 4, Mixture of Expert Neural Processes (MoE-NPs) are elaborated, together with
required modules for meta learning tasks. Experimental results and analysis are reported in Section
5. Discussions and limitations are included in Conclusion Section. In principle, our contribution is
two-fold:

• We introduce a new exchangeable stochastic process, referred to as MoE-NPs, to enrich the
family of NPs. Our model inherits the advantages of both mixtures of experts models and
NPs, enabling multi-modal meta representations for functions.

• We specify inference modules in MoE-NPs for few shot supervised learning and meta
reinforcement learning tasks. Extensive meta learning experiments show that MoE-NPs can
achieve competitive performance in comparison to most existing methods.

2 Literature Review

Meta Learning. Meta learning is a paradigm to enable fast learning (fast adaptation to new tasks)
via slow learning (meta training in the distribution of tasks). There exist several branches of meta
learning algorithms. Gradient-based meta learning algorithms, e.g. MAML [4] and its variants
[9; 10; 11], perform gradient updates over model parameters to achieve fast adaptation with a few
instances. Metrics-based meta learning algorithms try to learn representations of tasks in distance
space, and models e.g. prototypical networks [12; 13] are popular in computer vision domains. As
for context-based meta learning methods of our interest, latent variable models, e.g. NPs [1], are
designed to learn task representations in a functional space. This family does not require gradient
updates in fast adaptation.

Neural Processes Family. Apart from vanilla NPs or CNPs [2; 1], other variants are developed and
these are built on various inductive biases. To address underfitting issues, attention networks [14; 15]
are introduced to augment NPs. [16; 17] improve the generalization capability of NPs with help of
convolutional operations. To learn distributions of group equivariant functions, [18] has proposed
EquiCNP. Similarly, SteerCNPs also incorporate equivariance to approximate stochastic fields [19].
Our work is to get NPs married with Mixture of Experts (MoEs) models [20; 21], which model
datasets with a collection of expert NPs. We provide more technical summary of the NP family
together with other probabilistic meta learning methods [22; 23; 24; 25] in the Appendix (F).

3 Preliminaries

Notations. The paradigm of meta learning is considered in the distribution of tasks p(T ), and a task
sampled from p(T ) is denoted by τ in this paper. The form of a task depends on applications. For
example, a task of our interest in regressions can be a function f to fit, which is a realization from
unknown stochastic processes [26].

Let DC
τ refer to a set of context points used to specify the underlying task, and DT

τ = [xT , yT ] is
a set of target points to predict, e.g. f(xT ) = yT . In the context-based meta learning with latent
variables, we write the probabilistic dependencies in distributions of target functions as follows,

p(f(xT )|DC
τ , xT ) =

∫
p(f(xT )|z, xT )p(z|DC

τ )dz (1)

where the functional prior p(z|DC
τ ) is injected in modeling via latent variables z.
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Neural Processes. The family of NPs [1] belongs to exchangeable stochastic processes [27]. A
generative process is written as Eq. (2) with a global Gaussian latent variable z placed in Eq. (1),

ρx1:N
(y1:N ) =

∫
p(z)

N∏
i=1

N (yi|fθ(xi, z), σ
2
i )dz (2)

where fθ is a mean function and σ2
i is the corresponding variance. In our settings, we treat the

conditional neural process [2] as a special case in NPs, when the distribution of z is collapsed into a
Dirac delta distribution p(z) = δ(z − ẑ) with ẑ a fixed real valued vector.

3.1 Few-Shot Supervised Learning

In the context-based meta learning, we formulate the few-shot supervised learning objective within
the expected risk minimization principle as follows.

min
Θ

Eτ∼p(T )

[
L(DT

τ ;DC
τ ,Θ)

]
(3)

The risk function L, e.g. negative log-likelihoods, measures performance of meta learning structure
on the task-specific dataset DC

τ and DT
τ , and Θ means parameters of common knowledge shared

across tasks and parameters for fast adaptation (e.g, Θ denotes parameters of the encoder ϕ and
decoder θ, and L is the approximate objective in NPs).

With the set of context pointsDC
τ = {(x1, y1), . . . , (xm, ym)} and the target pointsDT

τ , the posterior
of a global latent variable z in Eq. (1) is approximated with a variational distribution qϕ(z|DT

τ ) and
an evidence lower bound (ELBO) is derived to optimize in practice. A general meta training objective
of NPs in few-shot supervised learning is L(θ, ϕ) in Eq. (4), where pθ(DT

τ |z) =
∏n

i=1 pθ(yi|[xi, z]).

Eτ

[
ln p(DT

τ |DC
τ )

]
≥ Eτ

[
Eqϕ(z|DT

τ )[ln pθ(DT
τ |z)]−DKL[qϕ(z|DT

τ ) ∥ qϕ(z|DC
τ )]

]
(4)

3.2 Meta Reinforcement Learning

For the context-based meta reinforcement learning, the context points DC
τ are a set of random

transition samples from an environment as DC
τ = {(s1, a1, s2, r1), . . . , (sH , aH , sH+1, rH)}, where

rt is the one-step reward after performing action at at state st. Here DC
τ plays a role in task inference

[28] to obtain the information bottleneck qϕ(z|DC
τ ) and DT

τ is the dataset of state action values to fit.

For example, in an off-policy meta reinforcement learning algorithm, e.g. PEARL [6] or FCRL
[3], the general optimization objective consists of two parts: (i) to approximate distributions of
task-specific optimal value functions in Eq. (5), where Qθ is optimal Q-value with the state value
V̂ (ii) to maximize the cumulative rewards Eτ

[
Eqϕ(z|DC

τ ) [R(τ, z;φ)]
]
, where R is the expected

cumulative rewards in the environment τ given policies πφ(a|[s, z]).

L(θ, ϕ) = EτE (s,a,s′,r)∼DT
τ

z∼qϕ(z|DC
τ )

[Qθ([s, z], a)− (r + V̂ ([s′, z]))]2 + βEτ

[
DKL[qϕ(z|DC

τ ) ∥ p(z)]
]
(5)

Different from the few-shot supervised learning, here the context points are not part of fitting dataset,
which means DC

τ ̸⊂ DT
τ . As implemented in [6], the prior distribution p(z) is typically selected as

a fixed one, e.g. N (0, I). The induced distribution of task-specific value functions p(Qθ([s, z], a))
enables posterior sampling [29] in meta learning scenarios, which brings additional benefits of
exploration for continuous control problems.

4 Model & Algorithm

In this section, we present our developed MoE-NPs and connect them to the hierarchical Bayes
framework. Then approximate objectives are derived and stochastic gradient variational Bayes [30]
is used to optimize the developed model. Finally, specialized neural modules are described for
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MoE-NPs application to different meta learning tasks. We have attached concepts of variational
priors and posteriors and detailed computational diagrams in training and testing in Appendix (C).
For the sake of simplicity, we derive equations w.r.t. a task τ in the following section, but a batch of
tasks are considered in training in implementation.

4.1 Mixture of Expert Neural Processes

Vanilla NPs often suffer underfitting in experiments [1; 14]. This can be attributed to expressiveness
bottlenecks when employing a global latent variable in learning functional priors of tasks from
unknown distributions [31].

To alleviate mentioned deficiencies, we make two modifications for the NP family. (i) Multiple
functional priors are encoded in modeling with help of K expert latent variables, which can capture
statistical traits, e.g. distributional multi-modality, in data points. This setting is also an extension of
Mixture of Experts (MoEs) models [20; 32; 33; 34] to meta learning scenarios. (ii) Like the gating
mechanism in [5], assignment latent variables are included in modeling to select functional forms for
each data point in prediction. The resulting MoE-NPs can learn more expressive functional priors
and exhibit the approximation power for local properties of the dataset.

Generative Process. As displayed in Fig. (1), the graphical model involves two types of latent
variables, respectively the continuous expert latent variables z1:K and the discrete assignment latent
variable e. Further, we can translate the generative process into equations as follows,

ρx1:N
(y1:N ) =

∫ K∏
k=1

p(zk) ·
N∏
i=1

[
K∑

k=1

p(yi|xi, z1:K , ek = 1)p(ek = 1|xi, z1:K)

]
dz1:K (6)

where the sampled assignment variable e is in the form of K-dimensional one-hot encoding, and
ek = 1 in Eq. (6) indicates the k-th expert zk is selected from z1:K for prediction. A more detailed
probabilistic generative process can also be found in Appendix (E.1). In this way, our developed
model constitutes an exchangeable stochastic process. And we demonstrate this claim with help of
Kolmogorov Extension Theorem [35] in Appendix (E.2).

Link to Hierarchical Bayes. Note that latent variables in Eq. (6) are of hybrid types. K functional
priors are incorporated in expert latent variables z1:K , while the assignment latent variable e is input
dependent. The dependencies between z1:K and e are reflected in modeling, and this connects our
work to Hierarchical Bayes [36; 37] in a latent variable sense. Also when only one expert latent
variable is used here, the hierarchical model degenerates to the vanilla (C)NPs [1; 2].

4.2 Scalable Training & Prediction

Inference Process. Given a task τ , due to existence of unknown latent variables, it is intractable to
perform exact inference w.r.t. p(DT

τ |DC
τ ). As an alternative, we apply variational inference to our

developed model. Here we use [x, y] to denote a single data point from a set of target points DT
τ .

ln p(y|x,DC
τ ) ≥ Eqϕ1

[
Eqϕ2,1

[ln pθ(y|x, z1:K , e)]−DKL[qϕ2,1(e|x, y, z1:K) ∥ pϕ2,2(e|x, z1:K)]
]

−
K∑

k=1

DKL[qϕ1,k
(zk|DT

τ ) ∥ qϕ1,k
(zk|DC

τ )] = −L(θ, ϕ1, ϕ2)

(7)

An example for the k-th expert latent variable zk can be in the form of a Gaussian distribution
N (zk;µk,Σk). And in meta training processes, the assignment variable e is assumed to be drawn
from a categorical distribution Cat(e;K,α(x, y, z1:K)) with parameters α(x, y, z1:K). The existence
of discrete latent variables e makes it tough to optimize using traditional methods. This is because ei-
ther sampling algorithms or expectation maximization algorithms are computationally intensive when
utilized here (we have discussed this point in Appendix (G)) for expert latent variables. To reduce com-
putational cost, we again utilize variational inference and the decoder directly formulates the output as
a mixture of log-likelihoods Eqϕ2,1

[ln pθ(y|x, z1:K , e)] =
∑K

k=1 αk(x, y, z1:K ;ϕ2,1) ln pθ(y|x, zk).
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This results in a general ELBO as Eq. (7) for few-shot supervised learning in meta training, where
qϕ1 denotes a collection of K independent variational distribution {qϕ1,1 , . . . , qϕ1,K

}. qϕ2,1 and pϕ2,2

respectively define the variational posterior and prior for assignment latent variables. Please refer to
Appendix (C)/(G) for definitions and more detailed derivations.

Monte Carlo Estimates & Predictions. Meta-training processes consider a batch of tasks to optimize
in iterations, and we apply Monte Carlo methods to the obtained negative ELBO L(θ, ϕ1, ϕ2) as
follows.

LMC(θ, ϕ1, ϕ2) = −
1

NB

B∑
b=1

N∑
i=1

[
K∑

k=1

α
(b)
k ln p(y

(b)
i |x

(b)
i , z

(b)
k )

]

+
1

NB

B∑
b=1

N∑
i=1

DKL[qϕ2,1
(e

(b)
i |x

(b)
i , y

(b)
i , z

(b)
1:K) ∥ pϕ2,2

(e
(b)
i |x

(b), z
(b)
1:K)]

+
1

NB

B∑
b=1

K∑
k=1

DKL[qϕ1,k
(z

(b)
k |D

T
b ) ∥ qϕ1,k

(z
(b)
k |D

C
b )]

(8)

With the number of tasks B and the number of data points N in mini-batches, the Monte Carlo
estimate with one stochastic forward pass is Eq. (8) for meta training objectives.

Like that in NPs [1], we derive the predictive distribution as Eq. (9) with one stochastic forward pass
and parameters of discrete latent variables pϕ2,2(ek = 1|x∗, z1:K) = αk(x, z1:K ;ϕ2,2).

p(y∗|x∗,DC
τ ) ≈

K∑
k=1

αk(x, z1:K ;ϕ2,2)pθ(y|x∗, zk) with z1:K ∼ qϕ1
(z1:K |DC

τ ) (9)

And the point estimate in prediction E[Y |X = x,DC
τ ] can also be obtained in Appendix (G.4).

4.3 Module Details for Meta Learning

4.3.1 Inference Modules in MoE-NPs

Replay
Buffer

(a) Few Shot Supervised Learning using MoE-NPs

(b) Meta Reinforcement Learning using MoE-NPs

Figure 2: Computational Diagram
of MoE-NPs in Meta Testing. In
(a): The context variables are DC

τ =
[xC , yC ], and the expert latent vari-
ables z1:K are approximated with neu-
ral networks. For discrete assignment
latent variables e∗, we learn param-
eters of categorical distributions α∗
with neural networks. In (b): The con-
text variables DC

τ are sampled tran-
sitions from a memory buffer. The
selected expert latent variable z∗ is
a context variable in both Actor and
Critic networks during policy search.

The equations so far define a framework that can be imple-
mented in different meta learning tasks. Two examples are given
in Fig. (2). Note that two types of latent variables are involved
in modelling, we need different structures of encoders for latent
variables. Inference Modules are required for them, satisfying
different conditions. In variational inference, distribution param-
eters of these latent variables are approximated with the output
of these specialized encoders.

Inference Modules for Continuous Latent Variables. For
neural networks to parameterize the encoder of continuous latent
variables qϕ1

, we use the same architectures in (C)NPs [1; 2],
which are permutation invariant to the order of context points
[xC , yC ] = {[x1, y1], . . . , [xN , yN ]}. That is, for any permuta-
tion operator σ over the set of context points, the neural network
(NN) parameters of an output distribution for each expert zk
should satisfy [µk,Σk] = NNϕ1,k

([xσ(1:N), yσ(1:N)]).

rk,i = hϕ1,k
([xi, yi]), rk =

N⊕
i=1

rk,i, [µk,Σk] = gϕ1,k
(rk)

(10)

Eq. (10) is an example, where h is the embedding function,⊕
denotes a mean pooling operation, and g is part of encoder

networks.

Inference Modules for Categorical Latent Variables. For neural networks to parameterize the
encoder of discrete latent variables qϕ2,1

and pϕ2,2
, we need the categorical distribution parameters α
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to be permutation equivariant [38] with respect to the order of z1:K . This means for any order per-
mutation operation σ, the condition is satisfied as [ασ(1), ασ(2), . . . , ασ(K)] = NNϕ2,1(x, y, zσ(1:K)).

bk = hϕ2,1
(x, y, zk) ∀k ∈ {1, 2, . . . ,K}, [α1, α2, . . . , αK ] = softmax(b/t) (11)

An example implementation for the variational posterior Cat(e;K,α(x, y, z1:K)) can be Eq. (11),
where the vector of logits is b = [b1, b2, . . . , bK ] with t a temperature parameter. And this
implementation applies to prior networks NNϕ2,2

(x, zσ(1:K)) to learn distribution parameters of
Cat(e;K,α(x, z1:K)) in the same way.

4.3.2 Meta RL Modules in MoE-NPs.

When extending MoE-NPs to meta RL tasks, optimization objectives in Eq. (7) need to be modified
for Actor-Critic methods, which are employed in our settings. Like that in PEARL [6] and FCRL [3],
the soft actor critic (SAC) algorithm [39] is used to learn policies due to good sample efficiency.

Given a specific MDP τ , posterior distributions of optimal value functions are formulated via
latent variables z in context-based meta RL. That is, p(Qθ(s, a;M)) is approximated in the form
p(Qθ([s, z], a)). The resulting objectives for the Actor and Critic functions are respectively in Eq.
(12) and Eq. (13), where Zθ is a normalization factor.

Lτ
A = E s∼DT

τ ,a∼πφ
z∼qϕ

[
DKL

[
πφ(a|[s, z]) ∥

exp (Qθ([s, z], a))

Zθ(s)

]]
(12)

The variational posterior qϕ(z|s,DC
τ ) in Eq. (13) is a state dependent distribution with V̂ a state

value function, and sampling processes refer to steps in Algorithm (3).

Lτ
C = E (s,a,s′,r)∼DT

τ
z,z′∼qϕ

[Qθ([s, z], a)− (r + V̂ ([s′, z′]))]2 (13)

A key difference from PEARL [6] lies in that several expert latent variables and assignment latent
variables are involved in modeling. So we refer the Kullback–Leibler divergence term to Eq. (14) in
MoE-NPs with coefficient β0 and β1.

Lτ
KL = β1E (s,a,s′,r)∼DT

τ
qϕ1

(z1:K |DC
τ )

[DKL[qϕ2(e|s, z1:K) ∥ p(e)]] + β0

K∑
k=1

DKL[qϕ1,k
(zk|DC

τ ) ∥ p(zk)]

(14)

The Monte Carlo estimates w.r.t. Eq. (12/13/14) are used in meta training, and Pseudo code to
optimize these functions is listed in Appendix (A).

5 Experiments and Analysis

5.1 General Settings

The implementation of MoE-NPs in meta training can be found in Appendix Algorithms (1)/(3), and
also please refer to Appendix Algorithms (2)/(4) for the corresponding meta-testing processes. We
leave the details of experimental implementations (e.g. parameters, neural architectures, correspond-
ing PyTorch modules and example codes) in Appendix (H).

Baselines for Learning Tasks. Apart from MoE-NPs, methods involved in comparisons are context-
based methods such as CNPs [2], NPs [1] and FCRL [3], and gradient-based methods such as MAML
[4] and CAVIA [9]. For FCRL, contrastive terms from SimCLR [40] are included in the objective.
In meta RL, the modified NP model corresponds to PEARL [6]. Meanwhile, in Appendix (I), we
include additional experimental results compared with other NPs models augmented by attentive
modules [14] or convolutional modules [17].
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5.2 Illustration in Toy Regression

To see different roles of latent variables, we visually show effects of stochastic function fitting and
quantified uncertainty in toy dataset. Our goal is to discover potential components of distributions
from limited observed data points.

Ground Truth MoE-NP CNP NP FCRL

Figure 3: The Ground Truth and Predictive Distributions of Curves using NP related Models. The gray dots
around curves are the context points. The shaded regions correspond to 3x standard deviations. In MoE-NPs, two
components of the sampled mixture curve in blue and orange can be identified via assignment latent variables
with more than 85% accuracy.

The learning data points are sampled in x-domain [−π, 3π] and merged from a mixture of random-
ized functions f1(x) = sin(x) + ϵ1 and f2(x) = cos(x) + ϵ2 with equal probability for mixture
components, where ϵ1 ∼ N (0, 0.032) and ϵ2 ∼ N (0, 0.012). In each training iteration, we sample a
batch of data points and randomly partition context points and target points for learning. In testing
phase, we draw up 100 data points from this mixture of distributions with 15 random data points
selected as the context. The fitting results for one sampled mixture curve are shown in Fig. (3).
It can be seen that both CNPs and FCRL display similar patterns, overestimate the uncertain in
the mixture curve of the second component. NPs show intermediate performance and still fails to
match context points well. As for MoE-NPs, with help of predicted assignment variables parameters
e∗ = one_hot[argk∈{1,2} maxαk], we set the number of experts as two and partition data points to
visualize predictive distributions pθ(y∗|x∗, z∗) . The MoE-NP is able to precisely separate mixture
components inside the dataset and provides more reliable uncertainty.

5.3 Few-Shot Supervised Learning

We evaluate the performance of models on a system identification task in Acrobot [41] and image
completion task in CIFAR10 [42]. Both tasks are common benchmarks in the meta learning or NPs
literature [41; 43; 1; 2; 14].

Table 1: System Identification Performance in Meta Testing Acrobot Tasks. Shown are mean square errors and
standard deviations in fitting meta-testing tasks. Figures in the Table are scaled by multiplying E-3 for means
and standard deviations. The best results are in bold.

CNP NP FCRL MAML CAVIA MoE-NP

2.3(±0.13) 7.2(±0.5) 2.0(±0.15) 2.5(±0.35) 2.0(±0.23) 1.4(±0.06)

System Identification. For Acrobot systems, different tasks are generated by varying masses of
two pendulums. A dataset of state transitions is collected by using a complete random policy to
interact with sampled environments. The state consists of continuous as angles and angular velocities
[θ1, θ

′
1, θ2, θ

′
2]. The objective is to predict the resulting state after a selected Torque action from

{−1, 0,+1}. For more details about meta training dataset and environment information, refer to
Appendix (H.2).

In the meta testing phase, 15 episodes with the length of horizon 200 are collected for each task and
we report the average predictive errors and standard deviations for all transitions. Here we use 50
transitions as the context points to identify the task. As exhibited in Table (1), gradient-based methods,
e.g. CAVIA and MAML, beat NP in terms of predictive accuracy but show higher variances than all
other models. With three experts in modeling, MoE-NPs significantly outperform other baselines in
terms of dynamics prediction. Our finding is consistent with observations in [44], where multi-modal
distributions are necessary for Acrobot systems. We also illustrate the asymptotic performance of
MoE-NPs with the increase of the context points in the following Section (5.5) Ablation part.

Image Completion. We use CIFAR10 dataset [42] in this experiment, which is formulated with
32x32 RGB images. In the meta training process, a random number of pixels are masked to complete
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Figure 4: CIFAR10 Completion Performance with Various Number of Context Pixels. The numbers of context
points used in prediction are 10, 100, 200, 500, 800, 1000. The left figure is with random context pixels while
the right one is with the ordered context pixels.

in images. That is, given the context pixel locations and values [xC , yC ], we need to learn a map
from each 2-D pixel location x ∈ [0, 1]2 to pixel values y ∈ R3. Here two expert latent variables are
used in MoE-NPs.

In Fig. (4), we evaluate image completion performance on the test dataset and the number of
context pixels is varied in three levels. It can be found that CAVIA works best in cases with 10
random context pixels or less than 500 ordered context pixels. In other cases, MoE-NP surpasses all
baselines. With more observed pixels, the predictive errors of MoE-NPs can be decreased in both
random and ordered context cases. An example of image completion results is displayed in Fig. (5).

0 25 50 75 100 125 150 175 200

0

10

20

30

0 25 50 75 100 125 150 175 200

0

10

20

30

0 25 50 75 100 125 150 175 200

0

10

20
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Figure 5: Image Completion Visual-
ization using MoE-NPs. From the Top
to the Bottom: the number of random
context pixels are 10, 500 and 1000.
From the Left to the Right (every two):
original images, masked images and
reconstructed images.

For gradient-based methods, CAVIA and MAML are sensitive
to the number of context points and do not exhibit asymptotic
performance like that in MoE-NP. NP still suffers underfitting
in performance.

5.4 Meta Reinforcement Learning

To evaluate the meta RL implementation of our model, we con-
duct the experiments in a 2-D point robot and Mujoco environ-
ments [7]. Fig. (6) exhibits the environments used in this paper,
and we leave more details in Appendix (H.1).

2D Navigation. For 2-D point robot tasks, the agent needs to
navigate with sparse rewards. The navigation goal of a task is
sampled from a mixture of arcs in a semi-circle in Fig. (6.a)
during meta training processes.

From Fig. (7.a-c), we can observe the evaluation performance of
agents over iterations. For gradient-based methods, CAVIA shows better performance than MAML
in exploration but both are weaker than context-based baselines. MoE-NPs can converge earlier
with less training samples and show slight advantage over vanilla PEARL. In particular, we test the
asymptotic performance in out of distributions (O.O.D.) tasks and show results in Fig. (7.d). We
notice O.O.D. tasks are challenging for all algorithms to generalize but average returns are gradually
increased with more trials. PEARL and FCRL achieve comparable rewards, while MoE-NP behaves
better in this case.

(a) Point Robot (b) H-Cheetah-CD (c) S-Humanoid-CG

Figure 6: Environments for Meta Rein-
forcement Learning. In (a): Blue arcs
are distributions of goals in orange for
the robot to reach with sparse rewards.
In (b)/(c): Goals in orange and direc-
tions in blue are varied in tasks.

Locomotion. As for Half Cheetah-Complex-Direction (H-
Cheetah-CD) and Slim Humanoid-Complex-Goal (S-Humanoid-
CG) tasks, these correspond to locomotion in complicated en-
vironments. Note that multiple directions and goals are involved
in tasks.

Fig. (7) illustrates the performance of learned policies in meta
learning tasks. In H-Cheetah-CD, MoE-NP shows a slight ad-
vantage over FCRL, and it exhibits comparable performance in
S-Humanoid-CG. In both environments, MoE-NP and FCRL
outperform other baselines. This implies the importance of func-
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（a） （b） （c） （d）

Figure 7: Results in Meta Learning Continuous Control. In (a)/(b)/(c): Learning curves show tested average
returns with variances in 4 runs. For point robot environments, 100 transitions are randomly collected from
a task specific memory buffer to infer the posterior. For Mujoco environments, 400 transitions are randomly
collected from a task specific memory buffer to infer the posterior. In (d): Fast Adaptation Performance in Meta
Testing Point Robot Environments. The collected episodes are gradually increased to 50 and the average returns
together with variances are visualized. 5 goals are sampled from the white part of arcs in Fig. (6.a).

tional representations for task-specific value functions. Either contrastive or multiple functional
priors lead to better exploration and have a potential to boost performance in continuous control. For
gradient-based methods, observations show that they can easily get stuck in the local optimal [6; 45].

5.5 Ablation Studies

Figure 8: Predictive Performance of
MoE-NPs in Acrobot Meta Testing
Processes using Varying Numbers of
Expert Latent Variables and Context
Points. The scale for mean square er-
rors together with standard deviations
is E-3.

Number of Experts. We examine the influence of the num-
ber of experts in meta-trained MoE-NPs, and system identifi-
cation in the Acrobot system is selected as an example here.
As displayed in Fig. (8), the number of experts are 3, 5, 7
and 9 in different MoE-NPs. Here we test the predictive per-
formance of meta-trained MoE-NP by varying the number of
transitions. We set respectively 15, 25, 50, 100 transition sam-
ples as the number of context points to identify the system.
All settings for meta testing processes are already described
in Section (5.3). It can be seen when the expert number is
5, the predictive performance is largely enhanced with the in-
crease of context points and the variance shrinks accordingly.
But with more experts, e.g. greater than 5, MoE-NPs exhibit
higher predictive errors, and show no significant performance
improvement with the increase of the number of context points.
These suggest increasing the number of experts beyond a certain
point can deteriorate the predictive performance of the MoE-NPs.
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Figure 9: Ablation Performance in S-
Humanoid-CG. Learning curves dis-
play tested average returns with vari-
ances in 4 runs.

Latent Variables in Meta RL. As mentioned in Preliminaries
Section, the use of latent variable is able to induce task-specific
optimal value functions. Here we take the S-Humanoid-CG as
the example, and the expert encoder of MoE-NPs (Deterministic)
is set to the deterministic. In Fig. (9), we observe the perfor-
mance degrades a lot using deterministic expert latent variables.
These further verify findings in PEARL [6]. The randomness
of value function distributions captures task uncertainty and
encourages more efficient exploration.

6 Conclusions

Technical Discussions. In this work, we have developed a new variant of NP models by introducing
multiple expert latent variables. Our work illustrates the roles of different latent variables in MoE-NPs
for meta learning tasks. MoE-NPs are able to separate data points from different clusters of stochastic
processes and exhibit superior performance in few-shot supervised learning tasks. Also, MoE-NPs
are consistently among the best methods in meta learning continuous control.

Existing Limitations. Though the developed model provides more expressive functional priors,
the appropriate number of experts is still hard to determine. Also, the mechanism of gradually
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incorporating new expert latent variables has not been explored and this raises concerns in additional
computational cost and more effective inference.

Future Extensions. Here we provide a couple of heuristics to determine optimal number of experts for
MoE-NPs in the future. Information metrics, e.g. Bayesian information criterion, can be incorporated
in modeling. Another way is to place priors over distributions of discrete latent variables like that in
hierarchical Dirichlet processes [46] and select the optimal number of experts in a Bayesian way.
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