
Supplementary Material: Cross Aggregation
Transformer for Image Restoration

Zheng Chen1, Yulun Zhang2, Jinjin Gu3,4, Yongbing Zhang5, Linghe Kong1∗, Xin Yuan6

1Shanghai Jiao Tong University, 2ETH Zürich, 3Shanghai AI Laboratory,
4The University of Sydney, 5Harbin Institute of Technology (Shenzhen), 6Westlake University

1 Method

1.1 Source Code

We provide the source code and pretrained models at https://github.com/zhengchen1999/CAT.

1.2 Variant Models

We provide two variant models for image SR, called CAT-R-2 and CAT-A-2. For two models, we set
residual group (RG) numbers N1, cross aggregation Transformer block (CATB) number N2, channel
dimension, and attention head number as 6, 6, 180, and 6, respectively. These settings are consistent
with CAT-R and CAT-A. For CAT-R-2, we apply regular-Rwin, and set [sw, sh] as [4, 16] (same as
CAT-R). We set the MLP expansion ratio as 2, consistent with SwinIR [13]. For CAT-A-2, we apply
axial-Rwin, and set sl as 4 for all CATB in each RG. The MLP expansion ratio is set as 4.

Method Scale Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SwinIR [13] ×2 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9427 39.92 0.9797
CAT-R-2 ×2 38.47 0.9624 34.51 0.9251 32.55 0.9043 34.03 0.9439 40.05 0.9802
CAT-A-2 ×2 38.56 0.9628 34.78 0.9267 32.59 0.9047 34.38 0.9452 40.14 0.9805
CAT-R-2+ ×2 38.52 0.9626 34.56 0.9257 32.58 0.9046 34.15 0.9446 40.15 0.9804
CAT-A-2+ ×2 38.58 0.9629 34.83 0.9269 32.61 0.9049 34.46 0.9457 40.21 0.9807

SwinIR [13] ×3 34.97 0.9318 30.93 0.8534 29.46 0.8145 29.75 0.8826 35.12 0.9537
CAT-R-2 ×3 35.03 0.9321 30.97 0.8534 29.47 0.8150 29.85 0.8838 35.25 0.9540
CAT-A-2 ×3 35.09 0.9327 31.09 0.8545 29.53 0.8162 30.22 0.8882 35.44 0.9549
CAT-R-2+ ×3 35.08 0.9323 31.03 0.8542 29.50 0.8155 30.01 0.8855 35.41 0.9546
CAT-A-2+ ×3 35.14 0.9329 31.13 0.8549 29.55 0.8165 30.32 0.8892 35.55 0.9552

SwinIR [13] ×4 32.92 0.9044 29.09 0.7950 27.92 0.7489 27.45 0.8254 32.03 0.9260
CAT-R-2 ×4 32.91 0.9040 29.13 0.7953 27.93 0.7493 27.59 0.8285 32.16 0.9263
CAT-A-2 ×4 33.09 0.9054 29.21 0.7964 27.99 0.7513 27.99 0.8357 32.47 0.9290
CAT-R-2+ ×4 32.97 0.9048 29.20 0.7962 27.97 0.7499 27.71 0.8306 32.34 0.9276
CAT-A-2+ ×4 33.12 0.9057 29.26 0.7972 28.02 0.7518 28.08 0.8371 32.61 0.9298

Table 1: Quantitative comparison (PSNR/SSIM) with SwinIR [13] for image SR. Best and second
best results are colored with red and blue.

1.3 Quantitative Results

We train CAT-R-2 and CAT-A-2 on DIV2K [26] and Flickr2K [14] in the same way (training settings)
we train CAT-R and CAT-A. We test two models on Set5 [2], Set14 [27], B100 [20], Urban100 [11],
and Manga109 [21] with three upscaling factors: ×2, ×3, and ×4. We compare two variants with
SwinIR. We use self-ensemble strategy and mark models with “+”. The results are shown in Table 1.

As we can see, our CAT-A-2 significantly outperforms SwinIR [13] on all datasets with all scale
factors. And CAT-A-2 still performs better than SwinIR, except for Se5 (×4). CAT-A-2 achieves
0.57 dB gain over SwinIR on Urban100 (×2), and 0.44 dB gain on Manga109 (×2). Moreover, our
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Method Params (M) FLOPs (G) Set5 Set14 B100 Urban100 Manga109
SwinIR [13] 11.90 215.3 32.92 29.09 27.92 27.45 32.03
CAT-R-2 11.93 216.3 32.91 29.13 27.93 27.59 32.16
CAT-A-2 16.60 387.9 33.09 29.21 27.99 27.99 32.47

Table 2: Model complexity comparisons (×4). Output size is 3×512×512 to calculate FLOPs.

CAT-R-2 achieves 0.22 dB on Urban100 (×2), at similar computational complexity to SwinIR. We
will discuss this in detail in Sec. 1.4. In addition, compared with CAT-A, the variant model CAT-A-2
yields 0.1~0.12 dB gains. All these results further indicate the effectiveness of our method.

1.4 Model Size Analyses

Table 2 shows the comparison of performance, computational complexity (e.g., FLOPs), and pa-
rameter numbers on image SR. FLOPs are measured when the output size is set to 3×512×512.
Our CAT-R-2 has similar parameters and complexity of SwinIR [13]. The parameter numbers and
computational complexity only increase by 0.25% and 0.46%, respectively. From the main paper,
we can know that the extra parameters and complexity come from locality complementary module
(LCM), which is crucial to performance. With a slight increase in complexity, our CAT-R-2 achieves
0.14 dB and 0.13 dB on Urban100 and Manga109, respectively. And CAT-R-2 outperforms SwinIR
on other benchmark datasets, except for Set5. For CAT-A-2, it has the same number of parameters
as CAT-R and CAT-A. With a slight increase in complexity, our CAT-A-2 can significantly improve
performance. CAT-A-2 obtains 0.1 dB boost over CAT-A.

2 Experimental Results
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Figure 1: Convergence analyses on CAT-A, CAT-R, CAT-R-2, and SwinIR [13].
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HR SwinIR CAT
Figure 2: LAM [8] comparison between SwinIR [13] and CAT.

2.1 Convergence Analyses

We plot the PSNR during training for SwinIR, CAT-A, CAT-R, and CAT-R-2 in Fig. 1. PSNR values
are tested on Set5 [2], Set14 [27], B100 [20], Urban100 [11], and Manga109 [21] for image SR
(×2). We can observe that our CAT-A, CAT-R and CAT-R-2 convergence is faster than SwinIR on all
datasets. For CAT-R-2, it has a similar convergence speed as CAT-R, albeit with less computational
complexity and parameters. Moreover, CAT-A converges much faster and better than other models. It
indicates the effectiveness of our axial-Rwin self-attention mechanism. All these results demonstrate
the superior performance of our proposed cross aggregation Transformer (CAT).

2.2 LAM Analyses

We use LAM [8] to visualize the receptive fields of CAT and SwinIR [13]. LAM is an attribution
method designed for SR, which can show pixels that contribute most to the SR result. In other words,
the more pixels that can be utilized, the larger the actual receptive field of the model. We display
three sets of comparison plots in Fig. 2. We can observe that SwinIR can only utilize a limited range
of pixels. In contrast, our CAT has a global receptive field, in which available pixels are extended to
almost complete images. All these results show that our CAT can capture global information and
have long-range modeling ability. Furthermore, these visualization results are consistent with the
quantitative and visual comparison in Table 7, Figs. 4, 5, and 6.

2.3 Image Super-Resolution

We compare our method with 20 state-of-the-art methods: EDSR [14], D-DBPN [9], SRMDNF [28],
RDN [31], OISR [10], RCAN [29], NLRN [15], RNAN [30], SRFBN [12], SAN [4], RFANet [16],
NSR [6], IGNN [33], HAN [24], CSNLN [23], NLSA [22], CRAN [32], DFSA+ [19], IPT [3], and
SwinIR [13]. We use self-ensemble strategy in testing and mark the model with a symbol “+”. We use
CAT-A for visual comparisons, abbreviated as CAT. Quantitative comparisons are shown in Table 7.
Visual comparisons are shown in Figs. 4, 5, and 6.

Quantitative Comparisons. Table 7 shows more PSNR/SSIM comparisons for ×2, ×3, and ×4
image SR. Our AT-R (regular-Rwin) and CAT-A (axial-Rwin) significantly outperform other methods
on all datasets with all scale factors. All these results indicate the effectiveness of our method.

Visual Comparisons. We provide more visual comparisons in Figs. 4, 5, and 6. For example, in
img_011, our CAT can recover the lines completely, while most compared methods fail to recover
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Method q=10 q=20 q=30 q=40
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SwinIR [13] 30.55 0.8841 33.12 0.9252 34.58 0.9418 35.50 0.9508
CAT 30.80 0.8875 33.38 0.9274 34.81 0.9432 35.73 0.9520
CAT+ 30.89 0.8885 33.46 0.9280 34.88 0.9436 35.81 0.9523

Table 3: Quantitative comparison (PSNR/SSIM) on Urban100 with SwinIR [13] for JPEG compres-
sion artifact reduction. Best and second best results are colored with red and blue.
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Figure 3: Convergence analyses on CAT and SwinIR on color JPEG compression artifact reduction.

lines near the bottom. In img_048, compared methods cannot recover textures at the top of the
pyramid architecture. In contrast, our CAT can recover right and sharp lattices. In LoveHina_vol01,
our CAT can alleviate the blurring artifacts better and recover the girl’s hair, while other methods
suffer from blurring artifacts. These visual comparisons are consistent with the quantitative results
and demonstrate the effectiveness of our method with the usage of rectangle-window attention .

2.4 Grayscale JPEG Compression Artifact Reduction

Our CAT has a more robust representational ability to recover structural contents and texture details
due to rectangle window self-attention. However, for the JPEG artifact reduction testing datasets:
Classic5 [7] and LIVE1 [25], the number of images they contain is small (5 and 29), and the texture
features are not rich. So the overall improvement effect is not obvious.

To demonstrate the effectiveness of our method, we further compare our CAT with SwinIR [13]
on Urban100 [11] with JPEG compression qualities of 10, 20, 30, and 40. Here, we focus on the
restoration of Y channel (in YCbCr space). We still use self-ensemble strategy and mark the model
with a symbol “+”. Quantitative and visual comparisons are shown in Table 3, Figs. 7 and 8.

Quantitative Comparisons. Table 3 shows quantitative comparisons with SwinIR [13] on Urban100.
Our CAT significantly outperforms SwinIR. Unlike the slight increase on Classic5 [7] and LIVE1 [25]
(0.06 dB), our CAT+ yields 0.30~0.34 dB gains on Urban100. Even without self-ensemble, our
CAT also achieves 0.25~0.26 dB gains. These results show that our CAT can capture more global
information than SwinIR, which is crucial to images with directional and repetitive texture features.

Visual Comparisons. We provide more visual comparisons in Figs. 7 and 8. We only compare
our CAT with SwinIR on Urban100. For example, in img_019, we can observe that our CAT can
recover more details and remove blocking artifacts, while SwinIR restores some wrong textures. In
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Method Iteration 25K 50K 75K 100K 125K 150K 175K 200K

SwinIR PSNR 34.73 34.86 34.92 34.95 34.97 34.99 35.00 35.01
SSIM 0.9347 0.9359 0.9364 0.9368 0.9370 0.9372 0.9372 0.9370

CAT (ours) PSNR 34.82 34.95 35.02 35.05 35.07 35.08 35.10 35.11
SSIM 0.9354 0.9367 0.9374 0.9378 0.9379 0.9379 0.9381 0.9380

Table 4: Quantitative comparison (PSNR/SSIM) on LIVE1 with SwinIR [13] for color JPEG com-
pression artifact reduction (q=40) on checkpoints, from 0 to 200K (iterations).

Method Set5 Set14 LIVE1 Urban100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SwinIR [13] 37.44 0.9487 35.74 0.9319 35.01 0.9370 35.42 0.9520
CAT (ours) 37.51 0.9491 35.87 0.9326 35.11 0.9380 35.76 0.9539

Table 5: Quantitative comparison (PSNR/SSIM) with SwinIR [13] for color JPEG compression
artifact reduction (q=40). Training iterations are 200K for both CAT and SwinIR.

img_060, SwinIR cannot recover correct letters and over-smooth some textures. In contrast, our CAT
can restore explicit letters and textures. In img_074, our CAT can recover the lattices in high places,
while SwinIR suffers from blurring artifacts. These results demonstrate that our CAT has the more
powerful long-range dependencies modeling ability and can capture more global information.

2.5 Color JPEG Compression Artifact Reduction

We further compare our CAT with SwinIR [13] on color JPEG compression artifact reduction. The
convergence analyses are in Fig. 3, and quantitative comparisons are in Tables 4 and 5.

Experimental Settings. We still use the CAT for (grayscale) JPEG compression artifact reduction
we proposed in the main paper. We change the input and output channels from 1 to 3. SwinIR has the
same modification. The training setting is still the same as (grayscale) JPEG compression artifact
reduction task. More details are shown in the main paper.

We train CAT and SwinIR on DIV2K [26], Flickr2K [14], BSD500 [1], and WED [18]. And we have
four testing datasets: Set5 [2], Set14 [27], LIVE1 [25], and Urban100 [11], with JPEG compression
qualities of 40. We calculate PSNR and SSIM [18] on the Y channel of the YCbCr space.

Convergence Analyses. Due to time issues, we only completed part of the training (fininshed
iterations = 200K, target total iterations = 1600K.). In Fig. 3, we show the validation curves of our
CAT and SwinIR during training, from 0 to 200K (iterations). PSNR values are tested on Set5 [2].
We can observe that our CAT convergence is faster than SwinIR.

Quantitative Comparisons. Table 4 shows the comparisons of the performance on LIVE1 of CAT
and SwinIR during training, from 0 to 200K (iterations). Our CAT outperforms SwinIR on all
checkpoints. And Table 5 shows quantitative comparisons with SwinIR when the iterations are 200K.
Our CAT outperforms SwinIR on all datasets. Our CAT yields 0.1 dB gains on Urban100 and 0.34
dB gains on LIVE1. These results demonstrate the effectiveness of our CAT.

2.6 Other Numerical Results

Method Params (M) FLOPs (G) Set5 Set14 B100 Urban100 Manga109
CSwin [5] 16.45 350.7 38.40 34.42 32.46 33.73 39.83
CAT-A 16.46 350.7 38.51 34.78 32.59 34.26 40.10

Table 6: Model comparisons (×2). Output size is 3×256×256 to calculate FLOPs.

CAT vs. CSwin. To demonstrate the superiority of our CAT, we compare the performance of CAT-A
and CSwin [5] on image SR (×2). The CSwin model uses our CAT architecture and replaces our Cross
Aggregation Transformer Block (CATB) with the CSWin Transformer Block. The implementation
details and training settings are the same for CAT and CSwin. Table 6 shows the comparison of
performance, computational complexity (e.g., FLOPs), and parameter numbers on image SR (×2).
FLOPs are measured when the output size is set to 3×256×256. Our CAT-A significantly outperforms
CSwin on all datasets with similar model sizes and computational complexity.
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3 Additional Analyses

Difference between axial-shift and shift operation in Swin Transformer. Our axial-shift refer-
ence the design of the shift operation in Swin Transformer. However, the axial-shift we proposed is
different from the shifted window operation in Swin Transformer [17].

The most significant difference between axial-shift and the shift operation in Swin Transformer is that
axial-shift adopts a grouped parallel design. Axial-shift is divided into V-Shift and H-Shift operations,
which act on different attention heads and correspond to V-Rwin and H-Rwin. However, the shift
operation in Swin Transformer performs the same shift operation in all heads.

Based on our proposed axis-shift operation, Rwin can realize more window interaction, thereby
expanding the receptive field and improving model performance. We can find that the performance of
Rwin with axial-shift is much better than the square window with shift operation in Swin Transformer
from the ablation study Table 1a in the main paper.

Furthermore, the shift operation in Swin Transformer can be viewed as a special case of our axial-shift.
When the axial-shift displacement distances are the same in all heads, the shift operation in each
attention head is the same. Then axial-shift degenerates into the shift operation in Swin Transformer.
In general, our axial-shift is more general and efficient.
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Method Scale Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR [14] ×2 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773
D-DBPN [9] ×2 38.09 0.9600 33.85 0.9190 32.27 0.9000 32.55 0.9324 38.89 0.9775
SRMDNF [28] ×2 37.79 0.9601 33.32 0.9159 32.05 0.8985 31.33 0.9204 38.07 0.9761
RDN [31] ×2 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353 39.18 0.9780
OISR [10] ×2 38.21 0.9612 33.94 0.9206 32.36 0.9019 33.03 0.9365 - -
RCAN [29] ×2 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786
NLRN [15] ×2 38.00 0.9603 33.46 0.9159 32.19 0.8992 31.81 0.9249 - -
RNAN [30] ×2 38.17 0.9611 33.87 0.9207 32.31 0.9014 32.73 0.9340 39.23 0.9785
SRFBN [12] ×2 38.11 0.9609 33.82 0.9196 32.29 0.9010 32.62 0.9328 39.08 0.9779
SAN [4] ×2 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792
RFANet [16] ×2 38.26 0.9615 34.16 0.9220 32.41 0.9026 33.33 0.9389 39.44 0.9783
NSR [6] ×2 38.23 0.9614 33.94 0.9203 32.34 0.9020 33.02 0.9367 39.31 0.9782
IGNN [33] ×2 38.24 0.9613 34.07 0.9217 32.41 0.9025 33.23 0.9383 39.35 0.9786
HAN [24] ×2 38.27 0.9614 34.16 0.9217 32.41 0.9027 33.35 0.9385 39.46 0.9785
CSNLN [23] ×2 38.28 0.9616 34.12 0.9223 32.40 0.9024 33.25 0.9386 39.37 0.9785
NLSA [22] ×2 38.34 0.9618 34.08 0.9231 32.43 0.9027 33.42 0.9394 39.59 0.9789
CRAN [32] ×2 38.31 0.9617 34.22 0.9232 32.44 0.9029 33.43 0.9394 39.75 0.9793
DFSA+ [19] ×2 38.38 0.9620 34.33 0.9232 32.50 0.9036 33.66 0.9412 39.98 0.9798
IPT [3] ×2 38.37 - 34.43 - 32.48 - 33.76 - - -
SwinIR [13] ×2 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9427 39.92 0.9797
CAT-R (ours) ×2 38.48 0.9625 34.53 0.9251 32.56 0.9045 34.08 0.9443 40.09 0.9804
CAT-A (ours) ×2 38.51 0.9626 34.78 0.9265 32.59 0.9047 34.26 0.9440 40.10 0.9805
CAT-R+ (ours) ×2 38.52 0.9627 34.59 0.9257 32.58 0.9047 34.19 0.9450 40.18 0.9805
CAT-A+ (ours) ×2 38.55 0.9628 34.81 0.9267 32.60 0.9048 34.34 0.9445 40.18 0.9806

EDSR [14] ×3 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476
SRMDNF [28] ×3 34.12 0.9254 30.04 0.8382 28.97 0.8025 27.57 0.8398 33.00 0.9403
RDN [31] ×3 34.71 0.9296 30.57 0.8468 29.26 0.8093 28.80 0.8653 34.13 0.9484
OISR [10] ×3 34.72 0.9297 30.57 0.8470 29.29 0.8103 28.95 0.8680 - -
RCAN [29] ×3 34.74 0.9299 30.65 0.8482 29.32 0.8111 29.09 0.8702 34.44 0.9499
NLRN [15] ×3 34.27 0.9266 30.16 0.8374 29.06 0.8026 27.93 0.8453 - -
RNAN [30] ×3 34.66 0.9290 30.53 0.8463 29.26 0.8090 28.75 0.8646 34.25 0.9483
SRFBN [12] ×3 34.70 0.9292 30.51 0.8461 29.24 0.8084 28.73 0.8641 34.18 0.9481
SAN [4] ×3 34.75 0.9300 30.59 0.8476 29.33 0.8112 28.93 0.8671 34.30 0.9494
RFANet [16] ×3 34.79 0.9300 30.67 0.8487 29.34 0.8115 29.15 0.8720 34.59 0.9506
NSR [6] ×3 34.62 0.9289 30.57 0.8475 29.26 0.8100 28.83 0.8663 34.27 0.9484
IGNN [33] ×3 34.72 0.9298 30.66 0.8484 29.31 0.8105 29.03 0.8696 34.39 0.9496
HAN [24] ×3 34.75 0.9299 30.67 0.8483 29.32 0.8110 29.10 0.8705 34.48 0.9500
CSNLN [23] ×3 34.74 0.9300 30.66 0.8482 29.33 0.8105 29.13 0.8712 34.45 0.9502
NLSA [22] ×3 34.85 0.9306 30.70 0.8485 29.34 0.8117 29.25 0.8726 34.57 0.9508
CRAN [32] ×3 34.80 0.9304 30.73 0.8498 29.38 0.8124 29.33 0.8745 34.84 0.9515
DFSA+ [19] ×3 34.92 0.9312 30.83 0.8507 29.42 0.8128 29.44 0.8761 35.07 0.9525
IPT [3] ×3 34.81 - 30.85 - 29.38 - 29.49 - - -
SwinIR [13] ×3 34.97 0.9318 30.93 0.8534 29.46 0.8145 29.75 0.8826 35.12 0.9537
CAT-R (ours) ×3 34.99 0.9320 31.00 0.8539 29.49 0.8154 29.91 0.8848 35.29 0.9542
CAT-A (ours) ×3 35.06 0.9326 31.04 0.8538 29.52 0.8160 30.12 0.8862 35.38 0.9546
CAT-R+ (ours) ×3 35.07 0.9324 31.06 0.8544 29.52 0.8159 30.05 0.8864 35.44 0.9548
CAT-A+ (ours) ×3 35.10 0.9327 31.09 0.8545 29.55 0.8164 30.21 0.8872 35.48 0.9550

EDSR [14] ×4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148
D-DBPN [9] ×4 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946 30.91 0.9137
SRMDNF [28] ×4 31.96 0.8925 28.35 0.7787 27.49 0.7337 25.68 0.7731 30.09 0.9024
RDN [31] ×4 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028 31.00 0.9151
OISR [10] ×4 32.53 0.8992 28.86 0.7878 27.75 0.7428 26.79 0.8068 - -
RCAN [29] ×4 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173
NLRN [15] ×3 31.92 0.8916 28.36 0.7745 27.48 0.7306 25.79 0.7729 - -
RNAN [30] ×3 32.43 0.8977 28.83 0.7871 27.72 0.7410 26.61 0.8023 31.09 0.9149
SRFBN [12] ×4 32.47 0.8983 28.81 0.7868 27.72 0.7409 26.60 0.8015 31.15 0.9160
SAN [4] ×4 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169
RFANet [16] ×4 32.66 0.9004 28.88 0.7894 27.79 0.7442 26.92 0.8112 31.41 0.918
NSR [6] ×4 32.55 0.8987 28.79 0.7876 27.72 0.7414 26.61 0.8025 31.10 0.9145
IGNN [33] ×4 32.57 0.8998 28.85 0.7891 27.77 0.7434 26.84 0.8090 31.28 0.9182
HAN [24] ×4 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094 31.42 0.9177
CSNLN [23] ×4 32.68 0.9004 28.95 0.7888 27.80 0.7439 27.22 0.8168 31.43 0.9201
NLSA [22] ×4 32.59 0.9000 28.87 0.7891 27.78 0.7444 26.96 0.8109 31.27 0.9184
CRAN [32] ×4 32.72 0.9012 29.01 0.7918 27.86 0.7460 27.13 0.8167 31.75 0.9219
DFSA+ [19] ×4 32.79 0.9019 29.06 0.7922 27.87 0.7458 27.17 0.8163 31.88 0.9266
IPT [3] ×4 32.64 - 29.01 - 27.82 - 27.26 - - -
SwinIR [13] ×4 32.92 0.9044 29.09 0.7950 27.92 0.7489 27.45 0.8254 32.03 0.9260
CAT-R (ours) ×4 32.89 0.9044 29.13 0.7955 27.95 0.7500 27.62 0.8292 32.16 0.9269
CAT-A (ours) ×4 33.08 0.9052 29.18 0.7960 27.99 0.7510 27.89 0.8339 32.39 0.9285
CAT-R+ (ours) ×4 32.98 0.9049 29.18 0.7963 27.98 0.7506 27.73 0.8310 32.35 0.9280
CAT-A+ (ours) ×4 33.14 0.9059 29.23 0.7968 28.01 0.7516 27.99 0.8356 32.52 0.9293

Table 7: Quantitative comparison (PSNR/SSIM) with state-of-the-art methods for image SR. Best
and second best results are colored with red and blue.
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Urban100: img_011 (×4)

HQ Bicubic EDSR [14] RCAN [29] SAN [4]

IGNN [33] HAN [24] CSNLN [23] SwinIR [13] CAT (ours)

Urban100: img_029 (×4)

HQ Bicubic EDSR [14] RCAN [29] SAN [4]

IGNN [33] HAN [24] CSNLN [23] SwinIR [13] CAT (ours)

Urban100: img_046 (×4)

HQ Bicubic EDSR [14] RCAN [29] SAN [4]

IGNN [33] HAN [24] CSNLN [23] SwinIR [13] CAT (ours)

Urban100: img_047 (×4)

HQ Bicubic EDSR [14] RCAN [29] SAN [4]

IGNN [33] HAN [24] CSNLN [23] SwinIR [13] CAT (ours)

Urban100: img_048 (×4)

HQ Bicubic EDSR [14] RCAN [29] SAN [4]

IGNN [33] HAN [24] CSNLN [23] SwinIR [13] CAT (ours)

Urban100: img_053 (×4)

HQ Bicubic EDSR [14] RCAN [29] SAN [4]

IGNN [33] HAN [24] CSNLN [23] SwinIR [13] CAT (ours)

Urban100: img_062 (×4)

HQ Bicubic EDSR [14] RCAN [29] SAN [4]

IGNN [33] HAN [24] CSNLN [23] SwinIR [13] CAT (ours)

Figure 4: Visual comparison about image SR (×4) on Urban100 [11] dataset.
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Urban100: img_073 (×4)

HQ Bicubic EDSR [14] RCAN [29] SAN [4]

IGNN [33] HAN [24] CSNLN [23] SwinIR [13] CAT (ours)

Urban100: img_076 (×4)

HQ Bicubic EDSR [14] RCAN [29] SAN [4]

IGNN [33] HAN [24] CSNLN [23] SwinIR [13] CAT (ours)

Urban100: img_089 (×4)

HQ Bicubic EDSR [14] RCAN [29] SAN [4]

IGNN [33] HAN [24] CSNLN [23] SwinIR [13] CAT (ours)

Figure 5: Visual comparison about image SR (×4) on Urban100 [11] dataset.

LoveHina_vol01 (×4)

HQ Bicubic EDSR [14] RCAN [29] SAN [4]

IGNN [33] HAN [24] CSNLN [23] SwinIR [13] CAT (ours)

PikaruGenkiDesu (×4)

HQ Bicubic EDSR [14] RCAN [29] SAN [4]

IGNN [33] HAN [24] CSNLN [23] SwinIR [13] CAT (ours)

Highschool._vol01 (×4)

HQ Bicubic EDSR [14] RCAN [29] SAN [4]

IGNN [33] HAN [24] CSNLN [23] SwinIR [13] CAT (ours)

Figure 6: Visual comparison about image SR (×4) on Manga109 [21] dataset.
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Urban100: img_019 (q=10) HQ JPEG (q=10) SwinIR [13] CAT (ours)

Urban100: img_060 (q=10) HQ JPEG (q=10) SwinIR [13] CAT (ours)

Urban100: img_073 (q=10) HQ JPEG (q=10) SwinIR [13] CAT (ours)

Urban100: img_074 (q=10) HQ JPEG (q=10) SwinIR [13] CAT (ours)

Urban100: img_080 (q=10) HQ JPEG (q=10) SwinIR [13] CAT (ours)

Urban100: img_091 (q=10) HQ JPEG (q=10) SwinIR [13] CAT (ours)

Urban100: img_097 (q=10) HQ JPEG (q=10) SwinIR [13] CAT (ours)

Figure 7: Visual comparison about JPEG compression artifacts reduction (q=10) on Urban100 [11].
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Urban100: img_034 (q=10) HQ JPEG (q=10) SwinIR [13] CAT (ours)

Urban100: img_046 (q=10) HQ JPEG (q=10) SwinIR [13] CAT (ours)

Urban100: img_048 (q=10) HQ JPEG (q=10) SwinIR [13] CAT (ours)

Figure 8: Visual comparison about JPEG compression artifacts reduction (q=10) on Urban100 [11].
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