Supplementary Material: Cross Aggregation Transformer for Image Restoration

Zheng Chen¹, Yulun Zhang², Jinjin Gu^{3,4}, Yongbing Zhang⁵, Linghe Kong¹*, Xin Yuan⁶
¹Shanghai Jiao Tong University, ²ETH Zürich, ³Shanghai AI Laboratory,
⁴The University of Sydney, ⁵Harbin Institute of Technology (Shenzhen), ⁶Westlake University

1 Method

1.1 Source Code

We provide the source code and pretrained models at https://github.com/zhengchen1999/CAT.

1.2 Variant Models

We provide two variant models for image SR, called CAT-R-2 and CAT-A-2. For two models, we set residual group (RG) numbers N_1 , cross aggregation Transformer block (CATB) number N_2 , channel dimension, and attention head number as 6, 6, 180, and 6, respectively. These settings are consistent with CAT-R and CAT-A. For CAT-R-2, we apply regular-Rwin, and set [sw, sh] as [4, 16] (same as CAT-R). We set the MLP expansion ratio as 2, consistent with SwinIR [13]. For CAT-A-2, we apply axial-Rwin, and set sl as 4 for all CATB in each RG. The MLP expansion ratio is set as 4.

Method	Scale	Set5		Set14		B100		Urban100		Manga109	
wiethou	Scale	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
SwinIR [13]	$\times 2$	38.42	0.9623	34.46	0.9250	32.53	0.9041	33.81	0.9427	39.92	0.9797
CAT-R-2	$\times 2$	38.47	0.9624	34.51	0.9251	32.55	0.9043	34.03	0.9439	40.05	0.9802
CAT-A-2	$\times 2$	38.56	0.9628	34.78	0.9267	32.59	0.9047	34.38	0.9452	40.14	0.9805
CAT-R-2+	$\times 2$	38.52	0.9626	34.56	0.9257	32.58	0.9046	34.15	0.9446	40.15	0.9804
CAT-A-2+	$\times 2$	38.58	0.9629	34.83	0.9269	32.61	0.9049	34.46	0.9457	40.21	0.9807
SwinIR [13]	×3	34.97	0.9318	30.93	0.8534	29.46	0.8145	29.75	0.8826	35.12	0.9537
CAT-R-2	$\times 3$	35.03	0.9321	30.97	0.8534	29.47	0.8150	29.85	0.8838	35.25	0.9540
CAT-A-2	$\times 3$	35.09	0.9327	31.09	0.8545	29.53	0.8162	30.22	0.8882	35.44	0.9549
CAT-R-2+	×3	35.08	0.9323	31.03	0.8542	29.50	0.8155	30.01	0.8855	35.41	0.9546
CAT-A-2+	$\times 3$	35.14	0.9329	31.13	0.8549	29.55	0.8165	30.32	0.8892	35.55	0.9552
SwinIR [13]	$\times 4$	32.92	0.9044	29.09	0.7950	27.92	0.7489	27.45	0.8254	32.03	0.9260
CAT-R-2	$\times 4$	32.91	0.9040	29.13	0.7953	27.93	0.7493	27.59	0.8285	32.16	0.9263
CAT-A-2	$\times 4$	33.09	0.9054	29.21	0.7964	27.99	0.7513	27.99	0.8357	32.47	0.9290
CAT-R-2+	×4	32.97	0.9048	29.20	0.7962	27.97	0.7499	27.71	0.8306	32.34	0.9276
CAT-A-2+	$\times 4$	33.12	0.9057	29.26	0.7972	28.02	0.7518	28.08	0.8371	32.61	0.9298

Table 1: Quantitative comparison (PSNR/SSIM) with SwinIR [13] for image SR. Best and second best results are colored with red and blue.

1.3 Quantitative Results

We train CAT-R-2 and CAT-A-2 on DIV2K [26] and Flickr2K [14] in the same way (training settings) we train CAT-R and CAT-A. We test two models on Set5 [2], Set14 [27], B100 [20], Urban100 [11], and Manga109 [21] with three upscaling factors: $\times 2$, $\times 3$, and $\times 4$. We compare two variants with SwinIR. We use self-ensemble strategy and mark models with "+". The results are shown in Table 1.

As we can see, our CAT-A-2 significantly outperforms SwinIR [13] on all datasets with all scale factors. And CAT-A-2 still performs better than SwinIR, except for Se5 (\times 4). CAT-A-2 achieves 0.57 dB gain over SwinIR on Urban100 (\times 2), and 0.44 dB gain on Manga109 (\times 2). Moreover, our

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

^{*}Corresponding author: Linghe Kong, linghe.kong@sjtu.edu.cn

Method	Params (M)	FLOPs (G)	Set5	Set14	B100	Urban100	Manga109
SwinIR [13]	11.90	215.3	32.92	29.09	27.92	27.45	32.03
CAT-R-2	11.93	216.3	32.91	29.13	27.93	27.59	32.16
CAT-A-2	16.60	387.9	33.09	29.21	27.99	27.99	32.47

Table 2: Model complexity comparisons (\times 4). Output size is $3\times512\times512$ to calculate FLOPs.

CAT-R-2 achieves 0.22 dB on Urban100 (\times 2), at similar computational complexity to SwinIR. We will discuss this in detail in Sec. 1.4. In addition, compared with CAT-A, the variant model CAT-A-2 yields 0.1~0.12 dB gains. All these results further indicate the effectiveness of our method.

1.4 Model Size Analyses

Table 2 shows the comparison of performance, computational complexity (*e.g.*, FLOPs), and parameter numbers on image SR. FLOPs are measured when the output size is set to $3 \times 512 \times 512$. Our CAT-R-2 has similar parameters and complexity of SwinIR [13]. The parameter numbers and computational complexity only increase by 0.25% and 0.46%, respectively. From the main paper, we can know that the extra parameters and complexity come from locality complementary module (LCM), which is crucial to performance. With a slight increase in complexity, our CAT-R-2 achieves 0.14 dB and 0.13 dB on Urban100 and Manga109, respectively. And CAT-R-2 outperforms SwinIR on other benchmark datasets, except for Set5. For CAT-A-2, it has the same number of parameters as CAT-R and CAT-A. With a slight increase in complexity, our CAT-A-2 can significantly improve performance. CAT-A-2 obtains 0.1 dB boost over CAT-A.

2 Experimental Results

Figure 1: Convergence analyses on CAT-A, CAT-R, CAT-R-2, and SwinIR [13].

Figure 2: LAM [8] comparison between SwinIR [13] and CAT.

2.1 Convergence Analyses

We plot the PSNR during training for SwinIR, CAT-A, CAT-R, and CAT-R-2 in Fig. 1. PSNR values are tested on Set5 [2], Set14 [27], B100 [20], Urban100 [11], and Manga109 [21] for image SR (×2). We can observe that our CAT-A, CAT-R and CAT-R-2 convergence is faster than SwinIR on all datasets. For CAT-R-2, it has a similar convergence speed as CAT-R, albeit with less computational complexity and parameters. Moreover, CAT-A converges much faster and better than other models. It indicates the effectiveness of our axial-Rwin self-attention mechanism. All these results demonstrate the superior performance of our proposed cross aggregation Transformer (CAT).

2.2 LAM Analyses

We use LAM [8] to visualize the receptive fields of CAT and SwinIR [13]. LAM is an attribution method designed for SR, which can show pixels that contribute most to the SR result. In other words, the more pixels that can be utilized, the larger the actual receptive field of the model. We display three sets of comparison plots in Fig. 2. We can observe that SwinIR can only utilize a limited range of pixels. In contrast, our CAT has a global receptive field, in which available pixels are extended to almost complete images. All these results show that our CAT can capture global information and have long-range modeling ability. Furthermore, these visualization results are consistent with the quantitative and visual comparison in Table 7, Figs. 4, 5, and 6.

2.3 Image Super-Resolution

We compare our method with 20 state-of-the-art methods: EDSR [14], D-DBPN [9], SRMDNF [28], RDN [31], OISR [10], RCAN [29], NLRN [15], RNAN [30], SRFBN [12], SAN [4], RFANet [16], NSR [6], IGNN [33], HAN [24], CSNLN [23], NLSA [22], CRAN [32], DFSA+ [19], IPT [3], and SwinIR [13]. We use self-ensemble strategy in testing and mark the model with a symbol "+". We use CAT-A for visual comparisons, abbreviated as CAT. Quantitative comparisons are shown in Table 7. Visual comparisons are shown in Figs. 4, 5, and 6.

Quantitative Comparisons. Table 7 shows more PSNR/SSIM comparisons for $\times 2$, $\times 3$, and $\times 4$ image SR. Our AT-R (regular-Rwin) and CAT-A (axial-Rwin) significantly outperform other methods on all datasets with all scale factors. All these results indicate the effectiveness of our method.

Visual Comparisons. We provide more visual comparisons in Figs. 4, 5, and 6. For example, in img_011, our CAT can recover the lines completely, while most compared methods fail to recover

Method	q=10		<i>q</i> =	=20	<i>q</i> =	=30	q=40		
Wiethou	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	
SwinIR [13]	30.55	0.8841	33.12	0.9252	34.58	0.9418	35.50	0.9508	
CAT	30.80	0.8875	33.38	0.9274	34.81	0.9432	35.73	0.9520	
CAT+	30.89	0.8885	33.46	0.9280	34.88	0.9436	35.81	0.9523	

Table 3: Quantitative comparison (PSNR/SSIM) on Urban100 with SwinIR [13] for JPEG compression artifact reduction. Best and second best results are colored with red and blue.

Figure 3: Convergence analyses on CAT and SwinIR on color JPEG compression artifact reduction.

lines near the bottom. In img_048, compared methods cannot recover textures at the top of the pyramid architecture. In contrast, our CAT can recover right and sharp lattices. In LoveHina_vol01, our CAT can alleviate the blurring artifacts better and recover the girl's hair, while other methods suffer from blurring artifacts. These visual comparisons are consistent with the quantitative results and demonstrate the effectiveness of our method with the usage of rectangle-window attention.

2.4 Grayscale JPEG Compression Artifact Reduction

Our CAT has a more robust representational ability to recover structural contents and texture details due to rectangle window self-attention. However, for the JPEG artifact reduction testing datasets: Classic5 [7] and LIVE1 [25], the number of images they contain is small (5 and 29), and the texture features are not rich. So the overall improvement effect is not obvious.

To demonstrate the effectiveness of our method, we further compare our CAT with SwinIR [13] on Urban100 [11] with JPEG compression qualities of 10, 20, 30, and 40. Here, we focus on the restoration of Y channel (in YCbCr space). We still use self-ensemble strategy and mark the model with a symbol "+". Quantitative and visual comparisons are shown in Table 3, Figs. 7 and 8.

Quantitative Comparisons. Table 3 shows quantitative comparisons with SwinIR [13] on Urban100. Our CAT significantly outperforms SwinIR. Unlike the slight increase on Classic5 [7] and LIVE1 [25] (0.06 dB), our CAT+ yields 0.30~0.34 dB gains on Urban100. Even without self-ensemble, our CAT also achieves 0.25~0.26 dB gains. These results show that our CAT can capture more global information than SwinIR, which is crucial to images with directional and repetitive texture features.

Visual Comparisons. We provide more visual comparisons in Figs. 7 and 8. We only compare our CAT with SwinIR on Urban100. For example, in img_019, we can observe that our CAT can recover more details and remove blocking artifacts, while SwinIR restores some wrong textures. In

Method	Iteration	25K	50K	75K	100K	125K	150K	175K	200K
SwinIR	PSNR	34.73	34.86	34.92	34.95	34.97	34.99	35.00	35.01
	SSIM	0.9347	0.9359	0.9364	0.9368	0.9370	0.9372	0.9372	0.9370
CAT (ours)	PSNR	34.82	34.95	35.02	35.05	35.07	35.08	35.10	35.11
	SSIM	0.9354	0.9367	0.9374	0.9378	0.9379	0.9379	0.9381	0.9380

Table 4: Quantitative comparison (PSNR/SSIM) on LIVE1 with SwinIR [13] for color JPEG compression artifact reduction (q=40) on checkpoints, from 0 to 200K (iterations).

Method	Set5		Se	t14	LIV	VE1	Urban100		
	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	
SwinIR [13]	37.44	0.9487	35.74	0.9319	35.01	0.9370	35.42	0.9520	
CAT (ours)	37.51	0.9491	35.87	0.9326	35.11	0.9380	35.76	0.9539	

Table 5: Quantitative comparison (PSNR/SSIM) with SwinIR [13] for color JPEG compression artifact reduction (q=40). Training iterations are 200K for both CAT and SwinIR.

img_060, SwinIR cannot recover correct letters and over-smooth some textures. In contrast, our CAT can restore explicit letters and textures. In img_074, our CAT can recover the lattices in high places, while SwinIR suffers from blurring artifacts. These results demonstrate that our CAT has the more powerful long-range dependencies modeling ability and can capture more global information.

2.5 Color JPEG Compression Artifact Reduction

We further compare our CAT with SwinIR [13] on color JPEG compression artifact reduction. The convergence analyses are in Fig. 3, and quantitative comparisons are in Tables 4 and 5.

Experimental Settings. We still use the CAT for (grayscale) JPEG compression artifact reduction we proposed in the main paper. We change the input and output channels from 1 to 3. SwinIR has the same modification. The training setting is still the same as (grayscale) JPEG compression artifact reduction task. More details are shown in the main paper.

We train CAT and SwinIR on DIV2K [26], Flickr2K [14], BSD500 [1], and WED [18]. And we have four testing datasets: Set5 [2], Set14 [27], LIVE1 [25], and Urban100 [11], with JPEG compression qualities of 40. We calculate PSNR and SSIM [18] on the Y channel of the YCbCr space.

Convergence Analyses. Due to time issues, we only completed part of the training (fininshed iterations = 200K, target total iterations = 1600K.). In Fig. 3, we show the validation curves of our CAT and SwinIR during training, from 0 to 200K (iterations). PSNR values are tested on Set5 [2]. We can observe that our CAT convergence is faster than SwinIR.

Quantitative Comparisons. Table 4 shows the comparisons of the performance on LIVE1 of CAT and SwinIR during training, from 0 to 200K (iterations). Our CAT outperforms SwinIR on all checkpoints. And Table 5 shows quantitative comparisons with SwinIR when the iterations are 200K. Our CAT outperforms SwinIR on all datasets. Our CAT yields 0.1 dB gains on Urban100 and 0.34 dB gains on LIVE1. These results demonstrate the effectiveness of our CAT.

2.6 Other Numerical Results

Method	Params (M)	FLOPs (G)	Set5	Set14	B100	Urban100	Manga109
CSwin [5]	16.45	350.7	38.40	34.42	32.46	33.73	39.83
CAT-A	16.46	350.7	38.51	34.78	32.59	34.26	40.10

Table 6: Model comparisons (\times 2). Output size is $3 \times 256 \times 256$ to calculate FLOPs.

CAT vs. CSwin. To demonstrate the superiority of our CAT, we compare the performance of CAT-A and CSwin [5] on image SR (\times 2). The CSwin model uses our CAT architecture and replaces our Cross Aggregation Transformer Block (CATB) with the CSWin Transformer Block. The implementation details and training settings are the same for CAT and CSwin. Table 6 shows the comparison of performance, computational complexity (*e.g.*, FLOPs), and parameter numbers on image SR (\times 2). FLOPs are measured when the output size is set to $3 \times 256 \times 256$. Our CAT-A significantly outperforms CSwin on all datasets with similar model sizes and computational complexity.

3 Additional Analyses

Difference between axial-shift and shift operation in Swin Transformer. Our axial-shift reference the design of the shift operation in Swin Transformer. However, the axial-shift we proposed is different from the shifted window operation in Swin Transformer [17].

The most significant difference between axial-shift and the shift operation in Swin Transformer is that axial-shift adopts a grouped parallel design. Axial-shift is divided into V-Shift and H-Shift operations, which act on different attention heads and correspond to V-Rwin and H-Rwin. However, the shift operation in Swin Transformer performs the same shift operation in all heads.

Based on our proposed axis-shift operation, Rwin can realize more window interaction, thereby expanding the receptive field and improving model performance. We can find that the performance of Rwin with axial-shift is much better than the square window with shift operation in Swin Transformer from the ablation study Table 1a in the main paper.

Furthermore, the shift operation in Swin Transformer can be viewed as a special case of our axial-shift. When the axial-shift displacement distances are the same in all heads, the shift operation in each attention head is the same. Then axial-shift degenerates into the shift operation in Swin Transformer. In general, our axial-shift is more general and efficient.

References

- Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detection and hierarchical image segmentation. *TPAMI*, 2010. 5
- [2] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie Line Alberi-Morel. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In *BMVC*, 2012. 1, 3, 5
- [3] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and Wen Gao. Pre-trained image processing transformer. In CVPR, 2021. 3, 8
- [4] Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and Lei Zhang. Second-order attention network for single image super-resolution. In CVPR, 2019. 3, 8, 9, 10
- [5] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan, Dong Chen, and Baining Guo. Cswin transformer: A general vision transformer backbone with cross-shaped windows. In *CVPR*, 2022. 5
- [6] Yuchen Fan, Jiahui Yu, Yiqun Mei, Yulun Zhang, Yun Fu, Ding Liu, and Thomas S Huang. Neural sparse representation for image restoration. In *NeurIPS*, 2020. **3**, **8**
- [7] Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Pointwise shape-adaptive dct for high-quality denoising and deblocking of grayscale and color images. *TIP*, 2007. 4
- [8] Jinjin Gu and Chao Dong. Interpreting super-resolution networks with local attribution maps. In CVPR, 2021. 3
- [9] Muhammad Haris, Greg Shakhnarovich, and Norimichi Ukita. Deep back-projection networks for superresolution. In CVPR, 2018. 3, 8
- [10] Xiangyu He, Zitao Mo, Peisong Wang, Yang Liu, Mingyuan Yang, and Jian Cheng. Ode-inspired network design for single image super-resolution. In CVPR, 2019. 3, 8
- [11] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from transformed self-exemplars. In *CVPR*, 2015. 1, 3, 4, 5, 9, 10, 11, 12
- [12] Zhen Li, Jinglei Yang, Zheng Liu, Xiaomin Yang, Gwanggil Jeon, and Wei Wu. Feedback network for image super-resolution. In CVPR, 2019. 3, 8
- [13] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir: Image restoration using swin transformer. In *ICCVW*, 2021. 1, 2, 3, 4, 5, 8, 9, 10, 11, 12
- [14] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual networks for single image super-resolution. In CVPRW, 2017. 1, 3, 5, 8, 9, 10
- [15] Ding Liu, Bihan Wen, Yuchen Fan, Chen Change Loy, and Thomas S Huang. Non-local recurrent network for image restoration. In *NeurIPS*, 2018. 3, 8

- [16] Jie Liu, Wenjie Zhang, Yuting Tang, Jie Tang, and Gangshan Wu. Residual feature aggregation network for image super-resolution. In CVPR, 2020. 3, 8
- [17] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *ICCV*, 2021. 6
- [18] Kede Ma, Zhengfang Duanmu, Qingbo Wu, Zhou Wang, Hongwei Yong, Hongliang Li, and Lei Zhang. Waterloo exploration database: New challenges for image quality assessment models. *TIP*, 2016. 5
- [19] Salma Abdel Magid, Yulun Zhang, Donglai Wei, Won-Dong Jang, Zudi Lin, Yun Fu, and Hanspeter Pfister. Dynamic high-pass filtering and multi-spectral attention for image super-resolution. In *ICCV*, 2021. 3, 8
- [20] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In *ICCV*, 2001. 1, 3
- [21] Yusuke Matsui, Kota Ito, Yuji Aramaki, Azuma Fujimoto, Toru Ogawa, Toshihiko Yamasaki, and Kiyoharu Aizawa. Sketch-based manga retrieval using manga109 dataset. *Multimedia Tools and Applications*, 2017. 1, 3, 10
- [22] Yiqun Mei, Yuchen Fan, and Yuqian Zhou. Image super-resolution with non-local sparse attention. In CVPR, 2021. 3, 8
- [23] Yiqun Mei, Yuchen Fan, Yuqian Zhou, Lichao Huang, Thomas S Huang, and Humphrey Shi. Image super-resolution with cross-scale non-local attention and exhaustive self-exemplars mining. In *CVPR*, 2020. 3, 8, 9, 10
- [24] Ben Niu, Weilei Wen, Wenqi Ren, Xiangde Zhang, Lianping Yang, Shuzhen Wang, Kaihao Zhang, Xiaochun Cao, and Haifeng Shen. Single image super-resolution via a holistic attention network. In ECCV, 2020. 3, 8, 9, 10
- [25] Hamid R Sheikh, Muhammad F Sabir, and Alan C Bovik. A statistical evaluation of recent full reference image quality assessment algorithms. *TIP*, 2006. 4, 5
- [26] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, Lei Zhang, Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, Kyoung Mu Lee, et al. Ntire 2017 challenge on single image super-resolution: Methods and results. In *CVPRW*, 2017. 1, 5
- [27] Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-representations. In Proc. 7th Int. Conf. Curves Surf., 2010. 1, 3, 5
- [28] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Learning a single convolutional super-resolution network for multiple degradations. In CVPR, 2018. 3, 8
- [29] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-resolution using very deep residual channel attention networks. In ECCV, 2018. 3, 8, 9, 10
- [30] Yulun Zhang, Kunpeng Li, Kai Li, Bineng Zhong, and Yun Fu. Residual non-local attention networks for image restoration. In *ICLR*, 2019. 3, 8
- [31] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. Residual dense network for image super-resolution. In *CVPR*, 2018. **3**, 8
- [32] Yulun Zhang, Donglai Wei, Can Qin, Huan Wang, Hanspeter Pfister, and Yun Fu. Context reasoning attention network for image super-resolution. In *ICCV*, 2021. 3, 8
- [33] Shangchen Zhou, Jiawei Zhang, Wangmeng Zuo, and Chen Change Loy. Cross-scale internal graph neural network for image super-resolution. In *NeurIPS*, 2020. 3, 8, 9, 10

	a 1	Se	et5	Se	t14	B	100	Urba	un100	Man	ga109
Method	Scale	PSNR	SSIM								
		20.11	0.0602	22.02	0.0105	20.00	0.0012	22.02	0.0251	20.10	0.0772
EDSR [14]	×2	38.11	0.9602	33.92	0.9195	32.32	0.9013	32.93	0.9351	39.10	0.9773
D-DBPN [9]	$\times 2$	38.09	0.9600	33.85	0.9190	32.27	0.9000	32.55	0.9324	38.89	0.9775
SRMDNF [28]	$\times 2$	37.79	0.9601	33.32	0.9159	32.05	0.8985	31.33	0.9204	38.07	0.9761
RDN [31]	$\times 2$	38.24	0.9614	34.01	0.9212	32.34	0.9017	32.89	0.9353	39.18	0.9780
OISR [10]	$\times 2$	38.21	0.9612	33.94	0.9206	32.36	0.9019	33.03	0.9365	-	-
RCAN [29]	×2	38 27	0.9614	34.12	0.9216	32.41	0.9027	33 34	0.9384	39.44	0.9786
NLRN [15]	$\sqrt{2}$	38.00	0.9603	33.46	0.9159	32.19	0.8992	31.81	0.9249	-	-
PNAN [30]	$\hat{\sqrt{2}}$	38.17	0.9611	33.87	0.9207	32.17	0.0014	32.73	0.9219	30.23	0.0785
	~2	20.11	0.9011	33.07	0.9207	32.31	0.9014	32.75	0.9340	39.23	0.9785
SKFBN [12]	×2	38.11	0.9609	33.82	0.9196	32.29	0.9010	32.62	0.9328	39.08	0.9779
SAN [4]	$\times 2$	38.31	0.9620	34.07	0.9213	32.42	0.9028	33.10	0.9370	39.32	0.9792
RFANet [16]	$\times 2$	38.26	0.9615	34.16	0.9220	32.41	0.9026	33.33	0.9389	39.44	0.9783
NSR [6]	$\times 2$	38.23	0.9614	33.94	0.9203	32.34	0.9020	33.02	0.9367	39.31	0.9782
IGNN [33]	$\times 2$	38.24	0.9613	34.07	0.9217	32.41	0.9025	33.23	0.9383	39.35	0.9786
HAN [24]	×2	38.27	0.9614	34.16	0.9217	32.41	0.9027	33 35	0.9385	39.46	0.9785
CSNI N [22]	$\tilde{\mathbf{x}}_{2}$	28.29	0.0616	24.12	0.0222	32.11	0.0024	22.25	0.0386	20.27	0.0785
	~2	30.20	0.9010	24.00	0.9223	32.40	0.9024	33.23	0.9380	39.37	0.9785
NLSA [22]	×2	38.34	0.9618	34.08	0.9231	32.43	0.9027	33.42	0.9394	39.59	0.9789
CRAN [32]	$\times 2$	38.31	0.9617	34.22	0.9232	32.44	0.9029	33.43	0.9394	39.75	0.9793
DFSA+ [19]	$\times 2$	38.38	0.9620	34.33	0.9232	32.50	0.9036	33.66	0.9412	39.98	0.9798
IPT [3]	$\times 2$	38.37	-	34.43	-	32.48	-	33.76	-	-	-
SwinIR [13]	$\times 2$	38.42	0.9623	34.46	0.9250	32.53	0.9041	33.81	0.9427	39.92	0.9797
CAT-R (ours)	×2	38.48	0.9625	34 53	0.9251	32.56	0.9045	34.08	0 9443	40.09	0 9804
CAT A (ours)	22	29.51	0.0626	24.79	0.0265	22.50	0.0047	24.26	0.0440	40.10	0.9001
CAI-A (ours)	×2	36.31	0.9626	34.78	0.9205	52.59	0.9047	54.20	0.9440	40.10	0.9803
CAI-R+ (ours)	×2	38.52	0.9627	34.59	0.9257	32.58	0.9047	34.19	0.9450	40.18	0.9805
CAT-A+ (ours)	$\times 2$	38.55	0.9628	34.81	0.9267	32.60	0.9048	34.34	0.9445	40.18	0.9806
EDSR [14]	×3	34.65	0.9280	30.52	0.8462	29.25	0.8093	28.80	0.8653	34 17	0 9476
SPMDNE [20]		3/ 12	0.0254	30.04	0.0402	28.07	0.0095	20.00	0.0000	33.00	0.0402
SKIVIDNE [20]	× 3	34.12	0.9234	30.04	0.8382	20.97	0.8025	27.57	0.8598	33.00	0.9405
KDN [31]	×3	34.71	0.9296	30.57	0.8468	29.26	0.8093	28.80	0.8653	34.13	0.9484
OISR [10]	$\times 3$	34.72	0.9297	30.57	0.8470	29.29	0.8103	28.95	0.8680	-	-
RCAN [29]	$\times 3$	34.74	0.9299	30.65	0.8482	29.32	0.8111	29.09	0.8702	34.44	0.9499
NLRN [15]	$\times 3$	34.27	0.9266	30.16	0.8374	29.06	0.8026	27.93	0.8453	-	-
RNAN [30]	×3	34.66	0.9290	30.53	0.8463	29.26	0.8090	28.75	0.8646	34.25	0.9483
SPERN [12]	~3	34.70	0.0202	30.51	0.8461	20.24	0.8084	28.73	0.8641	34.18	0.0481
SKIDN [12]		24.75	0.9292	20.50	0.0401	29.24	0.0004	28.75	0.8041	24.10	0.9401
SAN [4]	× 3	34.73	0.9500	30.39	0.8470	29.55	0.8112	28.95	0.8071	34.50	0.9494
RFANet [10]	×3	34.79	0.9300	30.67	0.8487	29.34	0.8115	29.15	0.8720	34.59	0.9506
NSR [6]	×3	34.62	0.9289	30.57	0.8475	29.26	0.8100	28.83	0.8663	34.27	0.9484
IGNN [33]	$\times 3$	34.72	0.9298	30.66	0.8484	29.31	0.8105	29.03	0.8696	34.39	0.9496
HAN [24]	$\times 3$	34.75	0.9299	30.67	0.8483	29.32	0.8110	29.10	0.8705	34.48	0.9500
CSNLN [23]	×3	34.74	0.9300	30.66	0.8482	29.33	0.8105	29.13	0.8712	34.45	0.9502
NI SA [22]	~3	3/ 85	0.9306	30.70	0.8485	20.34	0.8117	20.25	0.8726	34.57	0.9508
CDAN [22]		24.00	0.9300	20.72	0.0400	29.34	0.0117	29.23	0.8720	24.94	0.9508
CKAN [52]	× 3	34.80	0.9504	30.75	0.8498	29.56	0.8124	29.55	0.8745	34.84	0.9515
DFSA+ [19]	$\times 3$	34.92	0.9312	30.83	0.8507	29.42	0.8128	29.44	0.8761	35.07	0.9525
IPT [3]	$\times 3$	34.81	-	30.85	-	29.38	-	29.49	-	-	-
SwinIR [13]	$\times 3$	34.97	0.9318	30.93	0.8534	29.46	0.8145	29.75	0.8826	35.12	0.9537
CAT-R (ours)	$\times 3$	34.99	0.9320	31.00	0.8539	29.49	0.8154	29.91	0.8848	35.29	0.9542
CAT-A (ours)	×3	35.06	0.9326	31.04	0.8538	29.52	0.8160	30.12	0.8862	35 38	0.9546
CAT P + (ours)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	35.07	0.0324	31.06	0.8544	20 52	0.8150	30.05	0.8864	35 44	0.0548
CAT-R+ (ours)		25.10	0.9324	31.00	0.0545	29.52	0.0159	30.05	0.0004	35.44	0.9540
CAI-A+ (ours)	×3	35.10	0.9327	31.09	0.8545	29.55	0.8164	30.21	0.8872	35.48	0.9550
EDSR [14]	$\times 4$	32.46	0.8968	28.80	0.7876	27.71	0.7420	26.64	0.8033	31.02	0.9148
D-DBPN [9]	$\times 4$	32.47	0.8980	28.82	0.7860	27.72	0.7400	26.38	0.7946	30.91	0.9137
SRMDNE [28]	$\times 4$	31.96	0.8925	28 35	0 7787	27.49	0.7337	25.68	0.7731	30.09	0.9024
PDN [21]		32 17	0.8000	20.55	0.7071	27.72	0.7410	25.00	0.8020	31.00	0.0151
	~4	32.47	0.8990	20.01	0.7871	27.72	0.7419	20.01	0.8028	51.00	0.9151
	×4	32.33	0.8992	28.80	0.7878	21.15	0.7428	20.79	0.8068	-	-
RCAN [29]	×4	32.63	0.9002	28.87	0.7889	27.77	0.7436	26.82	0.8087	31.22	0.9173
NLRN [15]	$\times 3$	31.92	0.8916	28.36	0.7745	27.48	0.7306	25.79	0.7729	-	-
RNAN [30]	$\times 3$	32.43	0.8977	28.83	0.7871	27.72	0.7410	26.61	0.8023	31.09	0.9149
SRFBN [12]	$\times 4$	32.47	0.8983	28.81	0.7868	27.72	0.7409	26.60	0.8015	31.15	0.9160
SAN [4]	$\times 4$	32.64	0.9003	28.92	0.7888	27.78	0.7436	26.79	0.8068	31.18	0.9169
DEANet [16]		32.04	0.0000	20.92	0.7000	27.70	0.7430	26.19	0.0000	31.10	0.010
KFAINEL [10]	×4	52.00	0.9004	20.00	0.7894	27.79	0.7442	20.92	0.8112	51.41	0.918
INSK [0]	×4	32.55	0.8987	28.79	0.7876	27.72	0.7414	26.61	0.8025	31.10	0.9145
IGNN [33]	$\times 4$	32.57	0.8998	28.85	0.7891	27.77	0.7434	26.84	0.8090	31.28	0.9182
HAN [24]	$\times 4$	32.64	0.9002	28.90	0.7890	27.80	0.7442	26.85	0.8094	31.42	0.9177
CSNLN [23]	$\times 4$	32.68	0.9004	28.95	0.7888	27.80	0.7439	27.22	0.8168	31.43	0.9201
NLSA [22]	$\times 4$	32.59	0.9000	28.87	0.7891	27 78	0.7444	26.96	0.8109	31 27	0.9184
CRAN [32]	$\times 4$	32 72	0.9012	29.01	0 7018	27.86	0.7460	27.13	0.8167	31.75	0.9210
		22.72	0.0012	20.01	0.7910	27.00	0.7400	27.13	0.0107	21.00	0.0219
DF3A+[19]	×4	32.19	0.9019	29.00	0.7922	27.00	0.7438	27.17	0.0103	51.88	0.9200
	×4	32.64	-	29.01	-	27.82		27.26	-	-	-
SwinIR [13]	$\times 4$	32.92	0.9044	29.09	0.7950	27.92	0.7489	27.45	0.8254	32.03	0.9260
CAT-R (ours)	$\times 4$	32.89	0.9044	29.13	0.7955	27.95	0.7500	27.62	0.8292	32.16	0.9269
CAT-A (ours)	$\times 4$	33.08	0.9052	29.18	0.7960	27.99	0.7510	27.89	0.8339	32.39	0.9285
CAT-R+ (ours)	×4	32.98	0.9049	29.18	0.7963	27 98	0.7506	27.73	0.8310	32 35	0.9280
$CAT_A + (ours)$	$\times 4$	33 14	0.9059	29.23	0 7968	28.01	0.7516	27.00	0.8356	32 52	0 9203
		55.17	0.7057	22.22	0.1900	20.01	0.7510		0.0000	54.54	0.7475

Table 7: Quantitative comparison (PSNR/SSIM) with state-of-the-art methods for image SR. Best and second best results are colored with red and blue.

Figure 4: Visual comparison about image SR (×4) on Urban100 [11] dataset.

Figure 5: Visual comparison about image SR (×4) on Urban100 [11] dataset.

Figure 6: Visual comparison about image SR (×4) on Manga109 [21] dataset.

Figure 7: Visual comparison about JPEG compression artifacts reduction (q=10) on Urban100 [11].

Figure 8: Visual comparison about JPEG compression artifacts reduction (q=10) on Urban100 [11].