
Appendix

A Proof of Lemma 4.3

We show that D(uvw) ≤ 2.5L(uvw) for all c ∈ L and u, v, w ∈ St
c by enumerating all possible

combinations of
(
ϕ(uv), ϕ(vw), ϕ(wu)

)
. Note that due to symmetry, we do not consider the order

of
(
ϕ(uv), ϕ(vw), ϕ(wu)

)
.

Without loss of generality, we first consider the special case of u = v. Observing that D(uuu) =
L(uuu) = 0, so we consider w ̸= u. By definition, it is easy to obtain that

D(uuw) = 2d(uw | u) =


2xc

uw, if ϕ(uw) = c,

2, if ϕ(uv) ∈ L \ {c},
2(1− xc

uw), if ϕ(uw) = γ,

L(uuw) = 2lp(uw | u) =

{
2x

ϕ(uw)
uv , if ϕ(uw) ∈ L,

2
∑

i∈L(1− xi
uw), if ϕ(uw) = γ.

Thus, it is trivial to see that D(uuw) ≤ L(uuw) if ϕ(uw) = c or ϕ(uw) = γ. If ϕ(uw) ∈ L \ {c},
then by Observation 4.1 we know that xϕ(uw)

uw ≥ 1
2 , which implies D(uuw) ≤ 2L(uuw).

Now, it remains to consider the general case that u, v, w are distinct vertices. In the following, we
give a useful property of the fractional solution to [CCC-LP].

Observation A.1. Given three distinct vertices u, v, w ∈ Sc and a color c̄ ∈ L \ {c}, then xc̄
uv ≥

max{ 12 , 1− xc
uv, 1− xc

vw, 1− xc
wu}.

Proof. By the definition of Sc, Observation 4.1 and constraint (2), we have

xc̄
uv ≥ xc̄

u ≥ 1− xc
u >

1

2
,

xc̄
uv + xc

uv ≥ xc̄
u + xc

u ≥ 1,

xc̄
uv + xc

vw ≥ xc̄
v + xc

v ≥ 1,

xc̄
uv + xc

wu ≥ xc̄
u + xc

u ≥ 1.

Rearranging them completes the proof.

For brevity, we use x1 = xc
uv, x2 = xc

vw, x3 = xc
wu and m = max{ 12 , 1− x1, 1− x2, 1− x3}, and

refer to the triangle
(
ϕ(uv), ϕ(vw), ϕ(wu)

)
as (c1, c2, c3) where ci is one of the colors in {c, c̄, γ}

and c̄ is any color in L \ {c}. In what follows, we investigate all combinations of (c1, c2, c3).

A.1 (γ, γ, γ) Triangles

By definition,

D(uvw) = (1− x1)(1− x2) + (1− x2)(1− x3) + (1− x3)(1− x1).

Meanwhile,

L(uvw) = (1− x1x2)
∑
i∈L

(1− xi
wu) + (1− x2x3)

∑
i∈L

(1− xi
uv) + (1− x1x3)

∑
i∈L

(1− xi
vw)

≥ (1− x1x2)(1− x3) + (1− x2x3)(1− x1) + (1− x1x3)(1− x2)

≥ (1− x1)(1− x3) + (1− x2)(1− x1) + (1− x3)(1− x2)

= D(uvw).
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A.2 (γ, γ, c) Triangles

We have

D(uvw) = (1− x2)(1− x3) + (1− x1)(1− x3) + (1− x1)x2 + (1− x2)x1,

and L(uvw) = (1− x2x3)
∑
i∈L

(1− xi
wu) + (1− x1x3)

∑
i∈L

(1− xi
uv) + (1− x1x2)x3

≥ (1− x2x3)(1− x1) + (1− x1x3)(1− x2) + (1− x1x2)x3,

≥ 1
2

(
(1− x3)(1− x1) + (1− x3)(1− x2) + (1− x1 + 1− x2)(1 + x3)

)
.

Thus,

2L(uvw)−D(uvw) ≥ (1− x1 + 1− x2)− (1− x1)x2 − (1− x2)x1 = 2(1− x1)(1− x2) ≥ 0.

A.3 (γ, γ, c̄) Triangles

We have

D(uvw) = (1− x2)(1− x3) + (1− x1)(1− x3) + 1− x1x2,

and L(uvw) = (1− x2x3)
∑
i∈L

(1− xi
wu) + (1− x1x3)

∑
i∈L

(1− xi
uv) + (1− x1x2)x

c̄
wu

≥ (1− x2x3)(1− x1) + (1− x1x3)(1− x2) + (1− x1x2)m

≥ (1− x3)(1− x1) + (1− x3)(1− x2) +
1
2 (1− x1x2).

Thus, 2L(uvw)−D(uvw) ≥ 0.

A.4 (γ, c, c) Triangles

We have

D(uvw) = (1− x2)(1− x3) + (x1 + x3 − 2x1x3) + (x1 + x2 − 2x1x2)

= 1 + x2x3 + 2x1(1− x2 − x3),

and L(uvw) = (1− x2x3)
∑
i∈L

(1− xi
wu) + (1− x1x3)x2 + (1− x1x2)x3

≥ (1− x2x3)(1− x1) + (1− x1x3)x2 + (1− x1x2)x3

= 1− x1 + x2 + x3 − x2x3 − x1x2x3.

Thus,

5

2
· L(uvw)−D(uvw) ≥ 3

2
+

5(x2 + x3)

2
− 7x2x3

2
− x1

(9
2
− 2x2 − 2x3 +

5x2x3

2

)
≜ F.

Obviously,
∂F

∂x1
= −9

2
+ 2x2 + 2x3 −

5x2x3

2
< 0.

This implies that F decreases along with x1. Recall that by constraint (3), we have x1 ≤ x2 + x3.
Thus, when x2 + x3 ≥ 1, F achieves its minimum at x1 = 1 such that

F ≥ 3

2
+

5(x2 + x3)

2
− 7x2x3

2
−
(9
2
− 2x2 − 2x3 +

5x2x3

2

)
= −3 + 9(x2 + x3)

2
− 6x2x3

= −3

2
(x2 + x3 − 1)(x2 + x3 − 2) +

3

2
(x2 − x3)

2

≥ 0,

where the last inequality is because 1 ≤ x2 + x3 ≤ 2.

15



On the other hand, when x2 + x3 ≤ 1, F achieves its minimum at x1 = x2 + x3 such that

F ≥ 3

2
+

5(x2 + x3)

2
− 7x2x3

2
− (x2 + x3)

(9
2
− 2x2 − 2x3 +

5x2x3

2

)
=

3

2
− 2(x2 + x3)−

7x2x3

2
+ 2(x2 + x3)

2 − 5x2x3(x2 + x3)

2
≜ F ∗.

Due to symmetry, without loss of generality, let x2 = y + a and x3 = y − a with 0 ≤ a ≤ y ≤ 1
2 .

Then, we can rewrite F ∗ as

F ∗ =
3

2
− 4y − 7(y2 − a2)

2
+ 8y2 − 5y(y2 − a2)

≥ −5y3 + 9y2

2
− 4y +

3

2

= −5y2
(
y − 1

2

)
+ (2y − 3)

(
y − 1

2

)
≥ 0.

Putting it together yields 5
2 · L(uvw)−D(uvw) ≥ 0.

A.5 (γ, c, c̄) Triangles

We have

D(uvw) = (1− x2)(1− x3) + (x1 + x3 − 2x1x3) + (1− x1x2)

= 2− x2 + x2x3 + x1(1− x2 − 2x3),

and L(uvw) = (1− x2x3)
∑
i∈L

(1− xi
wu) + (1− x1x3)x2 + (1− x1x2)x

c̄
wu

≥ (1− x2x3)(1− x1) + (1− x1x3)x2 + (1− x1x2)m

= 1− x1 + x2 +m− x2x3 − x1x2m.

Thus,
5

2
· L(uvw)−D(uvw) ≥ 1 + 5m

2
+

7x2

2
− 7x2x3

2
− x1

(7
2
+

(5m− 2)x2

2
− 2x3

)
≜ F.

Again, when m is independent of x1 and m ≥ 1/2, we have

∂F

∂x1
= −7

2
− (5m− 2)x2

2
+ 2x3 < 0.

This implies that F decreases along with x1. When x2 + x3 ≥ 1, F achieves its minimum at x1 = 1
such that

F ≥ 1 + 5m

2
+

7x2

2
− 7x2x3

2
−

(7
2
+

(5m− 2)x2

2
− 2x3

)
=

5m(1− x2)

2
− 3 +

9x2

2
+ 2x3 −

7x2x3

2
≜ F ∗.

If x2 ≥ 1/2, observing that 5m = m+ 4m ≥ 1− x3 + 4/2 = 3− x3, we have

F ∗ ≥ (3− x3)(1− x2)

2
− 3 +

9x2

2
+ 2x3 −

7x2x3

2
=

3(2x2 − 1)(1− x3)

2
≥ 0.

If x2 < 1/2, observing that 5m ≥ 5(1− x2), we have

F ∗ ≥ 5(1− x2)
2

2
− 3 +

9x2

2
+

4− 7x2

2
· (1− x2) =

3(2x2 − 1)2

2
≥ 0,

where the first inequality is because 4− 7x2 ≥ 0 and x3 ≥ 1− x2.

On the other hand, when x2 + x3 ≤ 1, F achieves its minimum at x1 = x2 + x3 such that

F ≥ 1 + 5m

2
+

7x2

2
− 7x2x3

2
− (x2 + x3)

(7
2
+

(5m− 2)x2

2
− 2x3

)
=

5m(1− x2(x2 + x3))

2
+

1

2
− 7x3

2
− x2x3

2
+ x2

2 + 2x2
3 ≜ F ∗.
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If x2 ≥ 1/2, observing that 5m ≥ 5/2, we have

F ∗ ≥ 5(1− x2(x2 + x3))

4
+

1

2
− 7x3

2
− x2x3

2
+ x2

2 + 2x2
3

=
7(1− x3)

2 − x2
2 − 7x2x3 + x2

3

4

≥ 7x2
2 − x2

2 − 7x2x3 + x2
3

4

=
(6x2 − x3)(x2 − x3)

4
≥ 0,

where the second inequality is by 1−x3 ≥ x2, and the last inequality is by x3 ≤ 1−x2 ≤ 1/2 ≤ x2.

If 1/8 ≤ x2 < 1/2, observing that 5m ≥ 5(1− x2), we have

F ∗ ≥ 5(1− x2)(1− x2(x2 + x3))

2
+

1

2
− 7x3

2
− x2x3

2
+ x2

2 + 2x2
3

≥ 5(1− x2)
2

2
+ x2

2 + 2
(
x3 −

7

8

)2

− x2x3

2
− 33

32
,

which is increasing in x3 since x3 ≤ 1− x2 ≤ 7/8. Thus,

F ∗ ≥ 5(1− x2)
2

2
+ x2

2 + 2
(
1− x2 −

7

8

)2

− x2(1− x2)

2
− 33

32

=
3(2x2 − 1)2

2
≥ 0.

If x2 < 1/8, similarly, we have

F ∗ ≥ 5(1− x2)
2

2
+ x2

2 + 2
(
x3 −

7

8

)2

− x2x3

2
− 33

32

≥ 5(1− 1/8)2

2
− 1

16
− 33

32
≥ 0.

Putting it together yields 5
2 · L(uvw)−D(uvw) ≥ 0.

A.6 (γ, c̄, c̄) Triangles

We have

D(uvw) = (1− x2)(1− x3) + (1− x1x3) + (1− x1x2),

and L(uvw) = (1− x2x3)
∑
i∈L

(1− xi
wu) + (1− x1x3)x

c̄
vw + (1− x1x2)x

c̄
wu

≥ (1− x2x3)(1− x1) + (1− x1x3)m+ (1− x1x2)m.

Thus,

5

2
· L(uvw) ≥ 2m ·

(
(1− x1x3) + (1− x1x2)

)
+

(1− x1x3)m

2
+

(1− x1x2)m

2

≥
(
(1− x1x3) + (1− x1x2)

)
+

(1− x1x3)(1− x2)

2
+

(1− x1x2)(1− x3)

2

≥
(
(1− x1x3) + (1− x1x2)

)
+

(1− x3)(1− x2)

2
+

(1− x2)(1− x3)

2
= D(uvw).
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A.7 (c, c, c) Triangles

We have

D(uvw) = (x2 + x3 − 2x2x3) + (x1 + x3 − 2x1x3) + (x1 + x2 − 2x1x2)

= 2(x1 + x2 + x3 − x1x2 − x2x3 − x1x3),

and L(uvw) = (1− x2x3)x1 + (1− x1x3)x2 + (1− x1x2)x3

= x1 + x2 + x3 − 3x1x2x3.

Thus, 2L(uvw)−D(uvw) = 2x1x2(1− x3) + 2x2x3(1− x1) + 2x1x3(1− x2) ≥ 0.

A.8 (c, c, c̄) Triangles

We have

D(uvw) = (x2 + x3 − 2x2x3) + (x1 + x3 − 2x1x3) + (1− x1x2),

and L(uvw) = (1− x2x3)x1 + (1− x1x3)x2 + (1− x1x2)x
c̄
wu

≥ (1− x2x3)x1 + (1− x1x3)x2 +
1

2
· (1− x1x2).

Thus,
5

2
· L(uvw)−D(uvw) ≥ (3 + 4x3)(x1 + x2)

2
− 2x3 +

1− x1x2

4
− 5x1x2x3 ≜ F.

Due to symmetry, without loss of generality, let x1 = y + a and x2 = y − a with 0 ≤ a ≤ y ≤ 1.
Then, we have

F = −
(
5x3 +

1

4

)
(y2 − a2) + (3+ 4x3)y− 2x3 +

1

4
≥ −

(
5x3 +

1

4

)
y2 + (3+ 4x3)y− 2x3 +

1

4
.

It is easy to verify that −5y2 + 4y − 2 ≤ 0, which indicates (−5y2 + 4y − 2)x3 decreases along
with x3. Thus, if y ≥ 1/2, we can get that

F ≥ −5x3y
2 + (3 + 4x3)y − 2x3 ≥ −5y2 + 7y − 2 ≥ min{−5 + 7− 2,−5/4 + 7/2− 2} = 0.

Meanwhile, if y ≤ 1/2, using x3 ≤ x1 + x2 = 2y (by constraint 3), we can get that

F ≥ −10y3 + 31

4
y2 − y +

1

4
= y2(−10y + 5) +

(
y − 1

2

)2

+
7

4
y2 ≥ 0.

Putting it together yields 5
2 · L(uvw)−D(uvw) ≥ 0.

A.9 (c, c̄, c̄) Triangles

We have

D(uvw) = (x2 + x3 − 2x2x3) + (1− x1x3) + (1− x1x2),

and L(uvw) = (1− x2x3)x1 + (1− x1x3)x
c̄
vw + (1− x1x2)x

c̄
wu

≥ (1− x2x3)x1 +
1

2
· (1− x1x3) +

1

2
· (1− x1x2).

Thus,
5

2
· L(uvw)−D(uvw) ≥ 5(1− x2x3)x1

2
− (x2 + x3 − 2x2x3) +

2− x1x2 − x1x3

4
≜ F.

Observing that F is linear in x1, we first assume that F decreases along with x1. Then, as x1 ≤ 1,
we have

F ≥ 5(1− x2x3)

2
− (x2 + x3 − 2x2x3) +

2− x3 − x2

4
=

1− x2x3

2
+

5(2− x2 − x3)

4
≥ 0.

Next, we consider that F increases along with x1. Due to symmetry, without loss of generality,
suppose that x2 ≥ x3. Using x1 ≥ x2 − x3 (by constraint 3), we have

F ≥ 5(1− x2x3)(x2 − x3)

2
− (x2 + x3 − 2x2x3) +

2− (x2 + x3)(x2 − x3)

4
≜ F ∗.
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Then, we can get that

∂F ∗

x2
=

5(1− 2x2x3 + x2
3)

2
− (1− 2x3)−

x2

2
≥ 5x2

3

2
− 3x3 + 1 =

5

2

(
x3 −

3

5

)2

+
1

10
≥ 0,

where the second inequality is because x2 ≤ 1. Thus, F ∗ increases along with x2, which gives rise to

F ∗ ≥ 5(1− x3x3)(x3 − x3)

2
− (x3+x3−2x3x3)+

2− (x3 + x3)(x3 − x3)

4
= 2

(
x3−

1

2

)2

≥ 0.

Putting it together yields 5
2 · L(uvw)−D(uvw) ≥ 0.

A.10 (c̄, c̄, c̄) Triangles

We have

D(uvw) = (1− x2x3) + (1− x1x3) + (1− x1x2),

and L(uvw) = (1− x2x3)x
c̄
uv + (1− x1x3)x

c̄
vw + (1− x1x2)x

c̄
wu

≥ 1

2

(
(1− x2x3) + (1− x1x3) + (1− x1x2)

)
.

Thus, 2L(uvw)−D(uvw) ≥ 0.

This completes the case-by-case analysis for proving D(uvw) ≤ 2.5L(uvw).

B Time Complexity Analysis of the GreedyVote Algorithm

Note that computing |Nϕ(uv)(u)∩Nϕ(uv)(v)|
|N(u)∪N(v)| for any uv ∈ E can be implemented in O(∆) time given

the adjacent vertex lists of u, v and the adjacent matrix of G. Besides, the while-loop in Lines 2–12
iterates for at most O(|V |) times due to the reason that at least two vertices are removed from V
in each iteration. Therefore, Lines 3–4 cost O(∆|V |) running time in total, considering that m is a
predefined constant.

In Lines 6–10 of GreedyVote, when a new vertex w is added into Sk, only the vote counts of the
vertices in C = {v | wv ∈ E ∧ v /∈ Sk ∪ {w}} would be changed. Therefore, we can check each
edge in {wv | v ∈ C} to determine the next vertex w′ to be added into Sk, while determining the new
best color of Sk ∪ {w} (i.e., the most frequent color of the edges with both endpoints in Sk ∪ {w}) at
the same time. This implies that the operations in Lines 2–12 except Lines 3–4 can be implemented
in O(|E|) time in total.

Synthesizing the above analysis, we know that the time complexity of the GreedyVote algorithm is
O(|E|+∆|V |) for any constant m.

C Derandomization

In this section, we show that our approximation algorithm 1 can be de-randomized using some
tricks inspired by Chawla et al. [10]. The resultant deterministic algorithm also guarantees a 2.5-
approximation.

It is noted that phase 1 (Lines 2–4) is a deterministic procedure according to Observation 4.1. Lines
5–6 can also be derandomized by a fixed coloring method easily. Therefore, to get a deterministic
algorithm, it is sufficient to derandomize the clustering process on subgraph Sc.

According to the definitions of d(uv | w) and lp(uv | w), we can rewrite them as follows:

d(uv | w) =


(1− pcvw)p

c
uw + (1− pcuw)p

c
vw, if ϕ(uv) = c,

1− pcuwp
c
vw, if ϕ(uv) ∈ L \ {c},

(1− pcuw)(1− pcvw), if ϕ(uv) = γ;

and

lp(uv | w) =

{
(1− pcuwp

c
vw)x

ϕ(uv)
uv , if ϕ(uv) ∈ L,

(1− pcuwp
c
vw)

∑
i∈L(1− xi

uv), if ϕ(uv) = γ.
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3.850 3.875 3.900 3.925 3.950 3.975 4.000 4.025
1e4

Facebook1
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1e4

Facebook2

2.30 2.32 2.34 2.36 2.38 2.40
1e4

Lastfm
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1e4

DAWN

3.575 3.600 3.625 3.650 3.675 3.700 3.725 3.750
1e5

String1

1.12 1.13 1.14 1.15 1.16 1.17
1e5

String2

5.40 5.45 5.50 5.55 5.60 5.65
1e5

DBLP

9.24 9.26 9.28 9.30 9.32
1e5

Twitter

1.27 1.28 1.29 1.30 1.31 1.32 1.33
1e5
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4.54 4.56 4.58 4.60 4.62 4.64
1e5

Cooking

GV GER GE

Figure A: The distribution of NOD for GE (yellow), GER (orange), and GV (red)

Here 1− pcuv denotes the probability of the event that u and v are in the same cluster colored by c,
used in line 11. Now we attempt to change the value of each pcuv to either 0 or 1 to maximize the
function:

2.5E[Lt | St
c]− E[Dt | St

c]. (9)
This can be done as follows: for each edge uv ∈ Et

c, we pick a value from {0, 1} to assign to pcuv
that maximizes the function (9). After all pcuv for uv ∈ Et

c are integers (e.g. 0 or 1), the algorithm
picks the vertex w to maximize 2.5E[Lt | St

c, pt = w]− E[Dt | St
c, pt = w] where pt = w denotes

the event that the center of the new cluster at iteration t is vertex w. Algorithm gets the deterministic
cluster in iteration t because the center of the cluster is deterministic and the probability of the event
that each vertex is add to the cluster is either 0 or 1.

Note that all terms of L(uvw) and D(uvw) are linear functions of pcuv, p
c
vw, and pcwu according

to the definitions. Then, 2.5E[Lt | St
c] − E[Dt | St

c] =
1

6|St
c|
∑

u,v,w∈St
c
(2.5L(uvw) − D(uvw))

are linear in each pcuv for uv ∈ Et
c. Therefore, the value of (9) may only increase when we

greedily change pcuv to 0 or 1. Combined with our previous analysis, function (9), which is equal to
1

6|St
c|
∑

w∈St
c

∑
uv∈Et

c
(2.5lp(uv | w)− d(uv | w)), is nonnegative after each pcuv is replaced with 0

or 1. Hence, we can find some vertex w⋆ ∈ Sc
t to make

∑
uv∈Et

c
(2.5lp(uv | w⋆)− d(uv | w⋆)) ≥ 0.

It means that the number of disagreements is upper bounded by 2.5 times the LP cost among the
edges removed at iteration t, and we get Dt ≤ 2.5Lt. Therefore, this deterministic algorithm achieves
an approximation ratio of 2.5.

D Addtional Experiments

Table 4: Compare all algorithms on the variance of NOD

Datasets Pivot [2] RC [3] DC [3] CB [6] GE [25] GER [25] GV (ours)
Facebook1 2.17e7 3.47e6 4.78e6 3.21e6 1.34e5 9.11e4 7.36e4
Facebook2 1.48e7 8.68e6 6.92e6 3.75e6 1.34e5 1.76e5 8.19e4
Lastfm 7.45e6 9.42e5 1.13e6 6.91e3 2.62e3 2.82e3 1.69e3
Twitter 7.83e7 8.07e6 1.69e7 8.55e4 3.19e4 2.21e4 1.56e4
DAWN 1.68e9 2.21e8 1.44e8 1.12e6 2.75e4 1.02e4 1.23e6
Cooking 7.05e9 2.06e9 3.63e8 1.81e7 6.50e6 3.16e4 5.38e6
String1 4.54e9 2.49e8 1.03e9 1.23e7 6.81e6 7.79e5 2.61e6
String2 3.17e7 4.27e7 4.87e7 3.90e6 1.12e6 1.11e6 2.30e5
DBLP 2.16e10 1.50e8 2.15e8 4.26e6 3.42e5 1.26e5 2.84e5
MAG 3.24e8 1.08e7 9.11e6 2.67e6 1.23e6 4.52e5 4.31e5

In this section, we present more experimental results under the same experimental settings in Sec. 6.
Each implemented algorithm is run for 50 times for each dataset.

First, we compare the implemented algorithms on their variances, with the results shown by Table
4. As GV, GE, GER are the three algorithms with the best performance on the average Number of
Disagreements (NOD), we also plot the distribution of their NOD in a visualized way in Figure A.
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From Table 4 and Figure A, it can be seen that the variances of GV are smaller than those of GE
on all 10 datasets except DAWN. Compared to GER, the variances of GV are smaller on 6 out of
10 datasets, but GV outperforms GER in terms of average NOD on all 10 datasets (see Sec. 2) .
Moreover, Figure A shows that GV achieves smaller NOD than GE and GER in every of the 50
runs on the four datasets including Lastfm, DBLP, Twitter and MAG. Finally, among all the seven
implemented algorithms, GV achieves the smallest variance on 6 out of 10 datasets.

Next, we evaluate the impact of the parameter m of GV on the number of disagreements (NOD) and
running time (RT), shown in Figure B. As expected, the running time of GV increases with m, while
the NOD of GV decreases when m increases. This reveals the tradeoff on efficiency and effectiveness
for selecting the value of m. However, the overall time complexity of GV (i.e., O(|E|+∆|V |)) is
independent on m.

E Code

The code of this paper can be found at: https://github.com/xiuq04/heuristics-for-ccc
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Figure B: Impact of GV’s parameter m on NOD (the number of disagreements, plotted by orange
lines) and RT (running time, plotted by blue lines) on all 10 datasets. For each dataset, the left Y-axis
denotes the values of NOD, and the right Y-axis denotes the values of RT (seconds).
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