
A Accessing the Dataset

For the duration of the review the information on how to download, install and use NLD will be
available at https://github.com/dungeonsdatasubmission/dungeonsdata-neurips2022.
This link contains a README.md file with instructions on how to download zip files for NLD-AA and
NLD-NAO, as well as instructions on how to install and use the TtyrecDataset, and includes code
used in the running of experiment.

After review, this information will migrate to the README.md for the NLE repo, hosted at https:
//github.com/facebookresearch/nle.

Hosting & Maintenance Plan The dataset will eventually be hosted on a separate, dedicated site,
with infrastructure akin to that provided on https://ai.facebook.com/datasets/. This site
will be permanently available for the foreseeable future, with links to the paper and NLE code. The
site is currently planned for launch in advance of the NeurIPS 2022 main conference, links will be
available on the NLE repo’s README.md.

B License

Data is provided under the NetHack General Public License - A GPL style license that is used
to covered the NetHack Game since 1989. The license can be found at https://github.com/
facebookresearch/nle/blob/main/LICENSE, and is used by both the official NetHack reposi-
tory13 and NLE.

C NLE v0.9.0

NLE v0.9.0 will be the latest version of NLE released, and will be released with NLD. The re-
lease branch is will be cut from main branch on the repo, hosted at (https://github.com/
facebookresearch/nle/), and deployed to PyPI. The branch currently holds all the changes
needed for compatibility with NLD, including the TtyrecDataset. A full changelog will be made
public after release but the changes include:

• New ability to record ttyrec3.bz2 files directly from NLE. Previous versions recorded a
modified ttyrec.bz2.

• The additional logging to an xlogfile for each episodes that finish naturally (i.e. when
done is True).

• A C++ Converter class to load ttyrec.bz2/ttyrec3.bz2 files directly in to NumPy
arrays, based on a V100 Terminal emulator (from libtmt14).

• The TtyrecDataset class, to marshall the Converter objects into an
Torch.IterableDataset interface, and handle metadata.

D The ttyrec format

The ttyrec is a file format that has historically been used to store recordings of terminal-based
NetHack games.15 The format consists of a stack of frames where each frame consists of a 12-byte
header immediately followed by a variable-size buffer of terminal instructions. The header contains
8 bytes of time information (storing when these updates were recorded) and 4 bytes indicating the
size of the subsequent buffer (storing what these updates were). The buffer’s contents are then the
instructions to be fed to a terminal that will be rendering ttyrec. As such, this buffer will then
generally consist of terminal-specific Escape Sequences16 and text to be printed.

NLE’s ttyrec3 has a 13-byte header, adding 1-byte channel to indicate what kind of content is in the
buffer: 0 for terminal output; 1 for terminal input (i.e the keypresses corresponding to actions in the

13
https://github.com/NetHack/NetHack

14
https://github.com/deadpixi/libtmt

15
https://nethackwiki.com/wiki/Ttyrec

16
https://en.wikipedia.org/wiki/Escape_sequence
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Figure 3: A screenshot of a tool to read raw ttyrec.bz2/ttyrec3.bz2 files, included in NLE v0.9.0.
The numbers in green represent the frame count for each channel [0, 1, 2], followed by the timestamp,
and the buffer contents in braces: channel 0 is displayed in yellow braces, 1 in blue braces, and 2 in
pink braces. Terminal Escape Sequences are printed in dark grey.

game); and, 2 for in-game score. These latter two channels are written just after and just before an
action is taken (respectively).

It is worth noting that frames with channel 0 are written whenever NetHack intends to write to the
screen, and therefore several may written before an action is required. An example of such an event
occurs when zapping wand which animates a beam from the player. Such animations may result
in a stack of frames with channels that resemble something like [0 2 1 0 0 0 2 1 ...], where
several different states might correspond to one action. In this case ttyrec3.bz2 rendering loads the
final state of the of the terminal NumPy arrays, alongside the score and action, while ttyrec.bz2
rendering loads every state/frame, having no clear delineation of where actions take place.

To further inspect ttyrec.bz2 and ttyrec3.bz2, NLE v0.9.0 comes with an adapted read_tty.py
script that displays the raw, decompressed ttyrec/ttyrec3 contents, shown in Figure 3.

E NLD Gameplay Metadata Reference

The gameplay metadata in NLD is identical to that stored NetHacks’s xlogfile at the end of a game,
with the addition of a gameid which is used by NLD to identify games. The metadata consists of:

1. gameid (int) - A unique id for the game, created by the local database.
2. version (str) - The version of NetHack played.
3. points (int) - The final in-game score of the episode.
4. deathdnum (int) - The dungeon number where you died. These correspond to the dungeons

found in dungeon.def file:
• 0 - The Dungeons of Doom
• 1 - Gehennom
• 2 - The Gnomish Mines
• 3 - The Quest
• 4 - Sokoban
• 5 - Fort Ludios
• 6 - Elemental Planes

5. deathlev (int) - The dungeon level where you died.17

6. maxlvl (int) - The deepest dungeon level you reached.
7. hp (int) - The number of hit points you ended the game with.
8. maxhp (int) - The number of hit points you’d have had at “full health” at the game end.

17For more, see https://nethackwiki.com/wiki/Mazes_of_Menace
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9. deaths (int) - The number of times you died.18

10. deathdate (int) - The day the game ended (format YYYYMMDD).
11. birthdate (int) - The day the game started (format YYYYMMDD).
12. uid (int) - An id used (in conjunction with player name) to identify players (for save

games etc).
13. role (str) - The Role of the player. The 13 roles are:

• Arc - Archaelogist
• Bar - Barbarian
• Cav - Cave(wo)man
• Hea - Healer
• Kni - Knight
• Mon - Monk
• Pri - Priest(ess)
• Ran - Ranger
• Rog - Rogue
• Sam - Samurai
• Tou - Tourist
• Val - Valkyrie
• Wiz - Wizard

14. race (str) - The Race of the player. The 5 races are:
• Dwa - Dwarf
• Elf - Elf
• Gno - Gnome
• Hum - Human
• Orc - Orc

15. gender (str) - The Gender of the player. The 2 genders are:
• Fem - Female
• Mal - Male

16. align (str) - The Alignment of the player. The 3 alignments are:
• Cha - Chaotic
• Law - Lawful
• Neu - Neutral

17. name (str) - The name of the player. These are pseudonymised in the database for
NLD-NAO.

18. death (str) - A description of the manner in which the player died or ended the game.
19. conduct (str) - a bitfield encoding the conducts19 completed in the game. The bitfield

encodes:
• 0x001: Foodless
• 0x002: Vegan
• 0x004: Vegetarian
• 0x008: Atheist
• 0x010: Weaponless
• 0x020: Pacifist
• 0x040: Illiterate
• 0x080: Polypileless
• 0x100: Polyselfless

18In rare cases, you can die more than once. See https://nethackwiki.com/wiki/Amulet_of_life_

saving

19
https://nethackwiki.com/wiki/Conduct
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• 0x200: Wishless
• 0x400: Artifact wishless
• 0x800: Genocideless

20. turns (int) - The number of in-game turns played by the player. This may not correspond
to transitions, as several moves do not advance the in-game clock (eg checking the inventory
or moving into a wall).

21. achieve (str) - a bitfield encoding the achievements20 attained in the game. The bitfield
encodes:

• 0x0001: Got the Bell of Opening
• 0x0002: Entered Gehennom
• 0x0004: Got the Candelabrum of Invocation
• 0x0008: Got the Book of the Dead
• 0x0010: Performed the Invocation
• 0x0020: Got the Amulet of Yendor
• 0x0040: Was in the End Game
• 0x0080: Was on the Astral Plane
• 0x0100: Ascended
• 0x0200: Got the Luckstone at Mines’ End
• 0x0400: Finished Sokoban
• 0x0800: Killed Medusa
• 0x1000: Zen conduct intact
• 0x2000: Nudist conduct intact

22. realtime (int) - the duration of the game in seconds
23. starttime (int) - the start time of the game as an (epoch) unix timestamp.
24. endtime (int) - the end time of the game as an (epoch) unix timestamp.
25. gender0 (str) - the starting gender of the player. Same options as gender.
26. align0 (str) - the starting alignment of the player. Same options as align.
27. flags (str) - a bitfield encoding some additional state of the game. The bitfield encodes:

• 0x1: Wizard mode
• 0x2: Discover mode
• 0x4: Never loaded a Bones file

F NLD Observations Reference

The TtyrecDataset loads minibatches of observations, with batch size B, and sequence/unroll
length T. The following observations are present in each minibatch dictionary:

Name Type Shape Description

tty_chars np.uint8 [B, T, H, W] The on-screen characters (default screen size 80 x 24).
tty_colors np.int8 [B, T, H, W] The on-screen colors for each character.
tty_cursor np.int16 [B, T, 2] The coordinates of the on-screen cursor.
timestamps np.int64 [B, T] The time each frame was recorded.
gameids np.int32 [B, T] The gameid for the episode being rendered.
done np.uint8 [B, T] An indicator that this frame is from a new gameid.
scores* np.int32 [B, T] The in-game score at this time (i.e. before keypress).
keypresses* np.uint8 [B, T] The keypress the player made in response to this state

(i.e. after seeing tty_*, scores, etc).

The observations marked with an asterisk (*) are only available in ttyrec3.bz2 datasets.

20
https://nethackwiki.com/wiki/Xlogfile
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G TtyrecDataset Reference

G.1 Design Overview

To load minibatches, the TtyrecDataset performs two main actions: first, at construction time,
it obtains the list of gameids and ttyrec.bz2/ttyrec3.bz2 filepaths that constitute dataset, and
second, at usage time, it constructs an Python generator21 that will sequentially load these files into
fixed NumPy arrays.

The first of these actions is performed by querying a local sqlite3 database file, which acts as the
metadata information hub for all datasets. This database file need only be populated once, and from
thenceforth can be copied, shared or swapped out, without issue. For more on how to add datasets
see the Tutorial Notebook22, or Appendix G.4. The metadata in this database includes the location of
files for each game, the association of which games are in which dataset, and the gameplay metadata
for each game (see Appendix E). For more on the database schema see Appendix G.2.

The second of these actions is performed by the TtyrecDataset itself, by creating a lightweight
C++ Converter object for each batch index in a generator, and loading from these objects when
next is called. This process can be modified in a variety of different ways, including looping forever,
shuffling, or using a threadpool. For more on the way these can be modified see Appendix G.3.

G.2 Database Layout

Table 3 shows the layout of the database, where fields of the same name map directly to each other.
Each dataset is associated with a string (dataset_name), and once populated the dataset can be
retrieved with this string.

G.3 TtyrecDataset API

The TtyrecDataset is documented primarily through Python docstrings, which provide a helpful
way automatically documenting code objects, that can be queried by using Python’s help function.
An example usage can be clearly seen in the tutorial notebook23 supplied with the submission, that
will also migrate to NLE.

The TtyrecDataset accepts the following arguments, with all but first taking reasonable default
values:

1. dataset_name - (str) - The name of the dataset to load. Each datasets is associated with
a unique name.

2. batch_size - (int) - The number of simulataneous episodes to load (i.e. size B).
3. seq_length - (int) - The number of steps to unroll for each episode in a minibatch (i.e.

size T).
4. rows - (int) - The row size of the terminal to emulate (i.e. size H).
5. cols - (int) - The column size of the terminal to emulate (i.e. size W).
6. dbfilename - (str) - The path to the database file used.
7. threadpool - (Object) - An executor class that has a map function (i.e.

concurrent.futures.ThreadPoolExecutor.
8. gameids - (List[str]) - A predetermined list of gameids to iterate through.
9. shuffle - (bool) - Whether to shuffle the order of gameids before iterating.

10. loop_forever - (bool) - Whether to start again at the beginning of gameids when the
iterator runs out. If False, empty batch indexes are padded with 0.

11. subselect_sql - (str) - A SQL string to dynamically generate subdataset, by select
gameids.

21
https://peps.python.org/pep-0255/

22
https://github.com/dungeonsdatasubmission/dungeonsdata-neurips2022/blob/main/

usage_tutorial_notebook.ipynb

23
https://github.com/dungeonsdatasubmission/dungeonsdata-neurips2022/blob/main/

usage_tutorial_notebook.ipynb
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Table 3: The layout of the sqlite3 database used by the TtyrecDataset. The roots table stores
information about the root directory of the files in a dataset, as well as ttyrec version, while
ttyrecs table stores the data about the files and what games they belong to. The datasets table
then associates the gameids to their dataset, and games contains the gameplay metadata for each
gameid.

roots

dataset_name TEXT
root TEXT
ttyrec_version INTEGER

datasets

gameids INTEGER
dataset_name TEXT

ttyrecs

path TEXT
part INTEGER
size INTEGER
mtime REAL
gameid INTEGER

meta

ctime REAL
mtime REAL

games

gameid INTEGER
version TEXT
points INTEGER
deathdnum INTEGER
deathlev INTEGER
maxlvl INTEGER
hp INTEGER
maxhp INTEGER
deaths INTEGER
deathdate INTEGER
birthdate INTEGER
uid INTEGER
role TEXT
race TEXT
gender TEXT
align TEXT
name TEXT
death TEXT
conduct TEXT
turns INTEGER
achieve TEXT
realtime INTEGER
starttime INTEGER
endtime INTEGER
gender0 TEXT
align0 TEXT
flags TEXT

12. subselect_args - (Objects) - Arguments to any SQL query provided in
subselect_sql.

G.4 Adding Datasets

Adding datasets to a the database is a very easy “one-off” operation. Examples are shown in the
Tutorial Notebook and also in Figure 4.

Since the process for adding ttyrec3.bz2 and ttyrec.bz2 files are a little different from each other,
two different methods should be used: nle.dataset.add_nledata_directory for ttyrec3.bz2,
and nle.dataset.add_altorg_drectory for ttyrec.bz2 data from NAO. This is documented
in the code and in the Tutorial Notebook.

G.5 ThreadPool Usage

All files are read independently, loaded into their own C++ Converter object that provides
lightweight terminal emulation. This independence provides the potential for very effective paral-
lelization along the batch index, B. In the Converter object, we release the GIL, allowing for very
true parallelization of file processing with Python’s own threads. This can provide a many-fold boost
to performance and throughput of frames per second, as can be seen in Table 4. Note, however, that
the benefits of parallelization are mainly found with long sequence lengths. Example usage is shown
in Figure 5.
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Figure 4: Example of how to simply create a database file and populate it with datasets. Note that
each directory must be associated with a dataset name chosen by the user (i.e. “nld-aa”). This is
then used to access the data (as in Figure 5).

Figure 5: Example of how to use a ThreadPoolExecutor using Python 3’s built-in
concurrent.futures module. This parallelism allows control of how many CPU workers are use
to load data, without having to resort to Python’s multiprocessing.

G.6 SQL Usage

With such a large and diverse dataset, it is highly likely that many will wish to train on subselections
of the data according to certain criteria, contained in the metadata. The TtyrecDataset enables
this very easily, by exposing the ability to subselect gameids on the basis of a SQL command. An
example of this is shown in Figure 6, and was used to generate the plots in Figure 6.

Figure 6: Example of how to use a SQL queries to subselect a part of a dataset dynamically. This
method was used to generate the NLD-AA-Monk runs only runs in Table 2 and Figure 2

G.7 Creating Custom Datasets

It is easy to create and add your own custom dataset using NLE and NLD. NLE includes the ability to
record files to a given save directory. The directory can then be directly added to NLD using the
add_nledata_directory methods referred to in Appendix G.4. An example is shown in Figure 7.
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Table 4: The frames per second, mean (standard deviation), across 5 runs of 500k frames when served
by the NLD dataset with different parameters for batch size, sequence length, and number of CPUs
used (which corresponds to the number of threads in the threadpool).

Sequence Length
32 128 512

Batch Size
32 20.6k (325) 19.4k (250) 20.7k (499)

1 CPU 128 16.5k (159) 18.9k (235) 21.2k (254)
512 15.1k (325) 17.1k (218) 17.9k (94)

Batch Size
32 73.8k (3.2k) 110.8k (3.0k) 142.7k (6.7k)

10 CPUs 128 113.1k (1.5k) 144.2k (1.9k) 167.0k (3.3k)
512 114.2k (2.2k) 129.8k (2.7k) 139.1k (4.1k)

Batch Size
32 86.2k (2.3k) 134.6k (3.9k) 231.2k (7.2k)

80 CPUs 128 177.8k (2.9k) 372.9k (16.5k) 492.4k (24.4k)
512 222.4k (7.9k) 446.7k (22.5k) 482.5k (10.4k)

Figure 7: Example of how to create a custom dataset using NLE and NLD. A variant of this method
was used to create NLD-AA.

H NAO Details

H.1 Conducts and Achievements

By analysing the Conducts and Achievement flags in the conduct and achieve metadata fields, one
can see the variety of behaviours in the NLD-NAO dataset. The aggregated % of episodes with each
conduct/achievement is shown for each dataset in Table 5

H.2 Metadata Matching Algorithm

On NAO, a game of NetHack can be saved and resumed, resulting in games split across several
ttyrec.bz2 files and time periods. In these situations, only one entry is made to the communal
xlogfile, and this is made at the very end of the game with no link to which files are part of the
game.

However, it is possible to assign files to games making use of three pieces of informa-
tion: first, that alt.org enforces that a user complete one game before starting another; sec-
ond, that the xlogfile records the starttime and endtime of the game; and, third, that each
file is saved with the same filename template indicating the user and file creation time (
<username>/<file_creation_timestamp>.ttyrec.bz2).
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Table 5: A table of the conducts and achievements accomplished as a percentage of total episodes for
each dataset. Most notably we can see only 1.46% of episodes ascend in NLD-NAO, and 0.04% do
this without any armour (Nudist). By contrast NLD-AA achieves only the occasional solving of the
Sokoban, indicating NLD-NAO has a much better coverage of the late game.

Conducts NLD-AA (%) NLD-NAO (%)

Foodless 0.89 21.16
Vegan 1.35 29.50
Vegetarian 1.41 32.18
Atheist 2.36 52.13
Weaponless 7.71 17.77
Pacifist 0.26 8.53
Illiterate 33.36 34.61
Polypileless 100.00 96.88
Polyselfless 87.65 93.59
Wishless 98.91 95.88
Artifact wishless 100.00 98.74
Genocideless 100.00 96.90

Achievements NLD-AA (%) NLD-NAO (%)

Got the Bell of Opening 0.00 2.15
Entered Gehennom 0.00 2.06
Got the Candelabrum of Invocation 0.00 1.73
Got the Book of the Dead 0.00 1.65
Performed the Invocation 0.00 1.62
Got the Amulet of Yendor 0.00 1.60
Was in the End Game 0.00 1.56
Was on the Astral Plane 0.00 1.53
Ascended 0.00 1.46
Got the Luckstone at Mines’ End 0.00 3.95
Finished Sokoban 0.17 5.93
Killed Medusa 0.00 2.31
Zen conduct intact 0.00 0.05
Nudist conduct intact 0.00 0.04

Making use of these three pieces of information, we can assign the files to the games, by lining
up all episodes per user in an xlogfile by start and endtime, and then assigning files created
between that start and endtime to that game. The full logic for this is carefully documented in the file
nle/datasets/populate_db.py.

In this way it is possible to remove games that have started but not finished from the alt.org S3 bucket,
whilst also filter out games that may have started well before the first starttime in an xlogfile
(indicating for whatever reason the game was not logged). All this logic is vital in ensuring that NLD
episodes can be seamlessly stitched together correctly from many file parts.

H.3 Filtering ‘Bad’ Episodes for NLD-NAO

We filtered ‘bad’ episodes for NLD-NAO in three ways. First, we removed episodes from the dataset
where the player seems to have participated in ‘start-scumming’. This practice involves starting a
game of NetHack and ending it early if the randomly-generated starting attributes/inventory is not
favourable enough. We filtered these games by filtering episodes from the dataset with fewer than 10
turns, where the death was ‘quit’ or ‘escaped’.

We also filtered an episode with negative in-game turns - something which should be impossible!
This single player had managed to survive many orders of magnitude longer than any other game,
eventually successfully overflowing the turns counter (a 32-bit integer). While surviving this long is
impressive, it is unlikely this episode demonstrate a drive to ‘ascend’ and may pose a large bias to
our dataset, and so is filtered out.
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Finally we also decided to remove the files of players with highly offensive names from our dataset.
These accounted for very few episodes and frames (less than 0.1%) and largely from poor players. To
add an extra layer of privacy, we pseudonymise all player names in the database, even though player
names are generally already pseudonyms.

H.4 Noise Investigation

The NLD-NAO dataset is a real-world dataset collected over a decade, and as such contains some real
world noise that can pose research problems.

The first problem is terminal rendering noise. Different terminals have different escape sequences
and different characters sets, and some of these may not be interpretable by NLD’s lightweight VT100
emulator. While NLD has made adjustments to support DEC graphics24 and IBM graphics25, it is still
possible for a user to define their own exotic graphics which could render noisily in NLD, perhaps
with extra, unusual symbols. This problem is also faced by alt.org’s own webplayer, but thankfully,
this issues is only encountered very rarely.

Another source of rendering noise, aside from graphics, is terminal size. Players can play NetHack
with different terminal sizes, and NetHack’s clever paging system will adapt the screen to the right
size. In our case we chose by default to render on the screen size used by NLE, which is also the
smallest "full size" you can play NetHack on (80 x 24). For episodes where the screen size was larger
than this, we make the decision to crop the screen rather than wrap around the lines (as one typically
would when emulating large commands on a small screen). It is possible to control the emulator size
scren by using the rows and cols arguments to the constructor, if the user so wishes.

The second source of noise comes from errors introduced into the metadata assignment process,
outlined in Appendix H.2. In some cases, such as under heavy traffic, NetHack can fail to write a line
to an xlogfile, and drop the line entirely. This introduces noise into the our assignment algorithm
and could result in a user’s games potentially including some ttyrec files from a different one of
their episodes. We check for discrepancies between metadata and in-game play, by rendering the last
10 frames of all episodes in NLD-NAO and checking whether the point and number of turns parsed
from the screen match the gameplay metadata in NLD-NAO. Since these two values are themselves not
always displayed or might change after game end, this itself is a noisy process, yet we managed to
obtain a upper bound on the errors. In the episodes we found at most ~5% occurence of a discrepancy
between the final frames of an episode and the metadata for score and turns, and were able to verify
correct metadata for ~90% of episodes (~5% we were unable to classify).

I Experiment Hyperparameters and Details

I.1 Methods

All methods are implemented using the open-source RL library moolib [31]. The online and online
+ offline RL methods are built on top of an APPO implementation based on [37]. The offline
RL methods are built on top of the DQN algorithm. For CQL, we followed the implementation
from [53], which is an established library for offline RL algorithms. For IQL, we followed the original
implementation open-sourced by the authors [20]. We use the same base architecture and processing
of the observations and actions for all algorithms. Please check out our open-sourced code for full
details of these implementations. All experiments were run with 20 CPUs in approximately 1 day on
single Volta 32GB GPUs.

I.2 Preprocessing

As a preprocessing step, a wrapper is used to render the observations tty_chars and tty_colors
as pixels, which are then downsampled and cropped centered on tty_cursor. The resulting image
is added as an observation known as screen_image. This preprocessing step is standard for the
Chaotic Dwarf baseline model that we use. [15]

24
https://en.wikipedia.org/wiki/DEC_Special_Graphics

25
https://nethackwiki.com/wiki/IBMgraphics

25

https://en.wikipedia.org/wiki/DEC_Special_Graphics
https://nethackwiki.com/wiki/IBMgraphics


I.3 Model

We adapt the model from the standard Chaotic Dwarf Sample Factory baseline, that was open
sourced26 during the NetHack Challenge. [15] This model relies on three small encoders for obser-
vations, that combine their representations before passing through an LSTM and taking policy and
baseline heads from the output.

The original model relied on NLE’s blstats, message, and the preprocessed screen_image (out-
lined in Appendix I.2) observations. Since the former two do not exist in the raw terminal output,
instead they are replaced with their closest proxies - the top and bottom two lines of tty_chars
respectively. This involves slight changing to the normalization of the encoders. The full model can
be found in our open sourced code.

I.4 Hyperparameter Sweeps

For DQN, we performed a hyperparameter search over ✏start 2 [0.1, 0.2, 0.25, 0.5, 0.75, 0.8, 0.9],
✏decay 2 [2500, 5000, 10000, 20000, 25000, 50000, 75000, 250000], target update
2 [40, 200, 400, 800, 2000, 4000] and tried both a MSE and a Huber loss. We found the fol-
lowing to work best: ✏start = 0.25, ✏decay = 25000, target update = 400, and MSE loss. For the
common hyperparameters between CQL and IQL, we use the same values as the best ones found
for DQN without additional tuning. For CQL, we also performed a hyperparameter search over
⌧ 2 [0.005, 0.05, 0.0005, 0.1, 0.01, 0.001, 0.0001] and for cql loss coef 2 [1.0, 0.5, 0.1, 2.0, 10.0].
We found ⌧ = 0.005 and cql loss coef = 2.0 to work best. For IQL, we performed a hyperparameter
search over expectile 2 [0.8, 0.7, 0.9] and temperature 2 [1.0, 0.1, 10.0, 0.5, 2.0]. We found
expectile = 0.8 and temperature = 1.0 to work best. Table 6 contains a list with all relevant
hyperparameters used in our experiments (i.e. the best ones found following our HP search).

I.5 Evaluation

We evaluate performance using the eval.py script in the experiment code. This script creates a
moolib.EnvPool and assigns each batch index a number of episodes to run, to collect data. We
collect 1024 episodes in this way, per run.

It is important to note that this method of evaluating performance is slightly different to the one
generating curves in Figure 2. For training curves, we add any episodes to a running mean as soon as
they finish rolling out (i.e. just before training). The end consequence of this is that short episodes
with low scores are sampled disproportionately more often that very long episodes with high scores -
in other words these curves are biased down. Accurately sampling these very high scoring and very
long rollouts account for the discrepancy between the curves in Figure 2 and the values in Table 2.

J On the Scale and Performance of NLD

We compare the scale and performance of NLE and NLD to two other large scale datasets of human
demonstrations: MineRL [14] and StarCraft II [59]. In particular, we present the size of the datasets,
in terms of trajectories, and benchmark the performance of the datasets and environments, measured
in frames per seconds (FPS). The overview can be found in Table 7.

J.1 Overview

These results support the claim of NLD to be a large-scale dataset. NLD-NAO has more trajectories
than dataset used in AlphaStar[58], and possibly also more transitions, since the average episode of
NLE is longer than that of StarCraft II. Even NLD-AA has an order of magnitude more trajectories than
MineRL.

These results also support the claims of NLD and NLE to be very performant in terms of frames
per second. The NLE environment is at least an order of magnitude faster than either alternative
environment, and NLD is potentially several orders of magnitude faster at loading data. Further details
in how the batch size and unroll length affect the performance of NLD can be found in Table 4.

26https://github.com/Miffyli/nle-sample-factory-baseline

26



Table 6: List of hyperparameters used to obtain the results in this paper.

Hyperparameter Value

activation function relu
actor batch size 512

adam betea1 0.9
adam beta2 0.999
adam eps 0.0000001

adam learning rate 0.0001
appo clip policy 0.1

appo clip baseline 1.0
baseline cost 1

batch size 256
crop dim 18

grad norm clipping 4
normalize advantages True

normalize reward False
num actor batches 2

num actor cpus 20
pixel size 6
rms alpha 0.99

rms epsilon 0.000001
rms momentum 0

reward clip 10
reward scale 1
unroll length 32

use batchnorm false
use lstm true

virtual batch size 128
rms reward norm true

initialisation orthogonal
use global advantage norm norm

msg embedding dim 32
msg hidden dim 512
kickstarting loss 1.0

ttyrec envpool size 4
ttyrec batch size 256

ttyrec unroll length 32
ttyrec envpool size 4

✏start 0.25
✏end 0.05
✏decay 25000

target update 400
dqn loss mse

⌧ 0.005
cql loss coef 2.0

expectile 0.8
temperature 1.0

J.2 FPS Benchmarking Method

To compute the throughput of NLD we used the threadpool with 80 threads on a machine with 80
CPUs, a batch size of 128 and a sequence length of 32, taking the mean and standard deviation from
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Table 7: The mean frames per second (± standard deviation) across 5 runs for each environment
or dataset. Although batch sizes and sequence length can affect performance, it is clear that NLD is
considerably faster than rival datasets.

Dataset NLD StarCraft II MineRL

Trajectories 100,000 - 1,500,000 971,000 <5000

Environment FPS 26400 ± 1200 200-700 68 ± 6.2
Dataset FPS 113100 ± 1500 1800 ± 2.9 5000 ± 89

5 runs to 500k frames. All assessments are done with NLD-AA, the slower of the two datasets. For
NLE we ran the environment for 500k frames, with an agent sampling random actions and a max
episode length of 1000 frames.

For StarCraft II we include the throughput of the environment as reported in the original paper,
and measure the throughput of the dataset by running the pysc2.bin.replay_actions function,
provided in the github repo for batch processing replays, for 5 minutes with 80 threads on 80 cpus.
This too was repeated 5 times.

For MineRL we used the MineRLTreechop-v0 environment and dataset. We measured the environ-
ment speed by running headless on a machine with 80 cpus for 10k steps, sampling random actions
and assuming a max episode length of 30k steps (note, the MineRL documentation suggests that
running headless slows down the environment by a factor of 2-3x because the rendering is performed
on the CPU instead of the GPU). We measured the MineRL dataset throughput using the provided
BufferedBatchIter with a batch size of 4096 for a full epoch. Once again, we repeated this 5
times.

Table 7 presents the mean and standard deviation of the frames per second.

K Limitations of our Work

One potential limitation of our work is our human dataset NLD-NAO doesn’t contain any actions or
rewards, so it cannot directly be used for imitation learning of offline RL. However, this is the case
for many other domains of interests where you may have access to sequences of observations (e.g.
when learning skills from human or agent videos in domains like robotics or autonomous driving).
Thus, we believe our human dataset can enable research on this more realistic and important setting
in a safe environment.

While NLD-AA contains both actions and rewards thus allowing research on imitation learning and
offline RL, it is less diverse than NLD-NAO as it contains demonstrations from only one symbolic bot,
the winner of the NetHack Challenge at NeurIPS 2022 [15]. In the future, we hope the community
will contribute many more datasets to NLD collected using a variety of bots (including learning-based
ones). We believe that the current dataset is a good starting point to develop even better agents at
playing NetHack. Then, those agents could be used to collect additional trajectories which can be
added to NLD, resulting in a feedback loop that constantly grows the size and diversity of the dataset
and develops better and better agents.

Another potential limitation of our work is that we use the in-game score to train our RL agents,
which is the standard practice from [23] and [15]. While the in-game score roughly correlates with
good performance on NetHack, it is not exactly the same as ascending i.e. winning the game, which
is ultimately how we want to evaluate agents. For example, humans sometimes attempt to ascend
with as low a score as possible, as an additional challenge. This misalignment is common in other
real-world domains where it can be difficult to design a good reward function that illicits the desired
behavior (e.g. autonomous driving). Thus, this is an open research challenge which could be enabled
by our dataset, but lies outside the scope of the current work.
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L Broader Impact Statement

Our work introduces a new large-scale dataset based on a computer game to enable research in
multiple domains including learning from demonstrations, imitation learning, and reinforcement
learning. Our dataset is cheap to run in order to democratize research on large-scale datasets of
demonstrations, which have historically been restricted to well-resourced (industry) labs. This dataset
contains human demonstrations, but these are already available online and the demonstrations are
de-identified such that only a user’s chosen usernames can be retrieved. Thus, we don’t envision
any direct negative social impact of this work. Of course, people could use our dataset to develop
new methods for learning from demonstrations. Since these techniques can be quite general, they
could also be used for other real-world applications such as autonomous driving, robotics, healthcare,
financial services, or recommendation systems (where large-scale datasets may be available). Of
course, these domains are more sensitive than computer games, so much more care is needed to
mitigate the risks and develop safe, robust systems. While we believe this lies outside the scope of
current work, researchers and practitioners using our dataset should always keep an eye on potential
negative societal impacts.
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