
Debiasing Graph Neural Networks via Learning
Disentangled Causal Substructure

Shaohua Fan1,2∗, Xiao Wang1, Yanhu Mo1, Chuan Shi1†, Jian Tang2,3,4 †

1Beijing University of Posts and Telecommunications, China
2 Mila - Québec AI Institute, Canada

3 HEC Montréal, Canada
4 CIFAR AI Research Chair

{fanshaohua, xiaowang, moyanhu, shichuan}@bupt.edu.cn, jian.tang@hec.ca

Abstract

Most Graph Neural Networks (GNNs) predict the labels of unseen graphs by learn-
ing the correlation between the input graphs and labels. However, by presenting
a graph classification investigation on the training graphs with severe bias, sur-
prisingly, we discover that GNNs always tend to explore the spurious correlations
to make decision, even if the causal correlation always exists. This implies that
existing GNNs trained on such biased datasets will suffer from poor generalization
capability. By analyzing this problem in a causal view, we find that disentangling
and decorrelating the causal and bias latent variables from the biased graphs are
both crucial for debiasing. Inspired by this, we propose a general disentangled
GNN framework to learn the causal substructure and bias substructure, respectively.
Particularly, we design a parameterized edge mask generator to explicitly split the
input graph into causal and bias subgraphs. Then two GNN modules supervised
by causal/bias-aware loss functions respectively are trained to encode causal and
bias subgraphs into their corresponding representations. With the disentangled
representations, we synthesize the counterfactual unbiased training samples to
further decorrelate causal and bias variables. Moreover, to better benchmark the
severe bias problem, we construct three new graph datasets, which have control-
lable bias degrees and are easier to visualize and explain. Experimental results well
demonstrate that our approach achieves superior generalization performance over
existing baselines. Furthermore, owing to the learned edge mask, the proposed
model has appealing interpretability and transferability.3

1 Introduction

Graph Neural Networks (GNNs) have exhibited powerful performance on graph data with various
applications [17, 35, 13, 9, 8]. One major category of applications are the graph classification task,
such as molecular graph property prediction [15, 20, 44], superpixel graph classification [14], and
social network category classification [46, 44]. It is well known that graph classification is usually
determined by a relevant substructure, but not the whole graph structure [43, 26, 45]. For example,
for MNIST superpixel graph classification task, the digit subgraphs are causal (i.e., deterministic) for
labels [36]. The mutagenic property of a molecular graph depends on the functional groups (i.e.,
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nitrogen dioxide (NO2)), rather than the irrelevant patterns (i.e., carbon rings) [27]. Therefore, it is a
fundamental requirement for GNNs to identify causal substructures, so as to make correct prediction.

Ideally, when the graphs are unbiased, i.e., only the causal substructures are related with the graph
labels, the GNNs are able to utilize such substructure to predict the labels. However, due to the
uncontrollable data collection process, the graphs are inevitably biased, i.e., existing meaningless
substructures spuriously correlates with labels. Taking a colored MNIST superpixel graph dataset in
Sec. 3.1 as an example (illustrated in Fig. 1(a)), each category of digit subgraphs mainly correspond
to one kind of color background subgraphs, e.g., digit 0 subgraph is related with red background
subgraph. Therefore, the color background subgraph will be treated as bias information, which highly
correlates with labels but does not determines them in the training set. Under this situation, will
GNNs still stably utilize the causal substructure to make decision?

To investigate the impact of bias on GNNs, we conduct an experimental investigation to demonstrate
the impact of bias (especially in the severe bias scenarios) on the generalization capability of GNNs
(Sec. 3.1). We find that GNNs actually utilize both bias and causal substructures to make prediction.
However, with severer bias correlation, even bias substructure still could not exactly determine labels
like causal substructure, GNNs majorly utilize bias substructure as shortcuts to make prediction,
causing a large generalization performance degradation. Why this happens? We analyze the data-
generating process and model prediction mechanism behind the graph classification using a causal
graph (Sec. 3.2). The casual graph illustrates that the observed graphs are generated by the causal and
bias latent variables and existing GNNs could not distinguish the causal substructure from entangled
graphs. How can we disentangle the causal and bias substructures from observed graphs, so that
GNNs can only utilize the causal substructures to make stable prediction when severe bias appears?

To address the question, two challenges need to be faced. 1) How to identify the causal substructure
and bias substructure in the severe biased graphs? In the severe bias scenarios, bias substructure will
be “easier to learn” for GNNs and finally dominate the prediction. Using the normal cross-entropy
loss, like DIR [39], could not fully capture such aggressive property of bias. 2) How to extract
the causal substructure from an entangled graph? The statistically causal substructure is usually
determined by the global property of the entire graph population, rather than a single graph. When
extracting causal substructure from a graph, we need to establish the relations among all the graphs.

In this paper, we propose a novel debiasing framework for GNNs via learning Disentangled Causal
substructure, called DisC. Given an input biased graph, we propose to explicitly filter edges into
causal and bias subgraphs by a parameterized edge mask generator, whose parameters are shared
across entire graph population. As a result, the edge masker is naturally capable to specify the
importance for each edge and extract causal and bias subgraphs from a global view of the entire
observations. Then, a “casual”-aware (weighted cross-entropy) loss and a “bias”-aware (generalized
cross-entropy) loss are respectively utilized to supervise two functional GNN modules. Based on
the supervision, the edge mask generator could generate corresponding subgraphs and the GNNs
could encode corresponding subgraphs into their disentangled embeddings. With the disentangled
embeddings, we randomly permute the latent vectors extracted from different graphs to generate
more unbiased counterfactual samples in embedding space. The new generated samples still contain
both causal and bias information, while their correlation has been decorrelated. In this time, there is
only correlation between causal variables with labels, so that the model could concentrate on the true
correlation between the causal subgraphs and labels. Our major contributions are as follows:

• To our knowledge, we first study the generalization problem of GNNs in a more challenging yet
practical scenario, i.e., the graphs are with severe bias. We systematically analyze the bias impact
on GNNs from both experimental study and causal analysis. We find that the bias substructure,
compared with causal substructure, is much easier to dominate the training of GNNs.

• To debias GNNs, we develop a novel GNN framework for disentangling causal substructure,
which is flexible to build upon various GNNs for improving generalization ability while enjoying
inherent interpretability, robustness and transferability.

• We construct three new datasets with various properties and controllable bias degrees, which can
better benchmark the new problem. Our model outperforms the corresponding base models with
a large margin (from 4.47% to 169.17% average improvements). Various investigation studies
demonstrate that our model could discover and leverage causal substructure for prediction.
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2 Related Works

Generalization of GNNs in wild environments. Most existing GNN methods are proposed under
the IID hypothesis, i.e., training and testing set are independently sampled from the identical
distribution [34, 17, 35, 13, 24]. However, in reality, thus ideal assumption is hard to be satisfied.
Recently, several methods have been proposed to improve the generalization ability of GNNs in
wild OOD environments. Several works [29, 7, 38] study the OOD problem of node classification.
For OOD graph classification task, StableGNN [6] propose to learn the stable causal relationship in
graphs. OOD-GNN [22] propose to constrain each dimension of learned embedding to be independent.
DIR [39] discovers the invariant rationales for generalizing GNNs. Although they have achieved
better OOD performance, they are not designed for the datasets with severe bias, which is more
challenging for guaranteeing the generalization ability of GNNs.

Disentangled graph neural networks. Recently, there are a couple of methods that study the
disentangled GNNs. DisenGCN [28] utilizes neighbourhood routing mechanism to divide the
neighbours of the node into several mutually exclusive parts. IPGDN [25] promotes DisenGCN by
constraining the different parts of the embedding feature to be independent. DisenGCN and IPGDN
are node-level disentanglement, thus FactorGCN [42] considers the whole graph information and
disentangles the target graph into several factorized graphs. Despite results of the previous works,
they do not consider disentangling the causal and bias information for graphs.

General debiasing methods. Recently, debiasing problem has drawn much attention in machine
learning community [16, 23, 33, 1, 2, 11]. One category of these methods is pre-defining a certain
bias type explicitly to mitigate [16, 23, 33, 1, 37]. For example, Wang et al. [37] and Bahng et
al. [1] design a texture- and color-guided model to adversarially train a debiased neural network
against the biased one. Instead of defining certain types of bias, recent approaches [30, 5, 21] rely
on the straightforward assumption that models are prone to exploit the bias as shortcuts to make
prediction [10]. In the line with the recent studies, our study belongs to the second category. However,
most of existing methods are designed for image datasets and could not effectively extract causal
substructure from graph data. Distinctly, we first study the severe bias problem on graph data, and
our method could effectively extract causal substructure from graph data.

(a) Examples of graphs in CMNIST-75sp. (b) Performance of GNNs.

Figure 1: Example graphs of CMNIST-75sp and the performance of GNNs on this dataset.

3 Preliminary Study and Analysis

In this section, we first illustrate the existing GNNs tend to exploit the bias substructure as shortcuts
for prediction through a motivating experiment. Then we analyze the prediction process of GNNs in
causal view. Based on this causal view, it motivates our solution to relieve the impact of bias.

3.1 Motivating Example

To measure the generalization ability of GNNs with the effect of bias, we construct a graph classifica-
tion dataset with controllable bias degrees, called CMNIST-75sp. We first construct a biased MNIST
image dataset like [1], where each category of digit highly correlates with a pre-defined color in their
background. For example, in the training set, 90% of 0 digits are with red background (i.e., biased
samples), and remaining 10% images are with random background color (i.e., unbiased samples),
whose the bias degree is 0.9 in this situation. We consider four bias degrees {0.8, 0.85, 0.9, 0.95}.
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For the testing set, we construct both biased testing set and unbiased testing set. The biased testing
set has the same bias degree with training set, aiming to measure the extent of models relying on
bias. The unbiased testing set, where the digit labels uncorrelate with the background colors, aims to
test whether the model could utilize the inherent digit signals for prediction. Note that training set
and testing set have the same pre-defined color set. Then, we convert the biased MNIST images into
superpixel graphs with at most 75 nodes each graph using [18], where the edges are constructed by
the KNN method based on the 2D coordinates of superpixels and node features are the concatenation
of coordinates and average color of superpixels. Each graph is labeled by its digit class, so that its
digital subgraph is deterministic for label and background subgraph is spuriously correlated with
labels but not deterministic. The examples of graphs are illustrated in Fig. 1(a).

We perform three popular GNN methods: GCN [17], GIN [41], and GCNII [3] on CMNIST-75sp
and the results are shown in Fig. 1(b). The same color of dashed line and solid line represent the
results of the corresponding methods on the biased testing set and the unbiased testing set respectively.
Overall, the GNNs achieve much better performance on biased testing set than unbiased testing set.
The phenomenon indicates that although GNNs could still learn some causal signals for prediction,
the unexpected bias information is also being utilized for prediction. More specifically, with bias
degree becoming larger, the performance of GNNs on biased testing set is increased and the value
of accuracy is nearly in line with the bias degree, while the performance on unbiased testing drops
dramatically. Hence, although causal substructure could determine labels perfectly, in severe bias
scenarios, the GNNs lean to utilize the easier to learn bias information to make prediction rather than
the inherent causal signals, and bias substructure will finally dominate the prediction.

BB

C

(a) SCM of the union of the
data generation and the existing
GNNs’ prediction process.

C B

(b) SCM of our debiasing GNN
method.

Figure 2: SCMs. Grey and white variables represent unobserved and observed variables, respectively.

3.2 Problem Analysis

Debiasing GNNs for unbiased prediction requires understanding the natural mechanisms of graph
classification task. We present a causal view of the union of the data-generating process and the model
prediction process behind the task. Here we formalize the causal view as a Structure Causal Model
(SCM) or causal graph [12, 31] by inspecting on the causalities among five variables: unobserved
causal variable C, unobserved bias variable B, observed graph G, graph embedding E, and ground
truth label / prediction Y 4. Fig. 2(a) illustrates the SCM, where each link denotes a causal relationship.

• C → G ← B. The observed graph data is generated by two unobserved latent variables: the
causal variable C and the bias variable B, such as digit subgraphs and background subgraphs in
the CMNIST-75sp dataset. And all bellow relations are illustrated by CMNIST-75sp.

• C → Y . This link means that the causal variable C is the only endogenous parent to determine
the generation of ground-truth label Y . For example, C is the oracle digit subgraph, which exactly
explains why the label is labeled as Y .

• C ⇠⇢ B. This link indicates the spurious correlation between C and B. Such probabilistic
dependencies is usually caused by the direct cause or unobserved confounder [32]. Here we do
not distinguish these scenarios and only observe the spurious correlation between B and C, such
as the spurious correlation between the color background subgraphs and digit subgraphs.

4We use variable Y for both the ground-truth labels and prediction, as they are optimized to be the same.
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• G→ E → Y . Existing GNNs usually learn the graph embedding E based on the observed graph
G and make the prediction Y based on the learned embedding E.

According to the SCM, GNNs will utilize both information to make prediction. As bias substructure
(e.g., background subgraph) usually has simpler structure than meaningful causal substructure (e.g.,
digit subgraph), if GNN utilizes such simple substructure, it could achieve low loss very fast. Hence,
GNN inclines to utilizes bias information when most graphs are biased. Based on the SCM in
Fig. 2(a), according to d-connection theory [31] (see App. A): two variables are dependent if they are
connected by at least one unblocked path, we could find two paths that would induce the spurious
correlation between the bias variable B and label Y : (1) B→ G→ E→ Y and (2) B↔ C→ Y.
To make the prediction Y being uncorrelated with the bias B, we need to intercept the two unblocked
paths. For this purpose, we propose to debias GNNs in causal view, as in Fig. 2(b).

• C ← G→ B and C → Y . To intercept the path (1), we should disentangle the latent variables C
and B from the observed graph G and make prediction only based on the causal variable C.

• C ⇠��HH−− ⇢ B. To intercept the path (2), as we cannot change the link between C and Y , one
possible solution is to make C and B uncorrelated.

4 Methodology

Motivated by the above causal analysis, in this section, we present our proposed debiasing GNN
framework DisC, to remove the spurious correlation. The overall framework is shown in Fig. 3. First,
an edge mask generator is learnt to mask the edges of original input graphs into causal subgraphs
and bias subgraphs. Second, two separate GNN modules with their corresponding masked subgraphs
are trained to encode corresponding causal substructure and bias substructure into disentangled
representations, respectively. Last, after the disentangled representations are well-trained, we permute
the bias representations among the training graphs to generate counterfactual unbiased samples, so
that the correlation between causal representations and bias representations is removed.
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Figure 3: The overall framework of DisC.

4.1 Causal and Bias Substructure Generator

Given a mini-batch of biased graphs G = {G1,⋯, Gn}, our idea is that: we take a collection of graph
instances and design a generative probabilistic model to learn to mask the edges into causal subgraph
or bias subgraph. Particularly, given a graph G = {A,X}, where A is the adjacency matrix and X is
the node feature matrix, we utilize a multi-layer perceptron (MLP) upon the concatenation of node
features xi of node i and xj of node j to measure the importance of edge (i, j) for causal subgraph:

αij = MLP([xi,xj]). (1)

Then a sigmoid function σ(⋅) is employed to project αij into the range of (0,1), which indicates the
probability of edge (i, j) being the edge in the causal subgraph as follows:

cij = σ(αij). (2)
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Naturally, we could get the probability of edge (i, j) being the edge in the bias subgraph by:
bij = 1 − cij . Now we could construct the causal edge mask Mc = [cij] and bias edge mask
Mb = [bij]. Finally, we decompose the original graph G into causal subgraph Gc = {Mc ⊙A,X}
and bias subgraph Gb = {Mb ⊙A,X}. Intuitively, the edge mask could highlight different part of
structure information of original graphs, thus GNNs built on the different subgraphs could encode
different parts of graph information. Moreover, the mask generator has two advantages. (1) Global
view: In individual graph level, the mask generator (i.e., MLP), whose parameters are shared by
all the edges in a graph, take a global view of all the edges in a graph, which enables us to identify
community in graph. It is well known that the effect of an edge cannot be judged independently,
because edges usually collaborate with each other, forming a community, to make prediction. Thus,
it is critical to evaluate an edge in a global view. In whole graph population level, the mask generator
takes a global view of all the graphs in the training set, which enables us to identify causal/bias
subgraph. Particularly, as the causal/bias is the statistical information in the population level, it
is necessary to view all the graphs to identify the causal/bias substructure. Considering both such
coalition effects and population-level statistical information, the generator is able to measure the
importance of edges more accurately. (2) Generalization: The mask generator can generalize the
mechanism of mask generation to new graphs without retraining, so it is capable and efficient to
prune unseen graphs.

4.2 Learning Disentangled Graph Representations

Given Gc and Gb, how to ensure they are causal subgraph and bias subgraph, respectively? Inspired
by [21], our approach simultaneously trains a pair of GNNs (gb, gc) with linear classifiers (Cb, Cc)
as follows: (1) Motivated by the observation in Sec. 3.1 that bias substructure is easier to learn, we
utilize a bias-aware loss to train a bias GNN gb and a bias classifier Cb and (2) in contrast, we train a
causal GNN gc and a causal classifier Cc on the training graphs that the bias GNN struggles to learn.
Next, we would present each component in detail.

As shown in Fig. 3, GNN gc and gb embed the corresponding subgraphs into causal embedding
zc = gc(Gc; γc) and bias embedding zb = gb(Gb; γb), respectively, where γ is the parameters of
GNNs. Subsequently, concatenated vector z = [zc; zb] is fed into linear classifiers Cc and Cb to
predict the target label y. To train gb and Cb as bias extractor, we utilize the generalized cross entropy
(GCE) [47] loss to amplify the bias of the bias GNN and classifier:

GCE(Cb(z;αb), y) =
1 − C

y
b (z;αb)q
q , (3)

where Cb(z;αb) and Cy
b (z;αb) are softmax output of the bias classifier and its probability belonging

to the target category y, respectively, and α is the parameters of classifier. Here q ∈ (0, 1] is a
hyperparameter that controls the degree of amplifying bias. Given θb = [γb, αb], the gradient of the
GCE loss up-weights the gradient of the standard cross entropy (CE) loss for the samples with a high
confidence Cy

b of predicting the correct target category as follows:
∂GCE(Cb(z;αb), y)

∂θb
= (Cy

b )
q ∂CE(Cb(z;αb), y)

∂θb
. (4)

Therefore, compared with CE loss, GCE loss will amplify the gradients of θb on samples by the
confidence score (Cy

b )
q. Based on our observation that the bias information is usually easier to be

learned, so the biased graphs will have higher (Cy
b )

q than unbiased graphs. Therefore, the model
gb and Cb trained by GCE loss will focus on bias information and finally get the bias subgraph.
Note that, to ensure that Cb predicts target labels mainly based on this zb, the loss from Cb is not
backpropagated to gc, i.e., only update θb in Eq. (4), and vice versa.

Meanwhile, we also train a causal GNN simultaneously with the weighted CE loss. The graphs with
high CE loss from Cb can be regarded as the unbiased samples compared with the samples with low
CE loss. In this regard, we could obtain the unbias score of each graph as

W (z) = CE(Cb(z), y)
CE(Cc(z), y) + CE(Cb(z), y)

. (5)

Large value of W implies the graph is an unbiased sample, hence we could use these weights to
reweight the loss of these graphs to train gc and Cc, enforcing them to learn the unbiased information.
Thus, the objective function for learning disentangled representation is:

LD =W (z)CE(Cc(z), y) +GCE(Cb(z), y). (6)

6



4.3 Counterfactual Unbiased Sample Generation

Until now, we have achieved the first goal analyzed in Sec. 3.2 that is the disentanglement of
causal and bias substructures. Next, we will show how to achieve the second goal that makes the
causal variable zc and bias variable zb uncorrelated. Although we have disentangled causal and bias
information, they are disentangled from the biased observed graphs. Hence, there will exist statistical
correlation between causal and bias variables inheriting from the biased observed graphs. To further
decorrelate zc and zb, according to the causal relation of data-generating process: C → G← B, we
propose to generate the counterfactual unbiased samples in embedding space by swapping zb. More
specifically, we randomly permute bias vectors in each mini-batch and obtain zunbiased = [zc; ẑb],
where ẑb represents the randomly permuted bias vectors of zb. As zc and ẑb in zunbiased are randomly
combined from different graphs, they will have much less correlation than z = [zc; zb] where both
are from the same graph. To make gb and Cb still focus on the bias information, we also swap label y
as ŷ along with ẑb, so that the spurious correlation between ẑb and ŷ still exists. With the generated
unbiased samples, we utilize the following loss function to train two GNN modules:

LG =W (z)CE(Cc(zunbiased), y) +GCE(Cb(zunbiased), ŷ), (7)

Together with the disentanglement loss, total loss function is defined as:

L = LD + λGLG, (8)

where λG is a hyperparameter for weighting the importance of generation component. Moreover,
training with more diverse samples would also benefit with better generalization on unseen testing
scenarios. Our approach is summarized in App. B. Note that, as we need well-disentangled represen-
tations to generate the high-quality unbiased samples, in the early stage of training, we only train the
model with LD. After certain epochs, we train the model with L.

5 Experiment

Datasets. We construct three datasets with various properties and bias ratios to benchmark this new
problem, where the datasets have clear causal subgraphs making the results explainable. Follow-
ing CMNIST-75sp introduced in Sec. 3.1, we use the similar way to construct CFashion-75sp and
CKuzushiji-75sp datasets based on the Fashion-MNIST [40] and Kuzushiji-MNIST [4] datasets. As
the causal subgraphs of these two datasets are more complicated (fashion product and hiragana char-
acters), they are more challenging. Due to the page limits, here we set bias degrees as {0.8, 0.9, 0.95}.
We report the main results on unbiased test sets. Details are in App. C.1.

Baselines and experimental setup. As DisC is a general framework which could be built on various
base GNN models, we select three popular GNNs: GCN [17], GIN [41], and GCNII [3]. The
corresponding models are termed as DisCGCN , DisCGIN and DisCGCNII , respectively. Hence,
base models are the most straight baselines. Another kind of baselines are the causal-inspired GNN
method DIR [39] and StableGNN [6]. We also compare against a general debiasing method LDD [21]
by replacing its encoder with GNNs. Graph Pooling method DiffPool [44] and graph disentangling
method FactorGCN [42] are also compared. To keep fair comparison, our model uses the same GNN
architecture and hyperparameters with the corresponding base model. All the experiments are run 4
times with different random seeds and we report the accuracy and the standard error. More details are
in App. C.2.

5.1 Quantitative Evaluation

Main results. The overall results are summarized in Table 1, and we have following observations:

(1) DisC has much better generalization ability than base models. DisC outperforms the corre-
sponding base model consistently with a large margin. With heavier biases, our model achieves
larger improvements over base models. Specifically, for CMNIST-75sp, CFashion-75sp and
CKuzushiji-75sp with smaller bias degree (i.e., 0.8), our model achieves 40.02%, 4.47% and
29.82% average improvements over corresponding base models, respectively. Surprisingly, with
severer biases (0.9 and 0.95), DisC achieves 169.17%, 14.67% and 49.35% average improvements
over base models on three datasets, respectively. It indicates that the proposed method is a general
framework helping existing GNNs against the negative impact of bias.
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(2) DisC significantly outperforms existing debiasing methods. We notice that DIR could not achieve
satisfying results. The reason is that DIR utilizes CE loss to extract bias information, which
could not fully capture the property of bias in severe bias scenarios. And DIR sets one fixed
threshold to spilt subgraphs, which is suboptimal. StableGNN outperforms their base model
DiffPool and achieve competitive results, indicating the effectiveness of their proposed causal
variable distinguishing regularizer. However, their framework adjusts data distribution based on
the original dataset, it is hard to generate unbiased distribution when the unbiased samples are
scarce. DisC could generate more unbiased samples based on the disentangled representations.
Moreover, LDD is a general debiasing method which is not designed for graph data. DisC
outperforms corresponding LDD variants with average 23.15%, indicating that the seamless joint
of global-population-aware edge masker with debiasing disentangle framework is very effective.

Table 1: Graph classification accuracy evaluated on unbiased testing sets, which have same color
(bias) set with training set. The best performance within each base model variant is in bold.

Dataset CMNIST-75sp CFashion-75sp CKuzushiji-75sp
Bias 0.8 0.9 0.95 0.8 0.9 0.95 0.8 0.9 0.95

FactorGCN [42] 72.30±1.18 62.35±5.07 42.50±4.91 61.23±1.11 53.50±1.29 45.78±2.40 42.87±1.19 32.35±2.79 23.87±0.12
DiffPool [44] 73.79±0.02 66.45±0.78 47.12±1.04 62.82±0.53 57.50±0.39 50.86±0.20 45.46±0.65 36.18±0.19 27.45±0.26
DIR [39] 9.98±0.33 9.96±0.23 10.03±0.27 13.02±1.92 12.80±1.67 11.98±1.41 10.35±0.32 10.72±0.27 10.59±0.46
StableGNN [6] 77.65±1.64 68.87±1.74 51.33±0.87 64.03±0.29 58.26±0.09 51.46±0.39 49.41±0.09 39.30±0.12 28.26±0.14
LDDGCN [21] 64.95±1.22 56.65±2.18 46.83±2.88 63.85±1.17 64.30±0.89 62.28±0.48 42.38±0.33 38.75±0.49 33.08±0.59
LDDGIN [21] 64.88±1.45 50.59±1.07 31.23±2.48 64.65±0.63 57.10±0.43 53.38±0.47 37.83±0.54 28.97±0.18 22.13±0.34
LDDGCNII [21] 78.03±0.66 69.53±0.96 51.05±3.87 50.63±1.79 54.09±2.54 57.93±0.88 48.70±1.98 41.59±1.07 33.93±0.71
GCN [17] 50.43±4.13 28.97±4.4 13.50±1.38 63.60±0.53 57.22±0.93 47.69±0.42 38.45±1.1 28.35±0.79 20.70±0.88
DisCGCN 82.60±0.93 78.14±2.14 63.47±5.65 66.85±1.11 65.33±4.70 63.93±1.50 55.53±2.29 48.13±2.59 36.63±1.73
GIN [41] 57.75±0.78 36.78±5.55 16.04±1.14 64.25±0.46 58.03±0.40 49.74±0.60 41.83±0.78 30.09±0.87 21.18±1.63
DisCGIN 82.10±1.50 74.90±1.81 58.58±4.24 67.10±1.07 59.90±1.31 55.80±0.36 55.18±1.00 41.75±0.81 30.25±1.63
GCNII [3] 69.70±1.73 57.68±1.68 41.00±3.75 66.68±0.59 60.58±0.28 53.18±0.08 48.53±0.25 36.23±0.20 25.60±0.76
DisCGCNII 79.50±2.48 76.00±1.90 60.54±5.33 66.47±1.77 65.48±0.70 61.75±0.27 54.90±1.30 44.73±1.55 36.95±0.70

Ablation studies. To validate the importance of each module in our method, in Fig. 4, we conduct
ablation studies on our variants (w.o. G means without the sample generation module) and the
related variants of LDD. The major difference between DisC/w.o. G with LDD /w.o. G is the edge
mask module. In most cases, DisC/w.o. G significantly outperforms LDD /w.o. G, indicating the
necessity of learning edge mask for graph data. And DisC which has counterfactual sample generation
module could further boost the performances based on the disentangled embeddings of DisC/w.o. G.
However, LDD seldomly outperforms LDD /w.o. G or even achieves worse performances. That is,
generating high-quality counterfactual samples needs well-disentangled causal and bias embeddings.
If embeddings are not well-disentangled, counterfactual samples may act as noisy samples, which
would prevent models from achieving further improvement. The edge masker could help the model
generate well-disentangled embeddings, which is crucial for overall performance.

(a) CMNIST-75sp (b) CFashion-75sp (c) CKuzushiji-75sp

Figure 4: Ablation studies of the DisC vs. LDD average over three bias degrees of each dataset.

Robustness on unseen bias. Table 2 reports the results of DisC compared with its corresponding
base models on testing set with unseen bias, i.e., the pre-defined color (bias) sets of training set and
testing set are disjoint. The performances of base models further drop compared with the results
on seen bias scenario in Table 1. However, our model still achieves very stable performances, fully
demonstrating the generalization ability of our model on agnostic bias scenario.

Hyperparameter experiments Fig. 5 is the hyperparameter experiments of the degree of amplifying
bias q in GCE loss and the importance of generation component λG. For q, we fix λG = 10 and
vary q from {0.1, 0.3, 0.5, 0.7, 0.9}. For λG, we fix q = 0.7 and vary λG from {1, 5, 10, 15}. From
the results, we can see that our model achieves stable performance across different values of q and
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Table 2: The results on unseen unbiased testing sets, i.e., the color has not been seen in training set.
Dataset CMNIST-75sp CFashion-75sp CKuzushiji-75sp

Bias 0.8 0.9 0.95 0.8 0.9 0.95 0.8 0.9 0.95
DIR 10.38±0.28 10.14±0.40 9.77±0.18 16.77±1.71 16.51±3.20 12.59±1.61 10.48±0.34 10.33±0.75 10.59±0.95
GCN 36.88±5.16 23.07±4.07 11.88±0.33 59.33±0.55 53.65±0.47 45.60±1.06 36.35±0.48 27.88±0.94 19.95±0.67
DisCGCN 82.73±1.31 77.70±0.87 65.48±0.76 67.9±1.45 68.28±0.18 63.77±1.37 57.80±2.38 51.60±0.41 41.60±3.94
GIN 48.93±2.99 34.95±0.86 14.53±0.97 58.88±0.57 53.80±0.52 48.43±0.69 39.25±0.57 30.75±1.45 22.35±0.86
DisCGIN 77.80±1.33 73.00±0.61 58.80±1.66 67.15±0.79 59.98±0.62 51.70±0.34 55.47±0.98 43.20±1.36 31.33±1.71
GCNII 53.50±6.23 45.52±2.26 32.6±5.66 58.85±1.89 53.98±0.85 46.97±1.38 39.93±0.88 30.33±1.17 23.09±1.83
DisCGCNII 79.65±2.13 76.63±1.38 60.00±5.66 60.50±2.77 63.05±2.25 61.78±1.60 56.23±3.45 49.10±2.05 41.05±0.11

λG. When q = 0.1, it means the GCE loss will nearly reduce to normal CE loss. We can see the
performance of DisCGCN is worse than other scenarios, demonstrating the effectiveness of utilizing
GCE loss.

(a) q (b) λG

Figure 5: The hyperparameter experiments of q and λG

5.2 Qualitative Evaluation

Visualization of edge mask. To better illustrate the significant causal and bias subgraphs extracted
by DisCGCN , we visualize the original images, original graph, and corresponding causal subgraph
and bias subgraph of CMNIST-75sp with 0.9 bias degree in Fig. 6, where the width of edge represents
the value of learned weight cij or bij . Fig. 6(a) shows the visualization results of testing graphs
with the bias (color) that has been seen in the training set. As we can see, our model could discover
the causal subgraphs where the most salient edges are in the digital subgraphs. With these causal
subgraphs that highlight the structure information of digital, the GNNs will more easily extract this
causal information. Fig. 6(b) shows the visualization results of testing graphs with unseen bias.
According to the visualization, our model could still discover the causal subgraph outline, indicating
our model could recognize causal subgraphs, whether the bias is seen or unseen. The visualization
results of CFashion-75sp and CKuzushiji-75sp are shown in App. D.

Figure 6: Visualization of subgraphs extracted by DisC. The width of edge is edge weight cij or bij .

Projection of disentangled representation. Fig. 7 shows the projection of latent vectors zc and zb
extracted from the causal GNN gc and bias GNN gb of DisCGCN , respectively, using t-SNE [19] on
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(a) zc labeled by digit. (b) zc labeled by color. (c) zb labeled by digit. (d) zb labeled by color.

Figure 7: Visualization of zc and zb with colors labeled by the digit and bias (color) labels. We observe
that zc and zb are well clustered according to the groundtruth labels and bias labels, respectively.

CMNIST-75sp. Fig. 7 (a-b) are the projections of zc labeled by the target labels (digit) and bias labels
(color), respectively. Fig. 7 (c-d) are the projections of zb labeled by the target labels and bias labels,
respectively. We observe that zc are clustered according to the target labels while zb are clustered
with the bias labels. And zc are mixed with bias labels and zb are mixed with target labels. The
results indicate that DisC successfully learns the disentangled causal and bias representations.

Figure 8: Performance of
GIN and GCNII on the
weighted pruned graphs
found by DisCGCN .

Transferability of the learned mask. As our model could extract
GNN-independent subgraphs, the learning edge weights can be used
to purify original biased graphs. These sparse subgraphs represent sig-
nificant semantic information and can be universally transferred to any
GNNs. To validate this point, we learn the edge mask by DisCGCN

and prune the edges with least {0%, 20%, 40%, 60%} weights while
keeping the remaining edge weights. Then we train vanilla GIN and
GCNII on these weighted pruned datasets. Fig. 8 is the comparison of
the results, where the dashed lines represent the results of base model
on original biased graphs and the solid lines represent the perfor-
mance of GNNs on weighted pruned datasets. The results show that
the GNNs trained on the pruned datasets achieve better performances,
indicating our learned edge mask has considerable transferability.

6 Conclusion

In this paper, we are first to study the generalization problem of GNNs on severe bias datasets, which
is crucial to study the transparently knowledge learning mechanism of GNNs. We analyze the problem
in a causal view that the generalization of GNNs will be hindered by entangled representations as
well as the correlation between causal and bias variables. To remove the impact from these two
aspects, we propose a general disentangling framework, DisC, which extracts causal substructure
and bias substructure by two different functional GNNs, respectively. After the representations are
well-disentangled, we proliferate the counterfactual unbiased samples by randomly swapping the
disentangled vectors. With the new constructed benchmarks, we clearly validate the effectiveness,
robustness, interpretability, and transferability of our method.
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