
A Introduction to exchangeable graph or graphon models

In the following discussion, we assume all graphs mentioned are undirected and have no self loops.
A graphon model refers to a probabilistic model on a graph on a countable set V ⊆ N, defined via a
graphon, which we define as a symmetric measurable function W : [0, 1]2 → [0, 1]. To define the
law of the graph, for each vertex u ∈ V , we assign an independent latent variable λu ∼ Unif[0, 1],
and then assign edges independently according to the law

auv|λu, λv ∼ Bernoulli
(
W (λu, λv)

)
(16)

independently for u < v, and then setting avu = auv for u > v.

The Aldous-Hoover theorem [1] then gives the following equivalence between probabilistic models
of a graph on a vertex set V = N:

1. The law of the adjacency matrix is invariant to joint permutations of its rows and columns;
in other words, for any permutation τ ∈ Sym(V) we have that (auv)u,v

d
= (aτ(u)τ(v))u,v .

2. There exists a graphon W such that the law of the adjacency matrix is equivalent to a
graphon model with graphon W .

The presentation above choosing the latent distribution of the vertices to be uniform is a canonical
one, but can be generalized. If we instead assign latent variables λu

i.i.d∼ Q for some probability
distribution Q ⊆ Rp and assign edges auv = 1 independently with probability W (λu,λv) for some
symmetric function W , then the law of the graph is still exchangeable, and hence equivalent to a
graphon model as presented above.

One special case of a graphon model is known as a stochastic block model (SBM) [31]. The typical
formulation of a SBM defines a probabilistic model on a network given a number of communities
κ, a probability distribution (πi)i∈[κ] on [κ], and a symmetric matrix P ∈ [0, 1]κ×κ. For u ∈ V , we
assign a community C(u) ∈ [k] with probability

P
(
C(u) = j

)
= πj for j ∈ [κ] (17)

independently for each u ∈ V . Conditional on these assignments, we then form the adjacency matrix
of the network via connecting vertices independently with probability

P
(
auv = 1 |C(u), C(v)

)
= PC(u),C(v) = eTC(u)PeC(v) (18)

where ei ∈ Rκ denotes the i-th unit vector in Rκ. This can be defined as a graphon model as follows:
forming a partition of [0, 1], say (Ai)i∈[κ], for which |Ai| = πi for i ∈ [k], then we can define a

graphon model by using latent variables λu
i.i.d∼ Unif[0, 1] and a graphon function

W (u, v) = PC(u),C(v) for u, v ∈ [0, 1] where C(u) = j if u ∈ Aj . (19)
The law of the above graphon model is then identical to that of the SBM defined with π and P . Such
graphons are sometimes referred to as stepfunctions, which are graphons W which are piecewise
constant on a partition P × P of [0, 1]2, where P is a partition of [0, 1].

As presented, graphon models have some shortcomings. For example, by taking expectations,
if we have a graphon model on a vertex set Vn = [n], the average number of edges will be
n2

∫ 1

0

∫ 1

0
W (x, y) dxdy. This means that graphon models give rise to dense graphs, which is not a

realistic assumption for naturally occurring networks. One way of accounting for this, particularly
when considering sequences of graphs, is to consider the sequence of graphs Gn on Vn = [n] where,
for each n, the generating graphon used is Wn = ρnW where W is a graphon function, and ρn is
a sparsifying sequence for which ρn → 0 as n → ∞. Such graphs are referred to as sparisified
graphon models.

B Expanded derivations from Sections 1 and 2

B.1 Stochastic gradient descent and empirical risk minimization

We begin with considering the gradient updates of the form

ωu ← ωu − η∇ωu
L where L =

∑
(i,j)∈P

ℓP(⟨ωi, ωj⟩) +
∑

(i,j)∈N

ℓN (⟨ωi, ωj⟩) (20)
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performed at each iteration of stochastic gradient descent, where η > 0 is a sequence of step sizes,
and P and N are random subsets of V × V formed at every iteration of stochastic gradient descent.
Note that we can equivalently write this as

L =
∑
i,j

{
1
[
(i, j) ∈ P

]
ℓP(⟨ωi, ωj⟩) + 1

[
(i, j) ∈ N

]
ℓN (⟨ωi, ωj⟩)

}
, (21)

where we use indicator terms to allow for the summation to occur over all pairs (i, j).

Recall that stochastic gradient descent, as introduced in Robbins and Monro [55], works by the
following principle: suppose we have a function of the form

F (θ) := EX∼Q

[
f(X, θ)

]
(22)

for some function f : X × Θ → R and distribution Q on X according to a random variable X .
Moreover, suppose that we have access to an unbiased estimator of the gradient ∇θF of F , say
g(x, θ), so that EX∼Q[g(X, θ)] = ∇θF . One can then show in various settings [see e.g 7, 12, 13, 23,
43, 55] that the optimization scheme

θt+1 := θt − ηtg(xt; θ) (23)

where xt
i.i.d∼ P will converge to a local minima of F (θ), at least under some conditions on the step

sizes ηt > 0 and the curvature of F (θ) about its local minima.

Applying this to the scenario in (21), we note that at each iteration, we sample sets P ⊆ V × V and
N ⊆ V ×V at each iteration independently across iterations, according to some probability measures
QP and QN over V × V . With these sets, we perform gradient updates as in (23)

∇ωL =
∑
i,j

{
1
[
(i, j) ∈ P

]
∇ωℓP(⟨ωi, ωj⟩) + 1

[
(i, j) ∈ N

]
∇ωℓN (⟨ωi, ωj⟩)

}
(24)

for each embedding vector ω, which is an unbiased estimator of∇ωR where

R =
∑
i,j

{
P
(
(i, j) ∈ P

)
ℓP(⟨ωi, ωj⟩) + P

(
(i, j) ∈ N

)
ℓN (⟨ωi, ωj⟩)

}
(25)

as a result of the fact that e.g. E[1[(i, j) ∈ P]] = P((i, j) ∈ P). Consequently, the procedure
described in (20) attempts to minimize (25).

B.2 Embedding methods as implicit graphon learning

Write ℓP (y) = − log σ(y) and ℓN (y) = − log σ(−y), and moreover suppose that P and N are
randomly drawn subsets from the sets E and V × V ⊆ E , i.e that

P ⊆ {(u, v) : auv = 1}, N ⊆ {(u, v) : auv = 0}. (26)

Letting V = [n] for some integer n, note that in the model

auv |ωu, ωv ∼ Bernoulli
(
σ(⟨ωu, ωv⟩)

)
independently for u < v, (27)

and setting avu = auv for v < u, the contribution to the negative log-likelihood of a single edge
(u, v) is of the form

ℓ((u, v)) = −auv log σ(⟨ωu, ωv⟩)− (1− auv) log{1− σ(⟨ωu, ωv⟩)}. (28)

(Recall that σ(−y) = 1− σ(y) for y ∈ R.) Note that the auv are jointly independent conditional on
the collection of embedding vectors. Now, if we let ℓP(y) = − log σ(y) and ℓN (y) = − log σ(−y),
as P is a subset of E andN is a subset of V×V\E , the contributions to the stochastic loss take exactly
the form specified in (2), as ℓ((u, v)) = ℓP(⟨ωu, ωv) when auv = 1, and ℓ((u, v)) = ℓN (⟨ωu, ωv)
when auv = 0.

B.3 Empirical risk when including regularization

We explain this using the weight decay formulation first, and then show that one has similar reasoning
when using the probabilistic modelling approach. Note that when considering stochastic gradient
iterations to only update individual parameters at a time, weight decay is applied per iteration to only
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the parameters to be updated (as otherwise all of the parameters will be shrunk towards zero while
waiting for the next bona-fide gradient update). Consequently, if we have a stochastic loss

L =
∑

(i,j)∈P

ℓP(⟨ωi, ωj⟩) +
∑

(i,j)∈N

ℓN (⟨ωi, ωj⟩) (29)

and we write V(P ∪N ) for the vertices which belong to either P or N , the gradient updates for any
vertex u ∈ V(P ∪N ) take the form

ωu ← ωu − η(∇ωu
L+ 2ξωu) = ωu − η∇ωu

[
L+ ξ∥ωu∥22

]
(30)

and otherwise ωu is kept as-is, meaning the gradient updates correspond to taking gradient updates
with the stochastic loss∑
u,v

{
1
[
(u, v) ∈ P

]
ℓP(⟨ωu, ωv⟩)+1

[
(u, v) ∈ N

]
ℓN (⟨ωu, ωv⟩)

}
+ ξ

∑
u

1
[
u ∈ V(P ∪N )

]
. (31)

Consequently, following the same argument as in Appendix B.1 gives the form of (8). In the
probabilistic modelling formulation, we again note that the contributions to the negative log-likelihood
in the subsampling regime should again only arise from vertices belonging to V(P ∪ N ), and
consequently the same argument will give the form of (8).

B.4 Simplifying the risk for certain positive/negative sampling schemes

We note that in the setting where P ⊆ En and N ⊆ (Vn × Vn) \ En, we can write S(Gn) = P ∪N ,
and also

ℓ(y, aij) = ℓP(y)1[aij = 1] + ℓN (y)1[aij = 0],

P
(
(i, j) ∈ S(Gn) | Gn) = P

(
(i, j) ∈ P | Gn)1[aij = 1] + P

(
(i, j) ∈ N | Gn)1[aij = 0],

and as a result, we end up obtaining (10) from (8).

C Proof of Theorem 1

We follow the style of argument given in Appendix C of [21], introducing various intermediate
functions and chaining together uniform convergence bounds between these functions over sets
containing the minima of both functions; consequently, we break the proof up into several parts. Note
that we implicitly let the embedding dimension d depend on n throughout.

Before giving the proof, we state some results from [21] which will be used in the following proof.
Proposition 1 (Appendix C of [21]). Suppose that Assumptions 2 and 3 hold. Then we have the
following:

i) (Theorem 30 and Lemma 41 of [21]) For the functions

R̂n(ωn) :=
1

n2

∑
i,j∈[n],i̸=j

fn(λi, λj , aij)ℓ(⟨ωi, ωj⟩, aij),

E[R̂n(ωn) |λn] :=
1

n2

∑
i,j∈[n],i̸=j

∑
x∈{0,1}

f̃n(λi, λj , x)ℓ(⟨ωi, ωj⟩, x),

we have that

sup
ωn∈([−A,A]d)n

∣∣∣R̂n(ωn)− E[R̂n(ωn) |λn]
∣∣∣ = Op

( dq+1/2

(nρn)1/2

)
.

ii) (Lemma 37 of [21]) For the functions

E[R̂Pn
n (ωn) |λn] :=

1

n2

∑
i,j∈[n],i̸=j

∑
x∈{0,1}

P⊗2
n [f̃n,x](λi, λj)ℓ(⟨ωi, ωj⟩, x),

E[R̂Pn

n,(1)(ωn) |λn] :=
1

n2

∑
i,j∈[n]

∑
x∈{0,1}

P⊗2
n [f̃n,x](λi, λj)ℓ(⟨ωi, ωj⟩, x)

18



where P⊗2
n [·] is the stepping operator defined in Appendix C.3, we have that

sup
ωn∈([−A,A]d)n

∣∣E[R̂Pn
n (ωn) |λn]− E[R̂Pn

n,(1)(ωn) |λn]
∣∣ = Op

(dq
n

)
.

iii) (Lemma 42 and Proposition 44 of [21]) Suppose that X ∼ Multinomial(n; p) where p =

(pi)i∈[M ] for some M > 0, where the pi > 0 and
∑M

i=1 pi = 1. Then we have that

max
l∈[M ]

∣∣n−1Xl − pl
pl

∣∣, max
l,l′∈[M ]

∣∣n−2XlXl′ − plpl′
plpl′

∣∣ = Op

(( logM

nminl pl

)1/2)
.

We also require the following lemmas, whose proof are deferred to Appendix C.7.

Lemma 4. For each n ∈ N, suppose we have a compact set Θn ⊆ Rp(n) for some p(n) with 0 ∈ Θn.
Moreover, suppose we have non-negative random variables c(n)ijx, c̃(n)ijx for i, j ∈ [k(n)] and x ∈ {0, 1},
and c(n)i , c̃(n)i for i ∈ [κ(n)], which satisfy the conditions

max
i,j,x

∣∣∣c(n)ijx − c̃
(n)
ijx

c
(n)
ijx

∣∣∣ = Op(rn), max
i

∣∣∣c(n)i − c̃(n)i

c
(n)
i

∣∣∣ = Op(rn),∑
i,j,x

c
(n)
ijx = Op(1),

∑
i

c
(n)
i = Op(1),

for some non-negative sequence rn → 0, where in the above ratios we interpret 0/0 = 1. Define
non-negative continuous functions ℓ(n)ijx, ℓ

(n)
i : Θn → R such that ℓ(n)ijx(0), ℓ

(n)
i (0) ≤ C for each

i, j ∈ [k(n)], x ∈ {0, 1} and n ∈ N. Finally, define the functions

Gn(θ) =
∑
i,j,x

c
(n)
ijxℓ

(n)
ijx(θ) +

∑
i

c
(n)
i ℓ

(n)
i (θ), G̃n(θ) =

∑
i,j,x

c̃
(n)
ijxℓ

(n)
ijx(θ) +

∑
i

c̃
(n)
i ℓ

(n)
i (θ)

for θ ∈ Θn. Then there exists a sequence of non-empty random measurable sets Ψn such that

P
(
argmin
θn∈Θn

Gn(θn) ∪ argmin
θn∈Θn

G̃n(θn) ⊆ Ψn

)
→ 1, sup

θn∈Ψn

∣∣Gn(θn)− G̃n(θn)
∣∣ = Op(rn).

We note that the condition that c(n)ijx = (1 +Op(rn))c̃
(n)
ijx holds uniformly over all i, j, x implies that∑

i,j,x

c
(n)
ijx = Op(1) =⇒

∑
i,j,x

c̃
(n)
ijx = Op(1)

and so it suffices for either
∑

ijx c
(n)
ijx = Op(1) or

∑
ijx c̃

(n)
ijx = Op(1) to hold, and similarly either∑

i c
(n)
i = Op(1) or

∑
i c̃

(n)
i = Op(1).

Lemma 5. For each n ∈ N, suppose we have a compact set Θn ⊆ Rp(n) for some p(n) with 0 ∈ Θn.
Moreover, suppose we have non-negative functions an,x, ãn,x : [0, 1]2 → R and bn, b̃n : [0, 1]→ R
for n ∈ N, x ∈ {0, 1}, such that

max
x

∥∥∥an,x − ãn,x
an,x

∥∥∥
∞

= O(rn),
∥∥∥bn − b̃n

bn

∥∥∥
∞

= O(rn),∫
[0,1]2

an,x dldl
′ = O(1),

∫
[0,1]

bn dl = O(1)

for some non-negative sequence rn → 0. Define non-negative continuous functions ℓx : R→ R for
x ∈ {0, 1}, along with the functions

Gn(η) =

∫
[0,1]2

∑
x

an,x(l, l
′)ℓx(⟨η(l), η(l′)⟩) dldl′ +

∫
[0,1]

bn(l)∥η(l)∥22 dl,

G̃n(η) =

∫
[0,1]2

∑
x

ãn,x(l, l
′)ℓx(⟨η(l), η(l′)⟩) dldl′ +

∫
[0,1]

b̃n(l)∥η(l)∥22 dl
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defined over functions η : [0, 1]→ Θn. For any fixed constant C > 1, define the set

Ψn :=
{
η : Gn(η) ≤ CGn(0) or G̃n(η) ≤ CG̃n(0)

}
.

Provided there exist minima to the functionals Gn(η) and G̃n(η), we have that

argmin
η

Gn(η) ∪ argmin
η

G̃n(η) ⊆ Ψn and sup
η∈Ψn

∣∣Gn(η)− G̃n(η)
∣∣ = O(rn).

We now begin with the proof of Theorem 1. Throughout, we understand that an exponent p depends
on the choice of loss function, with q = 1 for the cross-entropy loss, and q = 2 for the squared loss;
these will then give rise to the values of p in the exponents within the theorem statement.

C.1 Replacing the sampling probabilities

To begin, let

R̂n(ωn) :=
1

n2

∑
i,j∈[n],i̸=j

fn(λi, λj , aij)ℓ(⟨ωi, ωj⟩, aij), R̂reg
n (ωn) :=

1

n

∑
i∈[n]

g̃n(λi)∥ωi∥22. (32)

We then note that by applying Lemma 4 with

• Θ(n) = ([−A,A]d)n, θn = (ω1, . . . , ωn) with ωi ∈ [−A,A]d;

• c(n)ijx = P((i, j) ∈ S(Gn) | Gn) · 1[aij = x] for i ̸= j and 0 otherwise; c̃
(n)
ijx =

n−2fn(λi, λj , x)1[aij = x] for i ̸= j and 0 otherwise (so
∑

ijx c̃
(n)
ijx = Op(1) by Markov’s

inequality and Assumption 2);

• c(n)i = P(i ∈ V(S(Gn)) | Gn), c̃(n)i = n−1g̃n(λi) (so
∑

i c
(n)
i = Op(1) by Markov’s inequality

and Assumption 2);
• ℓijx = ℓ(⟨ωi, ωj⟩, x), rn = sn;

and so there exists a sequence of sets Ψ(1)
n , containing the minima of both Rn(ωn) + ξnRreg

n (ωn)

and R̂n(ωn) + ξnR̂reg
n (ωn) with asymptotic probability one, such that

sup
ωn∈Ψ

(1)
n

∣∣∣{Rn(ωn) + ξnRreg
n (ωn)

}
−

{
R̂n(ωn) + ξnR̂reg

n (ωn)
}∣∣∣ = Op(sn). (33)

C.2 Averaging over the adjacency structure

We now want to work with the version of the loss averaged over the realizations of the adjacency
matrix of the graph Gn, and so we introduce the function (writing λn = (λ1, . . . , λn))

E[R̂n(ωn) |λn] :=
1

n2

∑
i,j∈[n],i̸=j

∑
x∈{0,1}

f̃n(λi, λj , x)ℓ(⟨ωi, ωj⟩, x). (34)

By Proposition 1a), we have that

sup
ωn∈([−A,A]d)n

∣∣∣{R̂n(ωn) + ξnR̂reg
n (ωn)

}
−
{
E[R̂n(ωn) |λn] + ξnR̂reg

n (ωn)
}∣∣∣ = Op

( dq+1/2

(nρn)1/2

)
.

(35)

Remark 3. This remark can be skipped on a first reading of the theorem proof. Here, we discuss
how we can obtain tighter bounds when imposing the additional constraint

B∞
n,d(A2) := {ωn ∈ ((Rd)n) : Ωij = B(ωi, ωj) satisfies ∥Ω∥∞ ≤ A2}

to the domain of optimization of the embedding vectors ωn is imposed. This is particularly natural
when considering the squared loss, which corresponds to optimizing the risk when averaging (aij −
⟨ωi, ωj⟩)2 over all pairs (i, j); as a graphon is bounded in [0, 1], there is no need for ⟨ωi, ωj⟩ to be

20



outside of the range [0, 1] either. With the understanding that in this remark, we write Ωij = ⟨ωi, ωj⟩
for the gram matrix of the embedding vectors, we define the sets

Zn,d(A1) := {Ω ∈ Rn×n : Ωij = ⟨ωi, ωj⟩, ∥ωi∥∞ ≤ A1},
Z∞
n (A2) := {Ω ∈ Rn×n : max

i,j
|Ωi,j | ≤ A2}

for the constraint set placed directly on the induced matrix Ω.

We now highlight that in the proof of Theorem 30 of [21] (from which the bound just prior to the
remark follows from), one looks to bound the variance term

v(An |λn) ≤
1

n2

{
1

n2

∑
i ̸=j

fn(λi, λj , aij)
2
(
ℓ(Ωij , aij)− ℓ(Ω̃ij , aij)

)2
+

1

n2

∑
i ̸=j

E
[
fn(λi, λj , aij)

2
(
ℓ(Ωij , aij)− ℓ(Ω̃ij , aij)

)2 |λn

]}

by some metric distance between Ω and Ω̃. To proceed, we use the alternative bound

v(An |λn) ≤
1

n2

{
1

n2

∑
i ̸=j

fn(λi, λj , aij)
2
(
ℓ(Ωij , aij)− ℓ(Ω̃ij , aij)

)2
+

1

n2

∑
i ̸=j

E
[
fn(λi, λj , aij)

2
(
ℓ(Ωij , aij)− ℓ(Ω̃ij , aij)

)2 |λn

]}

≤ 2

n4

{
max
i,j

fn(λi, λj , aij)
2

}
· Lℓ max

i,j
{|Ωij |, |Ω̃ij |}p−1

∑
i,j

(
Ωij − Ω̃ij

)2
≤ 2LℓA

q−1
2

n4

{
max
i,j,x

fn(λi, λj , x)
2

}
· ∥Ω− Ω̃∥2F

where ∥ · ∥F denotes the Frobenius norm of a matrix, and we note that for the cross-entropy loss
(with q = 1) and the squared loss (with q = 2) we can write

|ℓ(y, x)− ℓ(y′, x)| ≤ Lℓ max{|y|, |y′|}q−1|y − y′|
for a Lipschitz constant Lℓ. We now note that we can contain Z∞

n (A2) ∩ Zn,d(A1) within the set

ZF
n,d(nA2) :=

{
Ω ∈ Rn×n : Ω is of rank ≤ d, ∥Ω∥F ≤ nA2}

We note that with respect to the Frobenius norm, this set has covering number

N(ZF
n,d(nA2), ∥ · ∥F , ϵ) ≤

(CnA2

ϵ

)2nd

for some absolute constant C > 0, and therefore by a similar argument to Lemma 41 in [21], it will
be possible to conclude that γ2(ZF

n,d(nA2), ∥ · ∥F ) ≤ C ′n3/2d1/2 for some constant C ′ depending
on A1 and A2, which can then be plugged into the bound given in Theorem 30 of [21]. For the
sampling schemes we consider, maxi,j,x fn(λi, λj , x) = O(ρ−2

n ), and consequently the bound we
obtain is of the order (d/nρ2n)

1/2, rather than (d3/nρn)
1/2. This bound is particularly effective in

the non-sparse regime; in the sparse regime, one would hope for a bound of the form (d/nρn)
1/2,

but we are unaware as to whether such a bound is achievable.

C.3 Using a SBM approximation

We begin by working in the scenario where Assumption 3b) holds. Letting P be a partition of [0, 1]
into κ parts, say P = (A1, . . . , Aκ), we introduce the stepping operators defined by

P⊗2[h](x, y) =
1

|Al||Al′ |

∫
Al×Al′

h(x′, y′) dx′dy′ if (x, y) ∈ Al ×Al′ ,

P[h](x) = 1

|Al|

∫
Al

h(x′) dx′ if x ∈ Al
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for any symmetric measurable function h : [0, 1]2 → R and measurable function h : [0, 1] → R
respectively. With this, let Pn = (An1, . . . , Anκ(n)) be a sequence of partitions containing κ(n)
intervals of size |Anl| ≍ n−α for some constant α > 0, and then introduce the functions

E[R̂Pn
n (ωn) |λn] :=

1

n2

∑
i,j∈[n],i̸=j

∑
x∈{0,1}

P⊗2
n [f̃n,x](λi, λj)ℓ(⟨ωi, ωj⟩, x), (36)

R̂reg,Pn
n (ωn) :=

1

n

∑
i∈[n]

Pn[g̃n](λi)∥ωi∥22, (37)

where we make the abbreviation f̃n,x(λi, λj) := f̃n(λi, λj , x). We note that as f̃n,x and g̃n are
uniformly bounded away from zero by M−1, and because they are Hölder of exponent β, we can
apply Lemma C.6 of [65] to obtain that∥∥∥ f̃n,x − P⊗2

n [f̃n,x]

f̃n,x

∥∥∥
∞

= O(n−αβ),
∥∥∥ g̃n − Pn[g̃n]

g̃n

∥∥∥
∞

= O(n−αβ). (38)

This, along with the uniform boundedness conditions on the f̃n,x and g̃n given in Assumption 3,
allow us to apply Lemma 4 to find that there exists a sequence of sets Ψ(2)

n for which the minima of
both E[R̂n(ωn) |λn] + ξnR̂reg

n (ωn) and E[R̂Pn
n (ωn) |λn] + ξnR̂reg,Pn

n (ωn) are contained within it
with asymptotic probability 1, and

sup
ωn∈Ψ

(2)
n

∣∣∣{E[R̂n(ωn) |λn] + ξnR̂reg
n (ωn)

}
−
{
E[R̂Pn

n (ωn) |λn] + ξnR̂reg,Pn
n (ωn)

}∣∣∣ = Op(n
−αβ).

(39)

Note that in the case where Assumption 3a) holds, this step is not necessary, and so we can take the
above bound to be equal to zero.

C.4 Adding the contribution of the diagonal term

We note that in the definition of E[R̂Pn
n (ωn) |λn], the summation does not include any i = j terms;

if we introduce

E[R̂Pn

n,(1)(ωn) |λn] :=
1

n2

∑
i,j∈[n]

∑
x∈{0,1}

P⊗2
n [f̃n,x](λi, λj)ℓ(⟨ωi, ωj⟩, x), (40)

then by Proposition 1b), we have that

sup
ωn∈([−A,A]d)n

∣∣{E[R̂Pn
n (ωn) |λn] + ξnR̂reg,Pn

n (ωn)}

− {E[R̂Pn

n,(1)(ωn) |λn] + ξnR̂reg,Pn
n (ωn)}

∣∣ = Op

(dq
n

)
.

(41)

C.5 Linking minimizing embeddings to minimizing kernels

We now want to reason about the minima of the function E[R̂Pn

n,(1)(ωn) |λn] + ξnR̂reg,Pn
n (ωn). We

denote

pn(l) := |Anl|, An(l) := {i ∈ [n] : λi ∈ Anl}, p̂n(l) := n−1|An(l)|,

cf,n(l, l
′, x) :=

1

pn(l)pn(l′)

∫
Anl×Anl′

f̃n(λ, λ
′, x) dλdλ′, cg,n(l) :=

1

pn(l)

∫
Anl

g̃n(λ) dλ.

Consider writing

ω̃i =
1

|An(l)|
∑

j∈An(l)

ωj if i ∈ An(l), ω̃n = (ω̃i)i∈[n], (42)
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given any set of embedding vectors ωn. As ℓ(y, x) is strictly convex in y ∈ R for x ∈ {0, 1} and
∥ · ∥22 is also strictly convex, by Jensen’s inequality we have that

E[R̂Pn

n,(1)(ωn) |λn] + ξnR̂reg,Pn
n (ωn)

=
∑

l,l′∈[κ(n)]

p̂n(l)p̂n(l
′)
∑
x

{ cf,n(l, l
′, x)

|An(l)||An(l′)|
∑

i∈An(l)
j∈An(l

′)

ℓ(⟨ωi, ωj⟩, x)
}

+
∑

l∈[κ(n)]

p̂n(l)
cg,n(l)

|An(l)|
∑

i∈An(l)

∥ωi∥22

≥
∑

l,l′∈[κ(n)]

p̂n(l)p̂n(l
′)
∑
x

cf,n(l, l
′, x)ℓ

( ∑
i∈An(l)
j∈An(l

′)

⟨ωi, ωj⟩, x
)

+
∑

l∈[κ(n)]

p̂n(l)cg,n(l)
∥∥∥ 1

|An(l)|
∑

i∈An(l)

ωi

∥∥∥2
2

=
∑

l,l′∈[κ(n)]

p̂n(l)p̂n(l
′)
∑
x

cf,n(l, l
′, x)ℓ

(
⟨

∑
i∈An(l)

ωi

|An(l)|
,

∑
j∈An(l′)

ωj

|An(l′)|
⟩, x

)
+

∑
l∈[κ(n)]

p̂n(l)cg,n(l)
∥∥∥ 1

|An(l)|
∑

i∈An(l)

ωi

∥∥∥2
2

= E[R̂Pn

n,(1)(ω̃n) |λn] + ξnR̂reg,Pn
n (ω̃n),

with equality if and only if the ωi are equal across each of the sets An(l). In particular, this means
that to minimize E[R̂Pn

n,(1)(ωn) |λn] + ξnR̂reg,Pn
n (ωn), if we define

ÎPn
n (ω̃1, . . . , ω̃κ(n)) :=

∑
l,l′∈[κ(n)]

p̂n(l)p̂n(l
′)
∑
x

cf,n(l, l
′, x)ℓ(⟨ω̃l, ω̃l′⟩, x)

Î reg,Pn
n (ω̃1, . . . , ω̃κ(n)) :=

∑
l∈[κ(n)]

p̂n(l)cg,n(l)∥ω̃l∥22,

then it suffices to minimize ÎPn
n (ω̃1, . . . , ω̃κ(n)) + ξnÎ

reg,Pn
n (ω̃1, . . . , ω̃κ(n)), as the ω̃i are constant

across i ∈ An(l). In other words, the above argument has just showed that

min
ωn∈([−A,A]d)n

{
E[R̂Pn

n,(1)(ωn) |λn] + ξnR̂reg,Pn
n (ωn)

}
= min

(ω̃i)∈([−A,A]d)κ(n)

{
ÎPn
n (ω̃1, . . . , ω̃κ(n)) + ξnÎ

reg,Pn
n (ω̃1, . . . , ω̃κ(n))

}
.

(43)

We note that ÎPn
n and Î reg,Pn

n are stochastic, as they depend on the random variables p̂n(l). To remove
the stochasticity, we introduce the functions

IPn
n (ω̃1, . . . , ω̃κ(n)) :=

∑
l,l′∈[κ(n)]

pn(l)pn(l
′)
∑
x

cf,n(l, l
′, x)ℓ(⟨ω̃l, ω̃l′⟩, x)

I reg,Pn
n (ω̃1, . . . , ω̃κ(n)) :=

∑
l∈[κ(n)]

pn(l)cg,n(l)∥ω̃l∥22.

As by Proposition 1c) we have that

max
l,l′∈[κ(n)]

∣∣∣ p̂n(l)p̂n(l′)− pn(l)pn(l′)
pn(l)pn(l′)

∣∣∣ =
Op

((
log κ
n

)1/2)
under Assumption 3a)

Op

( √
logn

n1/2−α/2

)
under Assumption 3b)

max
l∈[κ(n)]

∣∣∣ p̂n(l)− pn(l)
pn(l)

∣∣∣ =
Op

((
log κ
n

)1/2)
under Assumption 3a)

Op

( √
logn

n1/2−α/2

)
under Assumption 3b)
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and moreover that the p̂n(l) and pn(l) sum to 1, we can apply Lemma 4 to argue that there exists a
sequence of sets Ψ(3)

n which contains both the minima of ÎPn
n ((ω̃i)

κ(n)
i=1 ) + ξnÎ

reg,Pn
n ((ω̃i)

κ(n)
i=1 ) and

IPn
n ((ω̃i)

κ(n)
i=1 ) + ξnI

reg,Pn
n ((ω̃i)

κ(n)
i=1 ) with asymptotic probability 1, and that

sup
(ω̃i)i∈Ψ

(3)
n

∣∣∣{ÎPn
n ((ω̃i)

κ(n)
i=1 ) + ξnÎ

reg,Pn
n ((ω̃i)

κ(n)
i=1 )

}
−

{
IPn
n ((ω̃i)

κ(n)
i=1 ) + ξnI

reg,Pn
n ((ω̃i)

κ(n)
i=1 )

}∣∣∣
=

Op

((
log κ
n

)1/2)
under Assumption 3a)

Op

( √
logn

n1/2−α/2

)
under Assumption 3b)

(44)

To transition from embedding vectors to kernels K(l, l′) = ⟨η(l), η(l′)⟩ for η : [0, 1] → [−A,A]d,
we note that as we can write

IPn
n [K] =

∑
l,l′∈[κ(n)]

pn(l)pn(l
′)
∑
x

cf,n(l, l
′, x)

pn(l)pn(l′)

∫
Anl×Anl′

ℓ(⟨η(λ), η(λ′)⟩, x) dλdλ′,

I reg,Pn
n [K] =

∑
l∈[κ(n)]

pn(l)
cg,n(l)

pn(l)

∫
Anl

∥η(λ)∥22 dλ,

by the same Jensen’s inequality argument used to obtain (43), we get that

min
(ω̃i)i∈([−A,A]d)κ(n)

{
IPn
n ((ω̃i)

κ(n)
i=1 ) + ξnI

reg,Pn
n ((ω̃i)

κ(n)
i=1 )

}
= min

K∈Z≥0
d (A)

{
IPn
n [K] + ξnI reg,Pn

n [K]
}
,

(45)

where the correspondence between the minimizing K(l, l′) = ⟨η(l), η(l′)⟩ and ω̃i is given by
η(l) = ω̃i for i ∈ Anl.

The final step is to remove the approximation terms P⊗2
n [f̃n,x] and Pn[g̃n] from IPn

n [K] and
I reg,Pn
n [K] in order to get to In[K] and I reg

n [K]. To do so, we can use (38) and Lemma 5 to obtain that
there exists a set Ψ(4)

n containing both the minima of In[K]+ ξnI reg
n [K] and IPn

n [K]+ ξnI reg,Pn
n [K]

(which exist by Proposition 2) and

sup
K∈Ψ

(4)
n

∣∣∣{IPn
n [K] + ξnI reg,Pn

n [K]
}
−

{
In[K] + ξnI reg

n [K]
}∣∣∣ = O(n−αβ). (46)

C.6 Combining to obtain rates of convergence

To conclude, we first note that given uniform convergence bounds of two functions on a set containing
both of their minima, we can argue convergence of their minimal values; indeed if a set A contains
minima xf and xg to some functions g, then

min
x
f(x)−min

x
g(x) = min

x
f(x)− g(xg) ≤ f(xg)− g(xg) ≤ sup

x∈A
|f(x)− g(x)|,

and similarly so for minx g(x)−minx f(x). (We note that Proposition 2 argues that all the relevant
infimal values of the minimizers of the In[K] + ξnI reg

n [K] are attained.) Therefore, using this
fact and chaining together the bounds in (33), (35), (39), (41), (43), (44) and (46), we get when
Assumption 3b) holds that∣∣∣ min

ωn∈([−A,A]d)n

{
Rn(ωn) + ξnRreg

n (ωn)
}
− min

K∈Z≥0
d (A)

{
In[K] + ξnI reg

n [K]
}∣∣∣

= Op

(
sn +

d3/2ρ
−1/2
n

n1/2
+ n−αβ +

√
log n

n1/2−α/2

)
.

(47)

(We note that the Op(d
q/n) term from (41) is negligible.) To conclude, we simply pick an optimal

choice of α, which we take to be α = 1/(1 + 2β), which gives the stated bound. In the case where
Assumption 3a) holds, the term from the SBM approximation disappears and the

√
log n/n1/2−α/2

term becomes (log κ/n)1/2, giving the stated bound in this regime.
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C.7 Proofs of useful lemmata

Proof of Lemma 4. We begin by noting that as each of theGn(θ) and G̃n(θ) are continuous functions
defined on compact sets, the minima sets of each of the functions are non-empty. We now define the
sets

Ψn :=

{
θn ∈ Θ(n) : Gn(θn) ≤ 2C

∑
i,j,x

c
(n)
ijx + 2C

∑
i

c
(n)
i

}
,

Ψ̃n :=

{
θn ∈ Θ(n) : G̃n(θn) ≤ C

∑
i,j,x

c̃
(n)
ijx + C

∑
i

c̃
(n)
i

}
,

and note that 0 ∈ Ψn, 0 ∈ Ψ̃n for each n, and therefore we also have that argminθn∈Θ(n) Gn(θ) ⊆
Ψn and argminθn∈Θ(n) G̃n(θ) ⊆ Ψ̃n. We now want to argue that P(Ψ̃n ⊆ Ψn) → 1 as n → ∞.
Note that for any θn ∈ Ψ̃n, we have that

Gn(θn) =
∑
i,j,x

c
(n)
ijx

c̃
(n)
ijx

c̃
(n)
ijxℓ

(n)
ijx(θ) +

∑
i

c
(n)
i

c̃
(n)
i

c̃
(n)
i ℓ

(n)
i (θ)

≤ (1 +Op(rn))G̃n(θn) ≤ C(1 +Op(rn))
{∑

i,j,x

c̃
(n)
ijx +

∑
i

c̃
(n)
i

}
.

As by Cauchy’s third inequality we have that∑
i,j,x c̃

(n)
ijx∑

i,j,x c
(n)
ijx

≤ max
i,j,x

c̃
(n)
ijx

c
(n)
ijx

= 1 +Op(rn),

and similarly
∑

i c̃
(n)
i ≤ (1 +Op(rn))

∑
i c

(n)
i , it follows that

Gn(θn) ≤ C(1 +Op(rn))
{∑

i,j,x

c̃
(n)
ijx +

∑
i

c̃
(n)
i

} w.h.p

≤ 2C
{∑

i,j,x

c
(n)
ijx +

∑
i

c
(n)
i

}
once n is sufficiently large, and therefore θn ∈ Ψ̃n for n sufficiently large. In particular, as the above
argument holds freely of the choice of θn, we have that Ψ̃n ⊆ Ψn with asymptotic probability one.
With this, we now note that supθn∈Ψn

Gn(θn) = Op(1) (due to the condition on the sum of the c(n)ijx

and c(n)i ), and consequently we have that for all θn ∈ Ψn

∣∣Gn(θn)− G̃n(θn)
∣∣ ≤ max

i,j,x

∣∣∣c(n)ijx − c̃
(n)
ijx

c
(n)
ijx

∣∣∣ ·∑
i,j,x

c
(n)
ijxℓ

(n)
ijx(θ) + max

i

∣∣∣c(n)i − c̃(n)i

c
(n)
i

∣∣∣ ·∑
i

c
(n)
i ℓ

(n)
i (θ)

≤ Op(rn)Gn(θn) ≤ Op(rn)

with the bound holding uniformly over the choice of θn, giving the stated conclusion.

Proof of Lemma 5. The proof follows the exact same style of argument as in Lemma 4, so we skip
repeating the details.

D Proof of Theorem 2

Before proving any results, we introduce some useful facts from functional analysis; the terminology
and basic properties used below can be found in standard references such as e.g. [5, 14, 49].
Throughout, we will write µn to refer to the measure µn(A) :=

∫
A
g̃ndµ, define for all Borel sets

of [0, 1], where µ is the regular Lebesgue measure on [0, 1], and write e.g. L2([0, 1], µn) or L2(µn)
for the associated Lebesgue space of square integrable random variables. We note that as it assumed
that the g̃n are uniformly bounded away from zero and uniformly bounded above by Assumption 3,

25



h ∈ L2(µn) iff h ∈ L2(µ). For any function K ∈ L2([0, 1]2, µ⊗2
n ) (where we write µ⊗2

n for the
product measure of µn with itself), we introduce the associated operator

TK : L2(µn)→ L2(µn), TK [f ](x) =

∫ 1

0

K(x, y)f(y)dµn(y). (48)

The above operator is Hilbert-Schmidt, where all Hilbert-Schmidt operators L2(µn)→ L2(µn) can
be written in the above form for some kernel K ∈ L2([0, 1]2, µ⊗2

n ); moreover TK is self-adjoint (so
T ∗
K = TK) iff K is symmetric. The above identification corresponds to an isometric isomorphism

between the Hilbert spaces L2(µn) and the Hilbert-Schmidt operators, via [e.g 29, Theorem 8.4.8]
the formula

Tr(T ∗
KTL) = ⟨K,L⟩L2([0,1]2,µ⊗2

n ) =

∫
[0,1]2

K(y, x)L(x, y) dµn(x)dµn(y), (49)

which gives rise to the corresponding norm formula ∥TK∥2HS = ∥K∥L2(µn). Writing S(L2(µn))

for the space of linear operators L2(µn) → L2(µn) with finite trace or nuclear norm ∥T∥1 < ∞
(referred to as the space of trace class operators),K(L2(µn)) for the space of compact linear operators
L2(µn) → L2(µn), and B(L2(µn)) for the space of bounded linear operators L2(µn) → L2(µn)
with norm ∥ · ∥op, we have that [e.g 57, Theorem 3.3.9]

• S(L2(µn)) ∼= (K(L2(µn)))
∗ via the mapping T ∈ S(L2(µn)) 7→ [A 7→ Tr(AT )];

• B(L2(µn)) ∼= (S(L2(µn)))
∗ via the mapping A ∈ B(L2(µn)) 7→ [T 7→ Tr(AT )].

Consequently, this allows us to argue that the trace norm ∥ · ∥1 is weak* lower semi-continuous on
S(L2(µn)), and that its closed level sets are weak* compact by Banach-Alaoglu. We also note that
we have the inclusions

{finite rank} ⊂ {trace class} ⊂ {Hilbert-Schmidt} ⊂ {compact operators} ⊂ {bounded operators}.

Operators which satisify ⟨TK [f ], f⟩ ≥ 0 for all f ∈ L2(µn) are called positive operators1; for
positive operators we have that the trace norm is equal simply to the trace. With this, we now are in a
position to prove the results needed to talk about minimizers of In[K] + ξnI reg

n [K] over various sets
of functions K.
Proposition 2. For K ∈ Z≥0

fr (A) := ∪d≥1Z≥0
d (A), writing K(l, l′) =

∑d
i=1 ηi(l)ηi(l

′) for some d
and functions ηi : [0, 1]→ [−A,A], we define

In[K] =

∫
[0,1]2

∑
x∈{0,1}

f̃n(l, l
′, x)ℓ(K(l, l′), x) dldl′, Ireg

n [K] =

∫
[0,1]

∥ηi(l)∥22 · g̃n(l) dl,

where we recall that f̃n and g̃n are as given in Assumptions 2 and 3, and ℓ(y, x) is either the
cross-entropy loss or the squared loss function; we introduce a variable q for which q = 1 applies to
the cross-entropy loss, and q = 2 for the squared loss. Treat n as fixed. Write µn for the measure
µn(A) :=

∫
A
g̃n dµ where µ is the Lebesgue measure on [0, 1]. Then we have the following:

i) For K ∈ Z≥0
fr (A), Ireg

n [K] = Tr[TK ] where

TK : L2(µn)→ L2(µn), TK [f ](x) =

∫ 1

0

K(x, y)f(y)g̃n(y) dy.

ii) The set Z≥0
fr (A) is free of A, and so we can let Z≥0 denote the weak* closure of Z≥0

fr (A) in
S(L2(µn)).

iii) Ireg
n [K] extends uniquely to a weak* lower semi-continuous function, namely the trace, on Z≥0,

and to the larger domain of the positive trace-class operators on L2(µn). Consequently, we
write Ireg

n [K] = Tr[TK ] for K ∈ Z≥0, or more generally any symmetric function K for which
TK is positive.

1We note that unlike in finite dimensions, we usually do not distingush between operators which are positive
definite as compared to being only non-negative definite.
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iv) In[K] is finite for all symmetric functions K for which TK is a positive operator and Ireg
n [K] <

∞; In[K] is strictly convex in K; and In[K] is weak* lower semi-continuous with respect to
the topology on S(L2(µn)).

v) We have the local Lipschitz property∣∣In[K]− In[L]
∣∣ ≤ 2M3

(
∥K∥L2(µ⊗2

n ) + ∥L∥L2(µ⊗2
n )

)q−1

∥K − L∥L2(µ⊗2
n )

= 2M3
(
∥TK∥HS + ∥TL∥HS

)q−1

∥TK − TL∥HS.

vi) For any ξn ≥ 0, we have that In[K] + ξnIreg
n [K] is a strictly convex function in K, which is

weak* lower semi-continuous with respect to the topology on S(L2(µn)).

vii) For each d, there exists at least one minimizer of In[K] + ξnIreg
n [K] over Z≥0

d (A), and there
exists a unique minimizer to In[K] + ξnIreg

n [K] over Z≥0.

viii) When Assumption 3a) holds, the minima of In[K] + ξnIreg
n [K] over Z≥0 can be determined

via a finite dimensional convex program; write K∗
n for such a minima. Moreover, there exists

some r = r(n) ≤ κ such that K∗
n is of rank r(n), and moreover as soon as d ≥ r(n) and

A ≥ (κ− 1)∥K∗
n∥∞, we have that the minima of In[K] + ξnIreg

n [K] over Z≥0
d (A) is unique

and equals K∗
n.

Proof of Proposition 2. For i), this follows simply by using the fact that if K(l, l′) = ⟨η(l), η(l′)⟩
for some functions η = (η1, . . . , ηd), then we have that

TK [f ](x) =

d∑
i=1

ηi(x)

∫ 1

0

ηi(y)f(y)g̃n(y) dy =

d∑
i=1

(ηi)⊗ (ηi)
∗

and consequently as Tr[ν ⊗ ν∗] = ν∗(ν) and the trace is linear, we have that

Tr[TK ] =

d∑
i=1

∫
[0,1]

ηi(y)ηi(y)g̃n(y) dy = I reg
n [K].

Part ii) follows as Z≥0
fr (A) is free of A as a result of Lemma 52 [21].

For iii), as I reg
n [K] is simply the trace of the operator TK , this will continuously extend to giving

the trace on Z≥0, and more generally the positive trace-class operators on L2(µn). This function is
weak* lower semi-continuous as explained above.

To handle part iv), we note that if I reg
n [K] <∞, then TK is trace-class, and consequently the operator

TK is also Hilbert-Schmidt, implying that K ∈ L2(µ⊗2
n ). We note that we have

0 < M−1 ≤ f̃n(l, l′, x) ≤M <∞, 0 < M−1 ≤ g̃n(l) ≤M <∞,
|ℓ(y, x)− ℓ(y′, x)| ≤ Lℓ max{|y|, |y′|}q−1|y − y′|

(50)

for all l, l′ ∈ [0, 1], y, y′ ∈ R and x ∈ {0, 1} (where q = 1 for the cross-entropy loss, and q = 2 for
the squared loss), for some constants M,Lℓ ∈ (0,∞). It consequently therefore follows that for the
cross-entropy loss we have that

In[K] ≤ 2M3

∫
[0,1]2

(log(2) + |K(l, l′)|) g̃n(l)g̃n(l′)dldl′ ≪ ∥K∥L1(µ⊗2
n ) ≤ ∥K∥L2(µ⊗2

n ) <∞.

A similar argument holds for the squared loss function, after noting that ℓ(y, 0) = y2 and ℓ(y, 1) ≤
2(2 + y2) for all y ∈ R. For the strict convexity, we note that this follows by the strict convexity of
the loss functions ℓ(y, x), the positivity of the f̃n(l, l′, x), and the fact that multiplying the ℓ(y, x) by
f̃n(l, l

′, 1) and f̃n(l, l′, 0), integrating, and then adding the two inequalities, will preserve the strict
convexity.
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By using the properties stated above in (50) we also can argue continuity of In[K], in that (recalling
that q = 1 handles the cross-entropy loss, and q = 2 handles the squared loss)∣∣In[K]− In[L]

∣∣ ≤MLℓ

∫
[0,1]2

max{|K(l, l′)|, |L(l, l′)|}p−1|K(l, l′)− L(l, l′)| dldl′

≤ 2M3

∫
[0,1]2

(
|K(l, l′)|+ |L(l, l′)|

)q−1∣∣K(l, l′)− L(l, l′)
∣∣ g̃n(l)g̃n(l′) dldl′

≤ 2M3
(
∥K∥Lq(µ⊗2

n ) + ∥L∥Lq(µ⊗2
n )

)q−1

∥K − L∥Lq(µ⊗2
n )

≤ 2M3
(
∥K∥L2(µ⊗2

n ) + ∥L∥L2(µ⊗2
n )

)q−1

∥K − L∥L2(µ⊗2
n )

= 2M3
(
∥TK∥HS + ∥TL∥HS

)q−1

∥TK − TL∥HS

≤ 2M3
(
∥TK∥1 + ∥TL∥1

)q−1

∥TK − TL∥1,

which also gives us part v); this is obtained by using (50) in the first line, the second by using the
fact that g̃n is bounded below and that max{|a|, |b|} ≤ |a|+ |b|; the third line by Hölder’s inequality
and the triangle inequality; the fourth line by Jensen’s inequality; the fifth line by the identification
between the L2 norms of kernels and the Hilbert-Schmidt norm of their associated operators, and the
last line by the fact that the trace norm upper bounds the Hilbert-Schmidt norm. In particular, In[K]
is norm-continuous with respect to the norm of L2(µ⊗2

n ). This plus convexity implies that In[K] is
weakly lower semi-continuous, in the sense of the weak topology on L2(µ⊗2

n ). The restriction of this
topology to the trace-class operators is coarser than the weak* topology (by the definition of the weak
topology), and therefore In[K] is also weak* lower semi-continuous, concluding the arguments for
part iv).

For vi), this follows by using the above parts, the fact that the trace is linear over positive trace-class
operators, and that the sum of convex and lower semi-continuous functions remain convex and lower
semi-continuous respectively.

For vii), we first need to discuss some of the properties of the sets Z≥0
d (A), Z≥0

fr (A) and Z≥0(A).
We note that by the same argument in Proposition 47 of [21] that Z≥0

d (A) is weak* closed, and
that because of the facts a) tZ≥0

d (A) ⊂ Z≥0
d (A) and b) Z≥0

r (A) + Z≥0
s (A) = Z≥0

r+s(A), we can
conclude that Z≥0

fr (A) = Z≥0
fr - recall part ii) - is convex. As closures of convex sets are convex, it

consequently follows that Z≥0 is convex and weak* closed. Noting that each of these sets contain 0,
any minimizer K must satisfy

ξnTr[TK ] ≤ In[K] + ξnI reg
n [K] ≤ In[0] + ξnI reg

n [0] = In[0] =⇒ Tr[TK ] ≤ ξ−1
n In[0].

As the set B := {K : Tr[TK ] ≤ ξ−1
n In[0]} is weak* compact, it therefore follows that when

minimizing over Z≥0
d (A) and Z≥0, it suffices to minimize over the weak* compact sets Z≥0

d (A)∩B
and Z≥0 ∩ B respectively, and so by Weierstrass’ theorem a minimizer must exist. As In[K] +
ξnI reg

n [K] is strictly convex and Z≥0 is convex, we therefore also know that the minimizer over this
set is unique.

To end with part viii), we highlight that in Appendix C.5, it is shown that when f̃n(l, l′, 1), f̃n(l, l′, 0)
and g̃n(l) are piecewise constant, one can relate the minimization problem of minimizing In[K] +

ξnI reg
n [K] over Z≥0

d (A) to that of minimizing the function∑
l,l′∈[κ]

pn(l)pn(l
′)
∑
x

cf,n(l, l
′, x)ℓ(⟨ω̃l, ω̃l′⟩, x) +

∑
l∈[κ]

pn(l)cg,n(l)∥ω̃l∥22

over ω̃l for l ∈ [κ] with ∥ω̃l∥∞ ≤ A for all A (see Appendix C.5 for a reminder of the relevant
notation). In particular, in the case where we allow d = κ, and we relax the constraint on the ω̃l, if
we write K̃ll′ = ⟨ω̃l, ω̃l′⟩, then we can write the above function as∑

l,l′∈[κ(n)]

pn(l)pn(l
′)
∑
x

cf,n(l, l
′, x)ℓ(K̃ll′ , x) +

∑
l∈[κ(n)]

pn(l)cg,n(l)K̃ll,
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which is a strictly convex function in the matrix Kll′ , and consequently has a unique minimizer
over the cone of positive semi-definite matrices; call this matrix K̃∗

n. Supposing that K̃∗
n is of rank

r(n) ≤ κ (as the matrix is κ× κ dimensional and the rank is trivially less than the matrix dimension),
if we write K̃∗

n =
∑r

i=1(n)µiϕiϕ
T
i for some eigenvalues µi > 0 and orthonormal eigenvectors

ϕi ∈ Rκ, then we can identifyK∗
n with K̃∗

n via lettingK∗
n =

∑r(n)
i=1 µiψi(l)ψi(l

′) where ψi(l) = ϕij
for l ∈ Aj . We now highlight that one trivially has that ∥ϕi∥∞ ≤ 1 for all i, and moreover that as
every row and column sum (ignoring the diagonal) is bounded above by (κ − 1)∥K̃∗

n∥∞, by the
Gershgorin circle theorem the eigenvalues are bounded above by (κ− 1)∥K̃∗

n∥∞ also. Consequently,
as soon as d ≥ r(n) and A ≥ (κ − 1)∥K̃∗

n∥∞, K∗
n ∈ Z

≥0
d (A), and as a result we have that the

minima of In[K] + ξnI reg
n [K] over Z≥0

d (A) is unique and equals K∗
n.

As the above theorem shows that In[K] + ξnI reg
n [K] is a strictly convex function, well defined for all

symmetric kernels K corresponding to positive, self-adjoint, trace class operators L2(µn)→ L2(µn)
via the identification K → TK given in (48), we briefly discuss here the corresponding KKT
conditions for constrained minimization.

Proposition 3. Let C be a weak* closed set of positive, symmetric, trace class kernels. Then L is the
unique minima of In[K] + ξnIreg

n [K] over C if and only if there exists some V ∈ B(L2(µn)) such
that

Tr(V TL) = Ireg
n [K], ∥V ∥op ≤ 1, Tr

(
(T∇ + ξnV )(TK − TL)

)
≥ 0 for all K ∈ C,

where we identify symmetric kernels K ∈ L2(µ⊗2
n ) with operators L2(µn) → L2(µn) as in (48),

and write T∇ for the bounded operator L2(µn)→ L2(µn) with kernel

∇In[K] =
∑

x∈{0,1}

f̃n(l, l
′, x)ℓ′(K(l, l′), x)

g̃n(l)g̃n(l′)
,

where ℓ′(y, x) is the derivative of ℓ(y, x) with respect to y.

Proof of Proposition 3. We begin by deriving the subgradient for both In[K] and I reg
n [K], and then

use the rules of subgradient calculus to obtain the KKT conditions. For In[K], note that we can write

In[K] :=

∫
[0,1]2

∑
x∈{0,1}

f̃n(l, l
′, x)ℓ(K(l, l′), x)

g̃n(l)g̃n(l′)
g̃n(l)g̃n(l

′) dldl′ (51)

and so the subgradient (in terms of the operator) is a singleton, say T∇, whose sole element is the
operator with kernel given by the Fréchet derivative of In[K]

∇In[K](l, l′) =
∑

x∈{0,1}

f̃n(l, l
′, x)ℓ′(K(l, l′), x)

g̃n(l)g̃n(l′)
(52)

[e.g 5, Proposition 2.53]. As for I reg
n [K], we recall that this equals Tr[TK ], i.e the trace norm of

TK , as K is positive. Because the dual space of S(L2(µn)) is the space of bounded operators
L2(µn)→ L2(µn) equipped with norm ∥ · ∥op, we have that

∂I reg
n [K] =

{
V ∈ B(L2(µn)) : Tr(V TK) = I reg

n [K], ∥V ∥op ≤ 1
}

(53)

[e.g 2, Theorem 7.57]. Combining the two subgradients together says that L is an optimizer to
In[K] + ξnI reg

n [K] over C if and only if there exists some V ∈ B(L2(µn)) such that

Tr(V TL) = I reg
n [K], ∥V ∥op ≤ 1, Tr

(
(T∇ + ξnV )(TK − TL)

)
≥ 0 for all K ∈ C (54)

as stated.

With this, we now state the full version of Theorem 2, complete with regularity conditions.

Theorem 7. Suppose that Assumptions 2 and 3 hold and that ξn = O(1). Write Z≥0 = cl
(
∪d≥1

Z≥0
d (A)

)
for the closure of the union of the Z≥0

d (A) with respect to the weak* topology on the
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trace-class operators L2(µn)→ L2(µn) as described in Proposition 2. For each n, let K∗
n denote

the unique minimizer to the optimization problem

min
K∈Z≥0(A)

{
In[K] + ξnIreg

n [K]
}
,

and assume that the K∗
n are uniformly bounded in L∞([0, 1]2). Moreover, suppose that either

(I) on the same partition Q as given in Assumption 3a), we have that K∗
n is piecewise constant

on Q×Q;

(II) the K∗
n are all Hölder([0, 1], β∗, L∗) for some constants β∗ and L∗.

Then there exists A′ (see Lemma 7 and Lemma 8) such that whenever A1, A2 ≥ A′, for any sequence
of minimizers

ω̂n ∈ argmin
ωn∈([−A1,A1]d)n

{
Rn(ωn) + ξnRreg

n (ωn)
}

such that max
i,j

∣∣⟨ω̂i, ω̂j⟩
∣∣ ≤ A2

we have that under condition (II) that

1

n2

∑
i,j∈[n]

(
⟨ω̂i, ω̂j⟩ −K∗

n(λi, λj)
)2

= Op

(
rn + d−β∗ +

( log(n)
n

)min{β,β∗}/2)
,

where rn is the relevant rate of convergence in Theorem 1. In particular, there exists a sequence of
embedding dimensions d = d(n) such that the above bound is op(1). Under condition (I), the above
rate of convergence can be improved as follows: there exists some constant r ≤ κ such that, as soon
as d ≥ r, we have that the above bound is of the order Op(rn) only. In particular, as soon as d ≥ r,
the above bound is op(1).
Remark 4. The conditions on K∗

n are given in order to give explicit rates of convergence; in order
to only argue that we obtain consistency of the bound given above, it suffices to have that the K∗

n are
equicontinuous for each n. Moreover, this is only necessary in order to relate the minimal values of
the ⟨ω̂i, ω̂j⟩ directly to the values of K∗

n(λi, λj); we can still obtain weaker notions of consistency
(see e.g. (D)) if we do not impose any continuity requirements. With regards to the assumption that
the infinity norm of the matrix ⟨ω̂i, ω̂j⟩ is bounded with n, this could be imposed as a constraint
in Theorem 1 to guarantee such a pair of minimizers; as highlighted in Remark 3, this can lead
to improved dependence on the dimension d. We highlight that as under the given assumptions on
the f̃n(l, l′, 1) and f̃n(l, l′, 0), the unconstrained minimizer when ξn = 0 is uniformly bounded in
L∞([0, 1]2), and so we do not consider these assumptions (both on K∗

n and the gram matrix of the
embedding vectors) to be restrictive.
Remark 5. We highlight that we usually expect β = β∗; for example, see Theorem 5 for an example
with the squared loss.
Remark 6. We briefly discuss the rates of convergence of the above estimator when in the dense
regime and using the squared loss, as in this setting the bound we obtain naturally corresponds to the
guarantees given in the graphon estimation literature. In particular, when f̃n(l, l′, 1), f̃n(l, l′, 0) and
g̃n(l) are constant (i.e, free of l), Theorem 5 guarantees us that the minima of In[K] + ξnIreg

n [K]
corresponds to a version of the original generating graphon W whose singular values have been
subject to a soft-thresholding operator, and we can take β∗ = β also.

In such a scenario, we then note that if we also take Remark 3 into account, then the rate of
convergence equals

sn +
( d
n

)1/2

+
( log n

n2β/(1+2β)

)1/2

+ d−β +
( log n

n

)β/2

.

By choosing the embedding dimension d optimally so that d = O(n1/(1+2β)), and noting that the(
log n/n2β/(1+2β)

)1/2
term is of a slower order than the

(
log n/n

)β/2
term, we end up with a rate

of convergence

sn +
( log n

n2β/(1+2β)

)1/2

.

Up to logarithmic factors and the sampling term, this is a square root of the rate of convergence of
the UVST procedure [66], which is itself a square root of the minimax rates of estimation [22]. We
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suspect that the difference with the rates achieved in [66] occurs due to our approach of looking
at the rates of convergence between the empirical and population risks, rather than being able to
work directly with the original objective at all times. It would be interesting to see whether the rates
of convergence can be improved so that, up to the sampling term, we end up with the same rates of
convergence as in [66].

Proof of Theorem 7. The idea of the proof is to associate a kernel K̂ to a minimizer ω̂n ofRn(ωn)+
ξnRreg

n (ωn) over ([−A,A]d)n, and then argue from the uniform convergence results developed in
the proof of Theorem 1 that this requires K̂ to be close to the minimizer of In[K] + ξnI reg

n [K].
Consequently, we can then use the curvature of this function about its minima to derive consistency
guarantees.

To associate a kernel K to a collection of embedding vectors ωn, we begin by writing λn,(i) for the
associated order statistics of λn = (λ1, . . . , λn), and let πn be the mapping which sends i to the rank
of λi. We then define the sets

An,i =
[ i− 1/2

n+ 1
,
i+ 1/2

n+ 1

]
for i ∈ [n],

and define the sequence of functions

K̂n(l, l
′) = ⟨η̂(l), η̂(l′)⟩ where η̂(l) =

{
ω̂i if l ∈ An,πn(i),

0 otherwise.

for any sequence ω̂n of minimizers toRn(ωn) + ξnRreg
n (ωn). The idea of the proof is to then focus

on upper and lower bounding the quantity{
In[K̂n] + ξnI reg

n [K̂n]
}
−

{
In[K∗

n] + ξnI reg
n [K∗

n]
}
,

where K∗
n is the minimizer of In[K] + ξnI reg

n [K] over Z≥0(A).

Step 1: Bounding from above. Begin by noting from the triangle inequality we have that{
In[K̂n] + ξnI reg

n [K̂n]
}
−
{
In[K∗

n] + ξnI reg
n [K∗

n]
}

≤
∣∣∣{In[K̂n] + ξnI reg

n [K̂n]
}
−
{
Rn(ω̂n) + ξnRreg

n (ω̂n)
}∣∣∣ (I)

+
∣∣∣{Rn[ω̂n] + ξnRreg

n (ω̂n)
}
− min

K∈Z≥0
d (A)

{
In[K] + ξnI reg

n [K]
}∣∣∣ (II)

+
∣∣∣ min
K∈Z≥0

d (A)

{
In[K] + ξnI reg

n [K]
}
− min

K∈Z≥0(A)

{
In[K] + ξnI reg

n [K]
}∣∣∣. (III)

We want to bound each of the terms (I), (II) and (III). By using Lemma 6, Theorem 1 and Lemma 7
respectively, we end up being able to bound the above quantity by Op(qn), where

qn =

{
rn if (I) holds

rn +
(
log(n)/n

)β/2
+ d−β∗

if (II) holds.

Step 2: Bounding from below. Let qn denote the upper bound on the rate of convergence of{
In[K̂n]+ ξnI reg

n [K̂n]
}
−
{
In[K∗

n]+ ξnI
reg
n [K∗

n]
}

as developed above. Then by Lemma 8, we have
that ∫

[0,1]2

(
K̂n(l, l

′)−K∗
n(l, l

′)
)2

dldl′ = Op(qn).

If we then define the function

K
∗
n(l, l

′) =

{
K∗

n(λi, λj) if (l, l′) ∈ An,πn(i) ×An,πn(j),

0 otherwise

then by the same arguments as in the proof of Lemma 6 we get that∫
[0,1]2

(
K

∗
n(l, l

′)−K∗
n(l, l

′)
)2
dldl′ =

{
Op(n

−1/2) if (I) holds
Op

(
(log(n)/n)β

∗/2
)

if (II) holds.
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Consequently, as a result of the triangle inequality we get that

1

(n+ 1)2

∑
i,j∈[n]

(
K∗

n(λi, λj)− ⟨ω̂i, ω̂j⟩
)2

=

∫
[0,1]2

(
K

∗
n(l, l

′)− K̂n(l, l
′)
)2
dldl′ =

{
Op(qn) if (I) holds
Op

(
qn + (log(n)/n)β

∗/2
)

if (II) holds,

giving the desired result.

D.1 Additional lemmata

Lemma 6. Under the assumptions and notation of Theorem 7, we have that∣∣∣{In[K̂n] + ξnIreg
n [K̂n]

}
−
{
Rn(ω̂n) + ξnRreg

n (ω̂n)
}∣∣∣ = Op

(
rn + (log(n)/n)β/2

)
,

where rn is the convergence rate in Theorem 1 when condition (II) holds. When condition (I) holds,
the rate of convergence can be improved to be simply Op(rn).

Proof of Lemma 6. We begin by handling what occurs when condition (II) of Theorem 7 holds, and
then detail what changes when condition (I) holds instead.

Begin by defining the quantities

c̃f,n(i, j, x) :=
1

|An,πn(i)||An,πn(j)|

∫
An,πn(i)×An,πn(j)

f̃n(l, l
′, x) dldl′,

c̃g,n(l) =
1

|An,πn(i)|

∫
An,πn(i)

g̃n(l) dl,

and note that as

max
i∈[n]

∣∣∣λn,(i) − i

n+ 1

∣∣∣ = Op

(( log(2n)
n

)1/2)
[by e.g 45, Theorem 2.1], we get that∣∣c̃f,n(i, j, x)− f̃n(λi, λj , x)∣∣

≤ 1

|An,πn(i)||An,πn(j)|

∫
An,πn(i)×An,πn(j)

∣∣f̃n(l, l′, x)− f̃n(λn,(πn(i)), λn,(πn(j)), x)
∣∣ dldl′

≤ L sup
(l,l′)∈An,πn(i)×An,πn(j)

∥(l, l′)− (λn,(πn(i)), λn,(πn(j)))∥
β
2

≤ L2β/2
( 1

2n
+max

i∈[n]

∣∣λn,(i) − i

n+ 1

∣∣)β

= Op

(( log n
n

)β/2)
,

uniformly for all i, j, and similarly∣∣c̃n(i)− g̃n(λi)∣∣ = Op

(( log n
n

)β/2)
uniformly over i. Using the fact that K̂n is piecewise constant, we can then write

In[K̂n] + ξnI reg
n [K̂n]

=
1

(n+ 1)2

∑
(i,j)∈[n]

∑
x∈{0,1}

ℓ(⟨ω̂i, ω̂j⟩, x)c̃f,n(i, j, x) + ξn
∑
i∈[n]

∥ω̂i∥22c̃g,n(i) +
2(n− 1)cℓ
(n+ 1)2

,

where cℓ is a constant which depends on the choice of the loss function. Introducing the function
(compare with E[R̂Pn

n,(1)(ωn) |λn] from (40))

E[R̂n,(1)(ωn) |λn] :=
1

n2

∑
i,j∈[n]

∑
x∈{0,1}

f̃n(λi, λj , x)ℓ(⟨ωi, ωj⟩, x),
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it follows that∣∣{In[K̂n] + ξnI reg
n [K̂n]

}
−
{
Rn(ω̂n) + ξnRreg

n (ω̂n)
}∣∣

≤
∣∣∣ 1

(n+ 1)2

∑
i,j∈[n]

∑
x∈{0,1}

ℓ(⟨ω̂i, ω̂j⟩, x)
{
c̃f,n(i, j, x)− f̃n(λi, λj , x)

}
+

ξn
n+ 1

∑
i∈[n]

∥ω̂i∥22
{
c̃g,n(l)− g̃n(λi)

}∣∣∣ (A)

+
∣∣{E[R̂n,(1)(ω̂n) |λn] + ξnR̂reg

n (ω̂n)
}
−

{
Rn(ω̂n) + ξnRreg

n (ω̂n)
}∣∣ (B)

+O(n−1)
{
E[R̂n,(1)(ω̂n) |λn] + ξnR̂reg

n (ω̂n)
}
+O(n−1). (C)

From the proof2 of Theorem 1, we know that the (B) term is of the order Op(rn), and consequently
via the uniform convergence bounds developed throughout the proof, this will also imply that{
E[R̂n,(1)(ω̂n) |λn] + ξnR̂reg

n (ω̂n)
}
= Op(1) and consequently the term in (C) will be of the order

Op(n
−1). For (A), we begin by noting that (A) can be bounded via the triangle inequality and the

observations above by

(A) ≤
( 1

n2

∑
i,j∈[n]

∑
x∈{0,1}

ℓ(⟨ω̂i, ω̂j⟩, x) +
1

n

∑
i∈[n]

∥ω̂i∥22
)
·Op

(( log n
n

)β/2)
.

To conclude, we just need to argue that
1

n2

∑
i,j∈[n]

∑
x∈{0,1}

ℓ(⟨ω̂i, ω̂j⟩, x) +
1

n

∑
i∈[n]

∥ω̂i∥22 = Op(1).

To see this, we note that this simply follows by using the fact that
{
E[R̂n,(1)(ω̂n) |λn] +

ξnR̂reg
n (ω̂n)

}
= Op(1) (as argued above) and the fact that the f̃n(l, l′, 1), f̃n(l, l′, 0) and g̃n are

assumed to be uniformly bounded below by M−1.

When condition (I) holds instead, we need to change the style of argument. Note that when
Q = (A1, . . . , Aκ), if we define the sets

Nλ,n,k := {j : λj ∈ Ak}, NA,n,k = {j : An,πn(j) Ak}

Mn,k = Nλ,n,k ∩NA,n,k, Mn =

κ⋃
k=1

Mn,k,

then by Theorem 63 of [21], we have that |Mn| ≥ n−Op(
√
n), |M c

n| ≤ Op(
√
n). To make use of

this, note that ∣∣c̃f,n(i, j, x)− f̃n(λi, λj , x)∣∣ = {
0 if i, j ∈Mn

M otherwise,
and also that ∣∣c̃n(i)− g̃n(λi)∣∣ = {

0 if i ∈Mn

M otherwise.

Writing cℓ,2 = max{ℓ(A2, 1), ℓ(A2, 0), ℓ(−A2, 0), ℓ(−A2, 1)}, the bound in (A) is replaced by

(A) ≤M
(
cℓ,2
|M c

n|2 + 2|Mn||M c
n|

(n+ 1)2
+
ξn|M c

n|
n+ 1

)
= Op(n

−1/2),

and so the argument progresses through as before, except that we can drop the (log n/n)β/2 term in
the overall rate of convergence.

Lemma 7. Under the assumptions and notation of Theorem 7, there exists A′ such that whenever
A ≥ A′, we have, under condition (II) of Theorem 7, that

sup
n≥1

∣∣∣ min
K∈Z≥0

d (A)

{
In[K] + ξnIreg

n [K]
}
− min

K∈Z≥0

{
In[K] + ξnIreg

n [K]
}∣∣∣ = O(d−β∗

).

2We note that the step where the ‘diagonal term’ of including/excluding the sums of ℓ(⟨ωi, ωj⟩, x) can be
carried out before or after the stepping approximation step.
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When condition (I) holds instead, then there exists r ≤ κ and A′ <∞ such that, as soon as d ≥ r
and A ≥ A′, we have that

sup
n≥1

∣∣∣ min
K∈Z≥0

d (A)

{
In[K] + ξnIreg

n [K]
}
− min

K∈Z≥0

{
In[K] + ξnIreg

n [K]
}∣∣∣ = 0.

Proof of Lemma 7. We begin with the argument under condition (II) first, and then highlight how the
details change when condition (I) holds instead. Note that by the spectral theorem for self-adjoint
compact operators, we can write for each n the eigendecomposition

K∗
n(l, l

′) =

∞∑
i=1

λi(K
∗
n)ψn,i(l)ψn,i(l

′)

where the λi(K
∗
n) are non-negative, monotone decreasing in i for each n, and satisfy the

bound λi(K
∗
n) = O(d−(1+β∗)) [52], and are uniformly bounded above by ∥K∗

n∥L2(µ⊗2
n ) ≤

M2 supn≥1 ∥K∗
n∥∞. As for the eigenfunctions, we note that they are orthonormal in that

⟨ψn,i, ψn,j⟩L2(µn) = δij . Moreover, as the image of the operator TK∗
n

under the unit L2(µn)
ball lies within the class of Hölder([0, 1], β∗, L∗) functions, the ψn,i are each Hölder([0, 1], β∗, L∗),
and as they are uniformly bounded in L2(µn), they will also be uniformly bounded (across i and n)
in L∞([0, 1]) too (see e.g. Lemma 10). Consequently, writing

K∗
n,d(l, l

′) =

d∑
i=1

λi(K
∗
n)ψn,i(l)ψn,i(l

′)

for the best rank d approximation to K∗
n, it follows that K∗

n,d ∈ Z
≥0
d (A) for any A ≥ A′ =

M
√
supn≥1 ∥K∗

n∥∞ · supn,i ∥ψn,i∥∞. As a result, we have that

min
K∈Z≥0

d (A)

{
In[K] + ξnI reg

n [K]
}
− min

K∈Z≥0

{
In[K] + ξnI reg

n [K]
}

≤
{
In[K∗

n,d] + ξnI reg
n [K∗

n,d]
}
−

{
In[K∗

n] + ξnI reg
n [K∗

n]
}
.

In order to obtain the final bound, we then note that by the local-Lipschitz property derived in
Proposition 2v), in addition to the fact that the trace is linear and equals the sum of the eigenvalues of
the operator, we get that (where we use ≲ to hide unimportant constants){

In[K∗
n,d] + ξnI reg

n [K∗
n,d]

}
−
{
In[K∗

n] + ξnI reg
n [K∗

n]
}

≲ (2∥K∗
n∥L2(µ⊗2

n ))
q−1 · ∥K∗

n,d −K∗
n∥L2(µ⊗2

n ) + ξn
∣∣Tr[TK∗

n
− TK∗

n,d
]
∣∣

= O
(
sup
n≥1
∥K∗

n∥q−1
∞

( ∞∑
i=d+1

d−2(1+β∗)
)1/2

+

∞∑
i=d+1

d−(1+β∗)
)
= O(d−β∗

),

as desired, noting that the bound on the RHS holds uniformly in n.

We highlight that in the case where condition (I) holds, we know by the last part of Proposition 2 that,
for each n, there exists r(n) ≤ κ such that once d ≥ r(n) and A ≥ (κ − 1)∥K∗

n∥∞, the minima
of In[K] + ξnI reg

n [K] over Z≥0
d (A) equals the minima over the set Z≥0. Consequently, under the

assumptions stated, letting r = r̃ = supn≥1 r(n) ≤ κ and A′ = (κ− 1) supn≥1 ∥K∗
n∥∞ gives the

stated result.

Lemma 8. When ℓ(y, x) is the cross-entropy loss, under the assumptions and notation of Theorem 7,
for any K ∈ Z≥0 such that ∥K∥∞ <∞, we have that{
In[K] + ξnIreg

n [K]
}
−
{
In[K∗

n] + ξnIreg
n [K∗

n]
}
≥ 1

2M

∫
[0,1]2

(
K∗

n(l, l
′)−K(l, l′)

)2
dldl′

for some constant M which depends on CM := max{∥K∥∞, supn ∥K∗
n∥∞} < ∞; in particular

one can take M = (eCM /(1 + eCM )2)−1. When ℓ(y, x) is the squared loss, one can relax the
requirement that ∥K∥∞ <∞, and can take M = 1/2 instead.
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Proof of Lemma 8. We give the details for the cross-entropy loss, as the argument for the squared loss
is the same, except for that the requirement that ∥K∥∞ <∞ can be dropped. To begin, we note that
for any y and y′ such that |y|, |y′| ≤ A for some constant A, we have that ℓ′′(y, x) = ey/(1+ ey)2 ≤
eA/(1 + eA)2 > 0, and consequently ℓ(y, x) is strongly convex in y on the domain |y| ≤ A for all
x ∈ {0, 1}. As a result, we have the inequality

ℓ(y, x) ≥ ℓ(y′, x) + (y − y′)ℓ′(y′, x) + eA

2(1 + eA)2
(y − y′)2

for x ∈ {0, 1} and all y, y′ with |y|, |y′| ≤ A. After multiplying the above inequality by the
f̃n(l, l

′, 1) and f̃n(l, l′, 0) separately, adding the two inequalities together, and integrating, we obtain
the inequality

In[K] ≥ In[K ′] +

∫
[0,1]2

∇In[K ′](K(l, l′)−K ′(l, l′)) dldl′

+
1

2M

∫
[0,1]2

(
K(l, l′)−K ′(l, l′)

)2

dldl′

for any K,K ′ ∈ Z≥0(A) for which ∥K∥∞, ∥K ′∥∞ < ∞, where M depends on the value of
CM := max{∥K∥∞, ∥K ′∥∞}; in particular, we have that M = (eCM /(1 + eCM )2)−1. Note that
under our assumptions, the K∗

n are uniformly bounded in L∞([0, 1]2), and consequently it follows
that for any K ∈ Z≥0(A) which is bounded in L∞([0, 1]2) that{
In[K] + ξnI reg

n [K]
}
−
{
In[K∗

n] + ξnI reg
n [K∗

n]
}

(a)

≥
∫
[0,1]2

∇In[K∗
n](K(l, l′)−K∗

n(l, l
′)) dldl′ +

1

2M

∫
[0,1]2

(
K(l, l′)−K∗

n(l, l
′)
)2
dldl′

+ ξnI reg
n [K]− ξnI reg

n [K∗
n]

(b)

≥ Tr(T∇(TK − TK∗
n
)) + ξnTr(V

∗(TK − TK∗
n
)) +

1

2M

∫
[0,1]2

(
K(l, l′)−K∗

n(l, l
′)
)2
dldl′

(c)

≥ 1

2M

∫
[0,1]2

(
K(l, l′)−K∗

n(l, l
′)
)2
dldl′.

To obtain this, in (a) we substituted in the bound on In[K]− In[K ′] stated above. In (b), we used
the isometry between the trace inner product on operators and the corresponding inner product
of the kernels, and the KKT conditions stating the existence of a bounded operator V ∗ for which
Tr(V ∗TK∗

n
) = I reg

n [K∗
n] and ∥V ∗∥op ≤ 1; the latter property consequently implies that I reg

n [K] ≥
Tr(V ∗K) by the variational formulation of the trace. In (c), we then use the fact that K∗

n is optimal
provided that Tr((T∇ + ξnV

∗)(TK − TK∗
n
)) ≥ 0.

E Proof of additional theorems from Section 3.1

In this section, we write µi(K) for either the i-th largest eigenvalue of a symmetric matrix K, or
the i-th largest eigenvalue of a self-adjoint operator with kernel K (as introduced in the beginning
of Appendix D. We write σi(K) for the corresponding singular values; recall that for a matrix
K ∈ Rn×d, we have that σr(K)2 = µr(KK

T ) for any r ≤ min{n, d}, and that for a self-adjoint
positive definite matrix or operator K, we have that σr(K) = µr(K) for all r.

Before proving Theorems 3 and 4, we require a brief lemma.
Lemma 9. Let K : [0, 1]2 → R be the kernel of a symmetric, positive operator which is either a)
piecewise constant on a partition Q×Q where Q is a partition of [0, 1] of size κ, or b) continuous.
Suppose moreover that K has rank exactly equal to r, where

K(x, y) =

r∑
i=1

ψi(x)ψi(y) (55)

for some non-zero, orthogonal functions ϕi : [0, 1]→ R which are piecewise continuous. Then if λi
are i.i.d Unif([0, 1]) and we define the random matrix (Kλ)ij := K(λi, λj), then Kλ is of rank ≤ r,
and with asymptotic probability 1 as n→∞, has rank exactly equal to r.
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Proof of Lemma 9. Note that if we write Ψij = ψj(λi) ∈ Rn×r, then as Kλ = ΨΨT , we know
that the rank of Kλ must be less than or equal to r. For the second part, we note that under the
given conditions, we can apply Corollary 5.5 of [36] to the matrix n−1Kλ; under a), the diagonal
summability condition needed follows trivially, and under b), Mercer’s theorem gives the diagonal
summability condition needed, with the other conditions being satisfied as a result of K being finite
rank. Consequently we have that

µr(n
−1Kλ) = µr(K) +Op(n

−1/2) >
1

2
µr(K) with probability→ 1.

In particular, with asymptotic probability 1, n−1Kλ is of full rank, and therefore so is Kλ.

Proof of Theorem 3. To save on notation, we write K for K∗
n, Kλ for the matrix (K(λi, λj))ij , and

ϕi(l) for the ϕn,i(l). We note that Lemma 9 gives the guarantee that Kλ is asymptotically of exact
rank r. Writing Ψλ ∈ Rn×r for the matrix (ϕj(λi)) for i ∈ [n] and j ∈ [r], the same argument in
Lemma 9 guarantees that the singular value σr(n−1/2Ψλ)

2 = µr(n
−1Kλ) ≥ 1

2µr(K) > 0 with
asymptotic probability 1, and therefore we can work on an event where the r-th highest singular value
of n−1/2Ψλ is uniformly bounded away from zero.

With this, we can now apply Lemma 5.4 of [60], which states that for any matrices U, V ∈ Rn×r, we
have that

min
Q∈O(r)

∥U − V Q∥2F ≤
1

2(
√
2− 1)σ2

r(V )
∥UUT − V V T ∥2F ,

where σd(V ) is the d-th largest singular value of the matrix V . We recall that σr(V )2 = µr(V V
T ).

Applying this to U = n−1/2ωn and V = n−1/2Ψλ, followed by the above remark, gives the desired
result.

Proof of Theorem 4. For this, we begin by noting that as G̃ is defined to be a best rank r approxima-
tion to the matrix G, n−1G̃ is a best rank r approximation to the matrix n−1G, and consequently we
have that

n−2∥G̃−G∥2F = ∥n−1G̃− n−1G∥2F =

d∑
i=r+1

µi(n
−1G)2 (56)

by the Eckart–Young–Mirsky theorem. To proceed, we then recall that as Gij = ⟨ω̂i, ω̂j⟩, and
moreover we have that µi(Kλ) = 0 for i ≥ r + 1 we have that

d∑
i=r+1

µi(n
−1G)2 =

d∑
i=r+1

(
µi(n

−1G)− µi(n
−1Kλ)

)2
≤

d∑
i=1

(
µi(n

−1G)− µi(n
−1Kλ)

)2 ≤ ∥n−1G− n−1Kλ∥2F = op(1)

(57)

where the last inequality follows by the Weilandt-Hoffman inequality [30], giving the first part of the
theorem statement. The second part of the theorem statement then follows by applying the proof of
Theorem 3 to the matrix Ω̃, noting that

n−2∥G̃−Kλ∥2F ≤ n−2∥G̃−G∥2F + n−2∥G−Kλ∥2F ≤ 2n−2∥G−Kλ∥2F = op(1)

by the triangle inequality and by combining (56) and (57) together.

Before proving Theorem 5, we require a lemma about the eigenfunctions of an operator whose kernel
is Hölder continuous.

Lemma 10. Suppose that K : [0, 1]2 → R is symmetric and Hölder([0, 1]2, β, L) continuous. Then
the eigenfunctions of the associated operator TK are Hölder([0, 1], β, L) continuous, and moreover
are uniformly bounded in L∞([0, 1]).
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Proof of Lemma 10. We begin by noting that for any function f ∈ L2([0, 1]), we have that∣∣TK [f ](x)− TK [f ](y)
∣∣ ≤ ∫ 1

0

|K(x, z)−K(y, z)| · |f(z)| dx

≤ L∥f∥1|x− y|β ≤ L∥f∥2|x− y|β ,
and therefore the image of the unit ball ∥f∥2 = 1 consists of Hölder([0, 1], β, L) continuous functions;
consequently, so are the eigenvectors. Moreover, we note that the image of such a ball gives functions
which are uniformly bounded in L∞([0, 1]); indeed, writing g = TK [f ], and picking any x ∈ [0, 1],
we have that

|g(x)| ≤ |g(x)− g(y)|+ |g(y)| for all y ∈ [0, 1]

and therefore by integrating against y we end up with

|g(x)| ≤
∫ 1

0

|g(x)− g(y)| dy +
∫ 1

0

|g(y)| dy ≤ L
∫ 1

0

|x− y|β dy + ∥g∥1 ≤ L+ 1

as ∥g∥1 ≤ ∥g∥2 = 1, and |x− y|β ≤ 1 for all x, y ∈ [0, 1].

Proof of Theorem 5. Without loss of generality, suppose that c1 = c2 = 1; otherwise, we can just
rescale the regularization constant ξ so that, up to constant scaling, the objective is the same as one
with c1 = c2 = 1. Now, recall that by the spectral theorem for self-adjoint operators and Lemma 10,
we can write

TW [f ] =

∞∑
i=1

µi(W )⟨f, ϕi⟩ϕi and W (l, l′) =

∞∑
i=1

µi(W )ϕi(l)ϕi(l
′)

where the latter sum converges in L2, the µi(W ) are sorted in monotone decreasing absolute value,
the (ϕi)i≥1 are orthonormal eigenfunctions which are Hölder([0, 1], β, L) and uniformly bounded in
L∞([0, 1]). We now want to study the minimizer of the function

∥TW − TL∥2HS + ξ∥TL∥1
over all positive kernels L, where we have phrased the problem entirely in terms of the associated
operators. To do so, we begin by writing

TL = TL∥ + TL⊥ where L∥(x, y) =

∞∑
n=1

µiϕn(x)ϕn(y),

for some µi ≥ 0, where L⊥ is symmetric, positive and orthogonal to L∥ in that L⊥[ϕ] = 0 for any
ϕ ∈ cl{span(ϕ1, ϕ2, . . .)}. We can then argue that any minimizer L must have L⊥ = 0. Indeed, we
have that by orthogonality of TL⊥ to both TW and TL∥ , we get the decomposition

∥TW − TL∥2HS = ∥TW − TL∥∥2HS + ∥TL⊥∥2HS

and so ∥TW − TL∥∥2HS ≤ ∥TW − TL∥2HS with equality if and only if TL⊥ = 0; and moreover
∥TL∥∥1 ≤ ∥TL∥1. As TL⊥ = 0, we can then show that the objective function equals

∞∑
i=1

(µi − µi(W ))2 + ξ

∞∑
i=1

µi.

To minimize this, we note that we can minimize each term in the sum over µi ≥ 0 by taking
µ̂i = (µi(W )− ξ)+. In particular, as the eigenvalues of W decay as O(i−(1/2+β)) [51], it follows
that for i ≥ N where N = O(ξ−2/(2+2β)), we have that µ̂i = 0. Consequently, we get that

L̂(x, y) =

N∑
i=1

µ̂iϕi(x)ϕi(y)

is the minimizing positive kernel. We now note that as the ϕi are uniformly bounded in L∞([0, 1]),
and the µ̂i are bounded above also, we can argue that L̂ will belong to some set Z≥0

d (A) for some
A sufficiently large and any d ≥ N , and consequently L̂ ∈ Z≥0 also. In particular, this means
that L̂ is the minimizer of the objective function over the set Z≥0. Finally, we then note that as the
eigenfunctions are Hölder and we have a finite sum of terms of the form µ̂iϕi(x)ϕi(y), this plus the
boundedness of the eigenfunctions will imply that L̂ is Hölder of exponent β also.
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F Proof of results in Section 3.2

In this section, given triangular arrays (Xni) and (Yni) for i ∈ In, n ≥ 1, we use the notation
Xn,i = (1 +Op(rn))Yn,i to be equivalent to saying that maxi∈In |Xni/Yni − 1| = Op(rn). Before
giving the proofs of Lemmas 1, 2 and 3, we require the following result.

Lemma 11. Suppose that Assumption 2 holds. Let g : [0, 1]2 → [0,∞] be a bounded measurable
function which is bounded away from zero, and define

Tn,i =
1

n− 1

∑
j∈[n]\{i}

aijg(λj), so E[Tn,i |λi] = ρn

∫ 1

0

W (λi, y)g(y) dy.

Then for all t ≥ 0 we have that

P
(∣∣∣ Tn,i

E[Tn,i |λi]
− 1

∣∣∣ ≥ t |λi) ≤ 2 exp
(−nE[Tn,i |λi]t2

8∥g∥∞(1 + t)

)
and whence that Tn,i = E[Tn,i |, λi](1 +Op((log n/nρn)

1/2)). Similarly, if we write

T̃n,i =
1

n− 1

∑
j∈[n]\{i}

(1− aij)g(λj), so E[T̃n,i |λi] =
∫ 1

0

(1− ρnW (λi, y))g(y) dy,

then T̃n,i = E[T̃n,i |, λi](1 +Op((log n/n)
1/2)).

To prove this result we use the method of exchangeable pairs to derive a concentration inequality.
Assuming that (X,X ′) is an exchangeable pair of random variables, and f is a measurable function
with E[f(X)] = 0, if we have an anti-symmetric function F (X,X ′) satisfying

E[F (X,X ′)|X] = f(X), v(X) :=
1

2
E
[∣∣{f(X)− f(X ′)}F (X,X ′)

∣∣ |X]
≤ Bf(X) + C,

for some constants B,C ≥ 0, then we get the concentration inequality [17, Theorem 3.9]

P
(
|f(X)| ≥ t) ≤ 2 exp

(
− t2

2C + 2Bt

)
. (58)

Proof of Lemma 11. We begin by noting that as g is assumed to be bounded away from zero, and
by Assumption 2 we assume that W is also bounded away from zero, there exists a constant c > 0
such that E[Tn,i|λi] ≥ cρn > 0 for all i ∈ [n], n ≥ 1. To derive the given bounds, we will use the
method of exchangeable pairs, working conditional on the λi at first in order to derive a concentration
inequality. By then using the above lower bound on E[Tn,i|λi], we will be able to obtain a bound
which holds unconditionally, and consequently get the claimed bound on Tn,i holding uniformly
across all the vertices.

To begin, let An,i denote the i-th row of the adjacency matrix An, and λn,−i := (λj)j ̸=i. We
construct an exchangeable pair

(
(λn,−i,An,i), (λ̃n,−i, Ãn,i)

)
as follows: we select an index J

uniformly from [n] \ {i}, redraw λ̃J ∼ U [0, 1] and ãiJ ∼ Bern(Wn(λi, λ̃J)) but otherwise we keep
the other entries of λ̃n and Ãn,i the same. With this, note that

1

E[Tn,i |λi]
E
[ ∑
j∈[n]\{i}

aijg(λj)−
∑

j∈[n]\{i}

ãijg(λ̃j)
∣∣∣λi,λn,−i,An,i

]
=

Tn,i
(n− 1)E[Tn,i |λi]

− 1,

and the associated variance term is of the form

v
(
λn,−i,An,i

)
=

1

(n− 1)E[T |λi]2
E
[( ∑

j∈[n]\{i}

{aijg(λj)− ãijg(λ̃j)}
)2 ∣∣∣λi,λn,−i,An,i

]
=

1

(n− 1)2E[T |λi]2
∑

j∈[n]\{i}

E
[{
aijg(λj)− a′ijg(λ′j)

}2
∣∣∣λi,λn,−i,An,i

]
,
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where (a′ij)ij and (λ′i)i≥1 are independent copies of (aij)ij and (λi)i≥1. To bound this last quantity,
we write

E
[{
aijg(λj)− a′ijg(λ′j)

}2
∣∣∣λi,λn,−i,An,i

]
= ∥g∥2∞E

[{
aij

g(λj)

∥g∥∞
− a′ij

g(λ′j)

∥g∥∞

}2 ∣∣∣λi,λn,−i,An,i

]
≤ 2∥g∥∞E

[
aijg(λj) + a′ijg(λ

′
j)
∣∣∣λi,λn,−i,An,i

]
,

where we used the fact the inequalities (a− b)2 ≤ 2(a2 + b2) ≤ 2(a+ b) for a, b ∈ [0, 1] to obtain
the last line. It therefore follows that

v
(
λn,−i,An,i

)
≤ 2∥g∥∞

(n− 1)E[Tn,i|λi]

( Tn,i
(n− 1)E[Tn,i|λi]

+ 1
)

from which we can apply the inequality stated in (58) to get the stated concentration inequality. As
E[Tn,i]|λi] ≥ cρn, we can conclude that

P
(∣∣∣ Tn,i

E[Tn,i |λi]
− 1

∣∣∣ ≥ t) ≤ 2 exp
( −cnρnt2

8∥g∥∞(1 + t)

)
for all i ∈ [n], from which taking a union bound allows us to conclude that Tn,i = E[Tn,i |λi](1 +
Op((log(n)/nρn)

1/2)). The same style of argument gives the claimed result when aij → 1− aij ,
noting that in this case one can instead argue that E[T̃n,i |λi] ≥ c′ for some constant c′ > 0 for all
i ∈ [n], n ≥ 1.

Proof of Lemma 1. We note that a vertex i is sampled with probability k/n, and any pair of vertices
(i, j) is sampled with probability k(k − 1)/n(n− 1), so the claimed result follows immediately.

Proof of Lemma 2. The formulae for fn(l, l′, 1) and fn(l, l′, 0) are given in Proposition 72 of [21].
It remains to derive the formula for g̃n(λi). For convenience, we denote s̃n = (log(n)/nρn)

1/2. To
continue, we note that in the proof of Proposition 72 of [21], it is shown that

P
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)
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))
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(
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)
,
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+
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n2E2W

)
·
(
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)
,

and as a particular consequence, it therefore follows that
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+
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(
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To begin in finding the formula for g̃n(λi), we note that

P
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)
= P

(
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)
+ P

(
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)
,

where the first term is given as above. The second term corresponds to the probability that the vertex
arises only through the negative sampling process, and so
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)
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where Av = {v ∈ V(S0(Gn)), u selected via negative sampling from v}. We then have that∣∣∣P( ⋃

v∈Vn\{u}

Av

∣∣∣Gn)− ∑
v∈Vn\{u}

P(Av | Gn)
∣∣∣ ≤ 1

2

∑
v,v′∈Vn\{u}

v′ ̸=v

P
(
Av ∩Av′ | Gn

)
≤

∑
v∈Vn\{u}

P
(
Av | Gn

)
· max
v′∈Vn\{u}

∑
v∈Vn\{v′,u}

P
(
Av |Av′ ,Gn

)
.

39



We begin by finding the asymptotic form of
∑

v∈Vn\{u} P(Av | Gn), where we find that∑
v∈Vn\{u}
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where we have used the formulae quoted at the beginning of the proof and Lemma 11. It remains to
examine the term
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∑
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P
(
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)
.

To do so, note that we can write

P
(
Av ∩Av′ | Gn

)
= P

(
v, v′ ∈ V(S0(Gn)) | Gn

)
P
(
B(l,Ugα(u | Gn)) ≥ 1 | Gn

)2
(1− auv)(1− auv′)

and so

P
(
Av |Av′ ,Gn

)
= P

(
v ∈ V(S0(Gn)) | v′ ∈ V(S0(Gn)),Gn

)
P
(
B(l,Ugα(u | Gn)) ≥ 1 | Gn

)
(1− auv).

It therefore follows that, using the results stated at the beginning of the proof,∑
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Combining all of the above together then gives that
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and so we get the stated formula for gn with sn = s̃n.

Proof of Lemma 3. The formulae for fn(l, l′, 1) and fn(l, l′, 0) are given in Proposition 74 of [21].
We also note that within the proof of Proposition 74 of [21], we have that
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where we again write s̃n = (log(n)/nρn)
1/2. To derive the corresponding formula for g̃n(l), we

begin by noting
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)
.

The first term is given above, so we focus on the second. Denoting Ai(u) = {ṽi = u} for i ≤ k + 1
and u ∈ Vn, and Bi(v|u) = {v selected via negative sampling from u}, we know that
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and moreover that as the Ai(v) are disjoint across all v ∈ Vn for each i fixed, we have that
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Combining the above two facts therefore gives∣∣∣P( k+1⋃
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To handle the intersection probabilities, we note that we can write (using the above formulae), for
indices i < j and v, v′, that
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Write En for the number of edges in Gn and degn(u) for the degree of the vertex u in Gn; then by
Proposition 61 of [21] we have that
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and we note that by Assumption 3 thatW (λu, ·) is bounded below away from zero (and above by one)
uniformly over all λu ∈ [0, 1]. To handle the P(Aj(v

′) |Ai(v), Gn) term, we note that by stationarity
of the random walk and the Markov property that, when j > i+ 1
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where in the last line we have used Lemma 11. We then note that as we have
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by the formulae stated above and Lemma 11, we can therefore conclude by combining the above
bounds that
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as desired.

Proof of Theorem 6. We begin by highlighting that for the given model, we have that
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Table 2: Summary statistics of Cora, CiteSeer and PubMedDiabetes datasets.
Dataset Nodes Edges Features Classes

Cora 2708 5429 1433 7
CiteSeer 3312 4732 3703 6
PubMed 19717 44338 500 3

Consequently, as a result of Proposition 2 viii), we know that we can obtain the minimizing kernel
K∗

n which appears in the convergence theorem Theorem 2 as follows: we obtain a matrix K̃ ∈ Rk×k

obtained via minimizing the convex function

− 1

κ2

∑
i,j

{
2kc1 · (pδij + q(1− δij)) log σ(K̃ij) + 2l(k + 1) log σ(−K̃ij)

}
+ ξc2
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K̃ii

= − 1
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2kc1 · (pδij + q(1− δij)) log σ(K̃ij) + 2l(k + 1) log σ(−K̃ij)

}
+ ξc2∥K̃∥∗

over all positive semi-definite matrices K̃. The desired convergence then follows by applying
Theorem 2.

G Additional experimental details

We now describe the hyperparameter and training details of each of the methods used in the experi-
ments; for all the methods, we used the Stellargraph3 implementation of the architecture [20]. The
code used to run the experiments is available on GitHub4. Experiments were run on a cluster, using
for each experiment 4 cores of a Intel Xeon Gold 6126 2.6 Ghz CPU, and a variable amount of RAM
depending on the method and dataset used. In total, the experiments carried out used approximately
100k CPU hours in total (including preliminary experiments). Table 2 gives a summary of the features
of the Cora, CiteSeer and PubMedDiabetes datasets used in the experiments.

node2vec - We train node2vec with p = q = 1 for 5 epochs, using 50 random walks of length 5
per node to form as subsamples, and train using batch sizes of 64. We use an Adam algorithm with
learning rate 10−3. For the regularization, we use tf.regularizers.l2 with the specified regularization
weight as the embeddings regularizer argument to the Embeddings layer used in the node2vec
implementation.

Unlike as reported in [26], we found that using the Adam algorithm with learning rate 10−3 lead to
far better performance than stochastic gradient descent with rates of either this magnitude or those
suggested in e.g. the experiments performed within the GraphSAGE paper (of 0.2, 0.4 or 0.8). In
our preliminary experiments, we generally found that varying the learning rates of the Adam method
rarely lead to significant changes in performance and kept any observed trends relatively stable, and
so we did not vary these significantly throughout.

GraphSAGE - For GraphSAGE, we used a two layer mean-pooling rule with neighbourhood
sampling sizes of 10 and 5 respectively; we note that using 25 and 10 samples as suggested in [26]
were computationally prohibitive for all the experiments we wished to carry out. Otherwise, we use
the node2vec loss with 10 random walks of length 5 per node, use a batch size of 256 for training,
and train for 10 epochs.

GCN - To train a GCN in an unsupervised fashion, we parameterize the embeddings in the usual
node2vec loss through a two layer GCN with ReLU activations, with intermediate layer sizes 256
and 256. For the node2vec loss, we instead use 10 random walks of length 5 per node, use a batch
size of 256 during training, and train the loss for 10 epochs.

DGI - For DGI, we use the same parameters as specified in [64]. We use 256 dimensional embeddings
only; we found in our preliminary experiments the performance change in using a 512 dimensional
embedding was negligible, and that on the PubMedDiabetes dataset, the memory usage required to

3We highlight that the Stellargraph package is licsensed under the Apache License 2.0.
4https://github.com/aday651/embed-reg
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learn a 256 dimensional embedding was substantial (above 32GB of RAM needed). Otherwise, we
train a one dimensional GCN with ReLU activation using the DGI methodology, for 100 epochs
with an early stopping rule with a tolerance of 20 epochs, a batch size of 256, and used Adam with
learning rate 10−3.

Classifier details - Given the embeddings learned in an unsupervised fashion, there is then the need
to build a classifier for both the node classification and link prediction tasks. To do so, we use logistic
regression, namely the LogisticRegressionCV method from the scikit-learn Python package. The
cross validation was set to use 5-folds and a ‘one vs rest’ classification scheme. Otherwise we used the
default settings, except for a larger tolerance of the number of iterations for the BFGS optimization
scheme.
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