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Abstract

Offline reinforcement learning (RL) aims at learning effective policies from his-
torical data without extra environment interactions. During our experience of
applying offline RL, we noticed that previous offline RL benchmarks commonly
involve significant reality gaps, which we have identified include rich and overly
exploratory datasets, degraded baseline, and missing policy validation. In many
real-world situations, to ensure system safety, running an overly exploratory policy
to collect various data is prohibited, thus only a narrow data distribution is available.
The resulting policy is regarded as effective if it is better than the working behavior
policy; the policy model can be deployed only if it has been well validated, rather
than accomplished the training. In this paper, we present a Near real-world offline
RL benchmark, named NeoRL, to reflect these properties. NeoRL datasets are
collected with a more conservative strategy. Moreover, NeoRL contains the offline
training and offline validation pipeline before the online test, corresponding to
real-world situations. We then evaluate recent state-of-the-art offline RL algorithms
on NeoRL. The empirical results demonstrate that some offline RL algorithms
are less competitive to the behavior cloning and the deterministic behavior policy,
implying that they may be less effective in real-world tasks than in the previous
benchmarks. We also disclose that current offline policy evaluation methods could
hardly select the best policy. We hope this work will shed some light on future
research and deploying RL in real-world systems.

1 Introduction

Reinforcement learning (RL) has shown impressive ability in simulated environments [1, 2]. However,
current RL algorithms are hard to apply in real-world applications when there is no fast and cheap
simulator. Such simulators provide virtual worlds for training RL agents by trial-and-errors which
can incur huge losses in the real world. Instead, real-world systems often log data produced by an
existing behavior policy, which we call the working behavior policy or working policy. A recent trend
to alleviate the real-world trial-and-error costs is offline RL (also batch RL) [3], which aims to learn
effective polices from pre-collected datasets. Thus, offline RL has the potential to refine the existing
working policy with offline datasets produced by the working policy. To facilitate the development
of offline RL approaches, benchmarks have been constructed involving datasets and protocols for
evaluation [4, 5, 6]. RL Unplugged [4] uses datasets from the buffer of online training. D4RL [5]
provides a diversity of datasets, including random, mixed medium datasets with replay buffer data
or data collected by the expert policy, and datasets collected by humans and a planner. While it
is a great contribution of these benchmarks to enable common playgrounds to test and compare
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offline RL methods, our experience in applying RL in various real-world tasks, such as recommender
systems, sales promotion, industrial control, etc., shows demands that are not satisfied by the previous
benchmarks in several aspects as follows.

Learning from conservative and limited data. In many real-world domains, the dataset is conserva-
tive and limited. Take the urban power network system as an example, if the system can respond every
5 minutes and trajectories are split by weeks, the system only records about 52 trajectories per year
[7]. More importantly, to ensure system safety and guarantee the utility, the working behavior policy
that produced the data is conservative and near deterministic, since exploratory actions will harm
the system or decrease the utility. Consequently, the offline data has a very narrow distribution. For
instance, the recommender systems hardly try to present irrelevant items, but present the most relevant
top-n items to the user [8]. Note that conservativeness refers to less explorative and committing to
the working policy, but does not prescribe the performance or the form of the working policy. In
real-world tasks, the working policies can have different performances and forms (human-designed
rules, a deep learning model, etc.), but are mostly conservative. Regarding the benchmarks, since
exploration is quite necessary for RL training, previous benchmarks contain large and exploratory
datasets. For example, the replay buffer from an online training process is often included [4, 5],
which contains many random actions for exploration. Therefore, the exploration challenge, which
we believe is a fundamental challenge for offline RL, is weakened in these benchmarks. During the
experiments, we do find with exploratory datasets from previous benchmarks, offline RL algorithms
are overestimated. However, the datasets from real-world scenarios are conservative, thus it is more
challenging for offline RL algorithms.

Policy 1

Policy 2

Policy n

…Training
Data

Exploratory 
Data

Random, 
Replay Buffer, etc.

Previous Pipeline

Policy 1

Policy 2

Policy n

…
The Best

Policy
Online
EnvOPE

(a) OPE on test data

deploy
Test
Data

Policy 
Performance

Data

Training
Data

Conservative 
Data

Working Policy

No Offline Validation

Tune Policy on Other Domains

Complete Pipeline

The Best
Policy

Online
Env

Policy 
Performance

Offline Training Offline Validation Online Test

deploy

Figure 1: A complete pipeline of deploying offline RL should include phases of offline training,
offline validation, and online test. In the offline validation, the offline policy evaluation is conducted
on an extra test dataset. After validating, the best policy is chosen and deployed in the online
environment. Previous benchmarks may use exploratory datasets and skip the offline validation step.

Comparing with the working policy. In real-world applications, an algorithm is thought to be
effective, only when the trained policy is better than the existing working policy. Regarding the
benchmarks, to facilitate offline learning, many of the datasets are collected from exploratory behavior
policies or a mixture of multiple policies. In this case, behavior cloning (BC) as a baseline [4, 5] is
often worse than the deterministic working policies. Consequently, the effectiveness of offline RL
algorithms may be overestimated for their applicability if BC is used as a reference of the working
policy on exploratory datasets.

Offline policy validation is compulsory. In almost all real-world tasks, we will train n policies with
different algorithms or hyper-parameters but are only allowed to choose one or two policies to deploy.
The model can be deployed online only when we believe its online performance excels the existing
working policy. Therefore, a process of “offline training → offline validation → online test” has
been widely adopted, e.g., in recommender systems for supervised learning models [9]. Validation
of RL policies using an offline dataset is also a challenge, due to the distribution shift incurred by
the behavior and evaluation policies [6]. The recent work [10] proposes a practical offline workflow
for conservative offline RL algorithms (e.g., CQL [11]) on robotic tasks, by utilizing comparative
metrics across checkpoints and training runs. Regarding previous benchmarks, we notice that the
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algorithm performances were all tested directly in the online environments once the training was
accomplished [12, 11, 4, 5]. Offline validation has often been neglected, which bypasses the offline
validation challenge. Consequently, even if an algorithm works well in the benchmark tasks, it is still
hard to assess its performance in a real-world task. Offline policy evaluation (OPE) extends off-policy
policy evaluation (OPPE) to offline setting [13, 14] and only uses the dataset to evaluate a policy,
thus it can be applied as a tool for offline policy validation. It was found that running OPPE on the
training dataset can cause biased estimations [15], so it will be more appropriate to conduct OPE on
an unseen test dataset, which corresponds to the validation set in supervised learning.

To sum up, a complete pipeline of deploying offline RL should include offline training, offline
validation, and online test phases, as shown in Figure 1.

Our contributions and findings. This paper proposes NeoRL, a suite of Near real-world benchmarks
for offline RL, to better reflect the above demands in real-world applications. NeoRL provides

1. Conservative and limited datasets on all domains. The datasets are collected from locomotion
control, industrial control, financial trading, sales promotion and city management domains with
real-world dataset properties.

2. Online and offline selection benchmarks. We benchmark recent model-free and model-based
offline RL methods in NeoRL as a reference. We follow the complete pipeline for each training
algorithm and provide the online selection results for comparisons.

3. Comparison with the working policy. To investigate whether these offline RL algorithms are
effective, we compare them with the working policy. The experimental results show that they
appear less effective when compared with the working policy.

4. Empirical findings of offline evaluation. Although offline policy evaluation before deployment
is crucial, current OPE methods hardly help to select good policies in the offline RL setting.

By NeoRL, we not only propose new benchmarks, but more importantly, try to correct the way how
offline data should be collected for offline RL benchmarks, and highlight the complete pipeline for
deploying offline RL. The datasets from real-world systems are collected by a more conservative
policy. The policies trained by offline RL methods should be validated and selected offline rather
than directly deployed in the system when the training stops. The offline training and offline
policy evaluation modules have been integrated into the NeoRL code repository to help run the
full pipeline easily. Codes for the data-collection process and benchmark results can be found at
https://github.com/polixir/NeoRL.

2 Offline Reinforcement Learning

Online RL algorithms interact with the environment and update the policy to get a high episodic
return. In the offline RL setting, the environment is not provided during training, and only a batch of
data is accessible. For simplicity, the data can be viewed as collected by a single behavior policy πb.

Although off-policy algorithms can be readily applied to a replay buffer, running an off-policy RL
algorithm on a static buffer can sometimes diverge, due to issues like the distribution shift [16]. To
learn a robust policy, recent offline RL algorithms explicitly or implicitly prevent the training policy
from being too disjoint with πb [12, 11, 17, 18]. Besides, the absence of a cheap environment also
makes it untamed to evaluate a training policy and select a good one. Unlike traditional RL policy
validation that directly runs the policy in the environment to evaluate the ground-truth value and then
selects the appropriate hyper-parameters and model, in general, tuning offline RL algorithms requires
offline policy evaluation (OPE). Most off-policy policy evaluation (OPPE) [19] methods can be used
as OPE tools with little change. However, OPPE methods are primarily designed to approximate
the value of a policy, while in the offline RL setting, we expect an offline policy evaluation (OPE)
method can select good policies during the training. Therefore, an OPE method will be effective if it
tells the correct ranks of the candidate policies, rather than approximating the values.

3 Previous Benchmarks and Recent Offline RL algorithms

Recently, some offline RL benchmarks have been proposed to facilitate the research and evaluation
of offline RL algorithms. These benchmarks include multiple aspects of offline tasks and datasets,
and also the performances of prior offline algorithms on these tasks [4, 5, 20]. The celebrated Atari
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57 games and Gym-MuJoCo tasks (or DeepMind Control Suite [21]) have been widely used to
benchmark online and offline RL methods. Besides these two domains, D4RL [5] also releases offline
datasets of mazes, FrankaKitchen [22], and offline CARLA [23]. These datasets are designed to
cover a range of challenging task properties in real-world scenarios, including narrow and biased
data distributions, multi-task data, sparse rewards, etc. RL Unplugged [4] includes datasets from
Atari and DeepMind control suite, where the properties of these tasks range from different action and
observation spaces, partial observability, etc. Other aspects of real-world challenges are also noted in
[24]. Although the properties of tasks are well covered in D4RL and RL Unplugged, the properties of
the real-world datasets are underexplored. To guarantee the system stability and performance, datasets
from real-world systems cannot be too exploratory. Therefore, the out-of-distribution problem [25]
is more challenging for offline RL when faced with real-world datasets. Recent offline algorithms
utilize the training buffer data to run offline RL algorithms [12, 26, 16], and D4RL and RL Unplugged
contain data from the training buffer. Intuitively, a wider data distribution weakens the exploration
challenge, thus the offline RL algorithms may be overestimated on the datasets that are unlike to
meet in the real world. Meanwhile, offline RL methods are often pessimistic about the out-of-data
distribution, by constraining the RL agent to be close to the offline data [12, 17], or only trusting the
learned environment model when the uncertainty of the generated data is low [27, 28]. In D4RL and
RL Unplugged, it is noticed that online policy selection is not allowed so that they propose evaluation
protocols that just train with the optimal hyper-parameters from the similar domains and do not
tune hyper-parameters anymore. This protocol implicitly requires a transferable environment which
contradicts practical offline RL setting, since we can learn from these domains and adapt to the online
environment as done in [29, 30]. Besides, these policies are directly evaluated in the environment
once finishing the training. Comparisons with previous benchmarks are listed in Table 5 in B.

DOPE [6] is to benchmark the performance of off-policy policy evaluation methods and tested on
RL Unplugged and D4RL. We do find SOTA OPPE methods from the DOPE benchmark, i.e., FQE
and IS will fail when all the trained candidate policies have similarly poor performance. Additional
discussions and demonstrations can be found in B.

4 Near Real-World Benchmarks

We only assume that the working policies are sub-optimal and conservative, which are often common
in realistic applications but are not well embodied in previous benchmarks. Therefore, we produce
policies to have these two properties. Most importantly, we follow the full training and validation
pipeline, conducting OPE for policy selection on the different test datasets. In real-world scenarios,
the dimension of the state and action space can be high and the transition functions are complex, with
stronger stochasticity. Hence, besides the widely-used locomotion controlling tasks, we include tasks
that are high dimensional or with high stochasticity from some real-world scenarios, i.e., industrial
controlling, financial trading, etc.

4.1 Collect Datasets with Conservative Policies

The historical interaction data collected from the real world are often produced by (deterministic)
working policies, rather than a random policy or replay buffers. Since the actions are continuous
in all domains, we use the Gaussian distribution as the policy output. To simulate the real-world
data-collection scenarios, we adopt the following steps to collect the data:

1. Obtain data-collection policies. For each environment, we use SAC [31] to train on each
environment until convergence and record a policy at every epoch. We denote the policy with
the highest episodic return during the whole training as the expert policy. Another three levels
of policies with around 25%, 50%, 75% expert performance are stored to simulate multi-level
sub-optimal policies, denoted by low, medium, and high respectively.

2. Collect data. With probability 20%, we sample from the trained Gaussian policies to execute,
otherwise, we use the mean of Gaussian to execute. We sample from the Gaussian policy
during the data collection for two reasons: (1) Because of human manipulation errors, the action
demonstrations may be noisy, so we use samples from the policy to reproduce this phenomenon.
(2) For training offline RL algorithms: When the transition function is deterministic (e.g., Gym-
MuJoCo), the deterministic policy may produce similar and even repetitive trajectories. However,
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if the transition function is stochastic, we only execute a deterministic policy (mean of the trained
Gaussian policy) to generate the datasets.

3. Make training and test datasets. For each level, 4 policies with similar returns are selected,
among which three policies are randomly selected to collect the training data used for offline RL
policy training, and the left one produces the test data for offline validation. The default size of the
test data is 1/10 of the training data for each task. The extra test dataset can be used to design the
offline evaluation method for the model selection during training and hyper-parameter selection.

It should be noted D4RL collects the data by sampling from the policy output distribution each step or
even mixes data from the training buffer, which collects more exploratory data. We construct datasets
of 100 trajectories as the limited data setting. To help verify the impact of different amounts of data,
for each task, we provide training datasets of three-level sizes of 102, 103, and 104 trajectories by
default. See A for detailed sample sizes.

4.2 Benchmarks with Online and Offline Policy Selection

We benchmark some recent offline RL algorithms on the proposed datasets under the full pipeline
of deploying offline RL, and provide online selection results as a reference. The online selection is
contained because the performance via online selection can reflect the upper bound of an algorithm,
and would help once OPE or other approaches can select the optimal policy without interacting with
the environment. We then follow the fully offline training pipeline and benchmark these algorithms,
where the policy model is selected by offline policy evaluation (OPE) methods on the test dataset.
Especially, to verify whether offline RL methods are effective (exceed the working policy), the
comparisons with the deterministic version of πb are involved.

5 Tasks and Datasets

As explained in D4RL, we also use high-quality simulators for data collection and evaluation.

The industrial benchmark (IB) [32] is an RL benchmark environment motivated to simulate the
characteristics presented in various industrial control tasks, such as wind or gas turbines, chemical
reactors, etc. It includes problems commonly encountered in real-world industrial environments,
such as high-dimensional continuous state spaces, delayed rewards, complex noise patterns, and high
stochasticity of multiple reactive targets. Since the IB environment is high-dimensional and highly
stochastic, we use the mean of Gaussian policy when collecting data, rather than sampling from it.

FinRL environment [33] provides a way to build a trading simulator that replicates the real stock
market and supports backtesting with important market frictions such as transaction costs, market
liquidity, investor risk aversion, and so on. In FinRL, per trading day can trade once for the 30 stocks
in the pool. The reward function is the difference in the total asset value between the end of the day
and the previous day. The environment may evolve itself as time elapses. Because the training dataset
of 104 trajectories is too large, we only provide 102 and 103 trajectories for FinRL.

CityLearn (CL) environment [34] reshapes the aggregation curve of electricity demand by controlling
energy storage in different types of buildings. The objective is to coordinate the control of domestic
hot water and chilled water storage by the electricity consumers (i.e., buildings) to reshape the overall
curve of electricity demand. This environment is highly stochastic and with high-dimensional space.

SalesPromotion (SP) environment simulates a real-world sales promotion platform, where the
platform operator delivers different discount coupons to each user to promote the sales each day. The
number of coupons and the discount the user received will affect his behavior. A higher discount will
promote the sales, but the cost will also increase. The goal for the platform operator is to maximize
the total income. This environment is partly built on our (Polixir) real-world sales promotion project.
We only provide historical data made by a human operator and real users on the sales promotion
platform for this domain.

Gym-MuJoCo [35] environments are the standard testbeds for online RL algorithms. We select three
domains and construct the offline RL tasks, i.e., HalfCheetah-v3, Walker2d-v3, and Hopper-v3. The
3 selected tasks are widely used in existing benchmarks, so we introduce the conservative and limited
data properties into these tasks to investigate the impact on previous benchmarking results.
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For each domain except FinRL and SP, NeoRL contains 9 tasks (3 levels of behavior policy per-
formances and 3 kinds of sizes). Thus, NeoRL currently contains 7 domains with 52 tasks in total.
Detailed features of these environments can be found in the A.

6 Experiments

In the experiments, we focus on the following questions (Q): Q1: If we have perfect offline policy
selection, are current offline RL algorithms effective (better than the deterministic working policy) on
NeoRL datasets? Q2: What is the influence of the conservative datasets? Q3: What is the influence
of limited sizes of datasets? Q4: If we just use current off-policy evaluation methods to validate the
trained policies before deployment, can we get the effective policy?

To answer Q1, we choose the best online performance on each task for each algorithm among the
given hyper-parameters, and compare them with the baselines. We compare results on Gym-MuJoCo
domains of NeoRL and D4RL to answer Q2. We investigate the influence of different sizes of datasets
to answer Q3. For Q4, we follow the complete pipeline of deploying offline RL, conducting the
offline policy selection and validation via OPE methods.

We re-implement several algorithms to easily call them by a unified interface. The re-implementation
has been verified on Gym-MuJoCo-medium tasks from D4RL dataset and matches the original
results (see Table 6 in D). We roughly divide these algorithms into two categories: model-based and
model-free. Since offline RL algorithms are sensitive to the choice of hyper-parameters, we conduct
a grid search on hyper-parameter space to choose the best policy. Details of the hyper-parameters
settings are in F.

6.1 Comparing Methods

We consider four non-learning baselines and then learning methods.

Expert We run SAC until convergence in each environment to choose the policy with the highest
returns and call it expert. Expert is used as a reference for a good policy. However, it does not imply
that the expert is optimal. While for the sales promtion domain, we use a human operator policy.

Random policy The uniform distribution over the action space is a valid but very weak policy on
almost all tasks. It is usually used in normalizing the policy performance.

Deterministic Policy Commonly, the running system involves a deterministic working policy. We
take the deterministic behavior policy as the working policy in our experiments. An offline trained
policy is thought effective only if its performance is better than this working policy.

Behavior Policy The behavior policy is used to collect the data. If the offline data-collection process
has no randomness injected, the behavior policy equals the deterministic policy.

Compared Learning Methods Behavioral cloning (BC) trains a policy to imitate the behavior policy
from the data. We treat BC as a baseline of learning methods. We also includes model-free methods
BCQ [12], PLAS [18], CQL [11] and CRR [17], and model-based methods BREMEN [36] and
MOPO [27]. An overview of these compared algorithms can be found in the Appendix C.

6.2 Evaluation Methods

We only keep the policy at the last epoch for each hyper-parameter configuration and seed, except for
BC where mean squared error can be used as the early-stop criterion (see F for details).

Online policy selection evaluation. Online selection results can be treated as the upper bound of the
algorithm performance, despite it favors algorithms with more hyper-parameters (noted in [4]). Each
trained policy is evaluated for 1,000 episodes to approximate the ground-truth performance. The final
performance is reported for the best hyper-parameter with the highest average score over 3 seeds.
Although the result with more seeds is appealing, empirical results show the average performance of
the compared algorithms did not change too much. However, running with one more seed takes over
7,000 GPU hours (see E for details).

Offline policy selection. In general, we only have very few chances to deploy trained policies in
real-world systems. Even though the trained policies only differ in random seeds, they will be treated
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as different policies. Thus, we conduct OPE on the extra test dataset to select the best policy among
policies trained by different hyper-parameters and seeds, then we report their online performance.
An effective OPE method only needs to tell the relative performance between policies to select the
best model. Specifically, we choose two representative OPE methods: fitted Q evaluation (FQE) [37]
and weighted importance sampling (WIS) [38]. FQE takes a policy as input and performs policy
evaluation on the fixed dataset by Bellman backup. After learning the Q function of the policy, the
performance is measured by the mean Q values on the initial states from the dataset and actions by
the policy. WIS is a canonical variant of important sampling (IS). IS only uses the ratio between
target policy and behavioral policy to weight the episodic reward in the dataset, while WIS can further
reduce the IS variance. Both methods are run with 3 seeds on the candidate policy set. The three
non-learning baselines do not need OPE. Implementation details of OPE can be found in G.

6.3 Results

We calculate an average rank and average normalized scores respectively. The rank of an algorithm
or baseline is determined by the score on each task, and the final average rank is computed over
the 52 tasks. The average rank of each algorithm is shown in Table 1, and the average normalized
scores are shown in Figure 2, for online and offline evaluation respectively. Detailed raw scores and
normalized scores of each task are deferred to H. The normalization 100× raw score−random score

expert score−random score
is also adopted in our evaluation. One point should be highlighted that the average (or any kind of
aggregated) performance is only given as a convenient metric. Since the properties of each domain
are quite different, they should be seen as a collection of individual tasks.

Table 1: Average ranks over 52 tasks of online, FQE, WIS policy selection results.

Name Det.
policy

Behavior
policy Random BC BCQ PLAS CQL CRR BREMEN MOPO

Online 4.88 5.67 8.90 5.04 6.08 5.23 2.19 4.00 5.31 7.69
FQE 3.33 3.92 8.48 3.33 6.10 6.56 4.35 4.56 6.25 8.13
WIS 3.69 4.42 8.56 3.77 5.85 5.56 4.60 4.42 6.25 7.88
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Figure 2: Average normalized score of each algorithm on 52 tasks by online selection and offline
policy selection.

Online policy selection results. (The answer to Q1) From Table 1, CQL achieves the highest rank of
2.19, which greatly outperforms other algorithms. BC matches the performance of the deterministic
policy, indicating BC recovered the deterministic behavior policy from the datasets. Intriguingly, the
results demonstrate BC is a strong baseline: the other six offline RL algorithms fail to outperform
BC in 152 out of 312 comparisons (note that we have set the quality of datasets to three levels
where BC is believed to perform poorly in the low-quality dataset). Using the Nemenyi test [39], the
critical difference of 10 comparing methods over 52 tasks with a confidence level 95% is 1.8787.
Therefore, if we take BC as the reference, only CQL is significantly better than BC, while Random
and MOPO are significantly worse. The result is the same if we take the deterministic policy as
the reference, implying current offline RL algorithms are less effective. The winning rates against
behavior policy, the deterministic policy, and BC for each compared baselines can be found in Table
23 in the Appendix H.

For model-based approaches, the overall online performance is worse than model-free methods, but
they can bring remarkable improvements in some domains. For instance, on HalfCheetah-Low and
HalfCheetah-Medium tasks, BREMEN and MOPO can outperform other algorithms and baselines
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Table 2: The difference of the normalized scores
between each algorithms and the behavior policy
(dataset returns) on Gym-MuJoCo medium tasks.

Task Name BCQ PLAS CQL MOPO

HalfCheetah-D4RL 6.6 8.1 10.3 6.1
HalfCheetah-NeoRL 4.6 4.8 8.6 16.3

Hopper-D4RL 22.5 4.9 54.6 −5.5
Hopper-NeoRL 5.7 19.2 22.5 −41.0

Walker2d-D4RL 42.3 56.1 63.7 3.2
Walker2d-NeoRL 18.7 −8.4 14.3 −3.1

BC BCQ PLAS CQL CRR BREMEN MOPO

−10

0

10

20

30

40

50

Av
er
ag
e 
Sc
or
e

100
1000
10000

Figure 3: Average normalized score of each algo-
rithms with respect to the number of trajectories.

by a large margin, which reveals the potential of model-based offline RL approaches. However, the
dataset can be less diverse as the quality improves, which may incur bias [40] in environment learning
and lead to poorer performance on high-quality datasets.

The influence of conservativeness. (The answer to Q2) We calculate the difference of normalized
score between the online performance of compared algorithms and the behavior policy performance
(dataset episodic returns) on the closest Gym-MuJoCo tasks and summarize the results in Table 2. The
performance on D4RL is directly adopted from D4RL or the original paper. It can be observed from
Table 2, 10 out of 12 results are overestimated when compared with the behavior policy. However,
datasets from running systems are mostly conservative, thus we should evaluate offline algorithms on
conservative datasets to avoid overstating the applicability of current offline RL algorithms.

The influence of different sizes of datasets. (The answer to Q3) We also evaluate the performance
of each algorithm with respect to the number of trajectories used in training. As shown in Figure 3,
for 5 out of 7 algorithms, the performance by online policy selection grows as the training number
increases from 100 to 1000. However, only performances of BCQ, CQL, CRR increased when the
training trajectories further increased to 10000. We note that the smaller size of datasets can decrease
the performance, while providing more conservative data will not help too much. The rationale may
be that the conservative dataset presents a rather narrow distribution, thus even trained with 10,000
trajectories, the performance will not improve too much. BREMEN has gained an overall significant
improvement from 100 to 1000 episodes, implying that a large dataset helps build better models and
benefits model-based offline RL algorithms. However, providing 10,000 trajectories decreases the
performance of BREMEN. The same trend can be observed in MOPO. We notice that both BREMEN
and MOPO perform poorly in the IB environment, where learning an environment model may be
unprecedented challenging in such environments if we only use MSE as the metric.

Offline policy selection results. (The answer to Q4) However, the result of offline selection favors
BC. From Table 1 and Figure 2, for both OPE methods, the average rank and average normalized
score of BC become the best. That means if we follow a strict offline setting and the full offline
pipeline, current offline RL algorithms are no better than the naive BC and the deterministic policy.
Except CQL and CRR, other learning algorithms significantly fall behind BC (see Table 24 and 25
in H for winning rates). From the normalized scores over three evaluations, on over a half of tasks,
online evaluation, and two OPE could not reach an agreement on the best algorithms and policies.
We also plot the estimate vs ground-truth return as [14, 6] in the Appendix G. From Figure 8 to 14
in G, one rationale for the disagreement of online and offline evaluation is that when the candidate
set contains many extremely low-performance policies, FQE and WIS cannot distinguish them well
(FQE and WIS can give an either high or low evaluation to a policy with low online performance,
thus the estimated returns distribute vertically). However, FQE and WIS may also fail when the
ground-truth returns are very different (estimated returns distribute horizontally). A possible reason
for the failure of the two OPE methods may be that they are originally designed to approximate
the ground-truth performance, while it is challenging to estimate the ground-truth value when the
state-action space coverage is small. However, we only need the OPE methods to tell the ranks of
a set of policies to select the best policy. Empirically, we may benefit from OPE if it is possible to
preclude those poor policies or make them more distinguishable. Detailed results of OPE can be
found in G.
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7 Closing Remarks

We benchmark recent SOTA offline RL algorithms on NeoRL tasks, including model-free and model-
based algorithms. The experimental results demonstrate that these compared offline RL algorithms
fail to outperform neither the naive BC nor the working policy on NeoRL, only except CQL with
online policy selection. However, offline RL algorithms aim to refine the working policy. Thus, we
present the following aspects that may facilitate the applicability of offline RL:

• How could offline data be collected for benchmarks? The real-world offline data are always
conservative. Although for the purpose of training offline RL algorithms, we use slightly perturbed
deterministic policies when collecting the data, other approaches may be adopted, e.g., only
add noise to the observation while maintaining a fully deterministic policy. D4RL adopted
human-designed planners to collect data or human expert demonstrations, which can also collect
conservative data. However, it requires some domain knowledge. Besides, it is feasible to first
learn an environment model and then use model predictive control (MPC) [41] to collect the data.

• The future design of offline RL algorithms. The experimental results further show that current
model-based offline RL approaches are overall worse than model-free approaches. However, we
find model-based algorithms may get a higher score when the performance of the behavior policy
is low and the size of data is small. Besides, the learned environment model can be used to conduct
policy evaluation. With the two empirical observations, model-based offline algorithms may have a
better potential for real-world scenarios. Meanwhile, we have noticed that better model-learning
approaches based on adversarial training [42, 43, 44] could help. Although pessimism makes the
policy safe, we argue it also constrains the policy to be close to the working policy, thus offline RL
algorithms should delicately use the pessimism if they aim to refine the current working policy.

• How does OPE help validate the policy? With a list of offline trained policies, the offline
validation only needs to select the best policy in the list and tell whether the best policy exceeds the
current working policy. Future OPE methods can extract pairwise or listwise features to predict the
correct rank of the policies, rather than estimating the ground-truth returns.

In the future, we will investigate more real-world offline RL challenges, by constantly providing new
near real-world datasets and tasks. We also hope the NeoRL benchmark will shed some light on
future research and draw more attention to deploying real-world RL applications.

Acknowledgments and Disclosure of Funding

This work was supported by National Key Research and Development Program of China
(2020AAA0107200) and National Natural Science Foundation of China (61921006, 61876077,
62076161). We also thank Zhen Xu and Shengkai Huang for making early versions of the datasets.

References
[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, and others. Human-level control through

deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[2] David Silver, Julian Schrittwieser, Karen Simonyan, et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354–359, 2017.

[3] Sascha Lange, Thomas Gabel, and Martin A. Riedmiller. Batch reinforcement learning. In
Reinforcement Learning, pages 45–73. 2012.

[4] Çaglar Gülçehre, Ziyu Wang, Alexander Novikov, et al. RL unplugged: A collection of
benchmarks for offline reinforcement learning. In Advances in Neural Information Processing
Systems 33, Virtual Conference, 2020.

[5] Justin Fu, Aviral Kumar, Ofir Nachum, et al. D4RL: Datasets for deep data-driven reinforcement
learning. CoRR, abs/2004.07219, 2020.

[6] Justin Fu, Mohammad Norouzi, Ofir Nachum, et al. Benchmarks for deep off-policy evaluation.
In International Conference on Learning Representations, virtual, 2021.

9



[7] Antoine Marot, Benjamin Donnot, Gabriel Dulac-Arnold, et al. Learning to run a power
network challenge: a retrospective analysis. In Advances in NeurIPS 2020 Competition and
Demonstration Track, pages 112–132, Virtual, 2020.

[8] Shuai Zhang, Lina Yao, Aixin Sun, et al. Deep learning based recommender system: A survey
and new perspectives. ACM Comput. Surv., 52(1):5:1–5:38, 2019.

[9] Guy Shani and Asela Gunawardana. Evaluating recommendation systems. In Francesco Ricci,
Lior Rokach, Bracha Shapira, and Paul B. Kantor, editors, Recommender Systems Handbook,
pages 257–297. Springer, 2011.

[10] Aviral Kumar, Anikait Singh, Stephen Tian, Chelsea Finn, and Sergey Levine. A workflow for
offline model-free robotic reinforcement learning. In Conference on Robot Learning, volume
164 of Proceedings of Machine Learning Research, pages 417–428, London, UK, 2021. PMLR.

[11] Aviral Kumar, Aurick Zhou, George Tucker, et al. Conservative Q-learning for offline reinforce-
ment learning. In Advances in Neural Information Processing Systems 33, Virtual Conference,
2020.

[12] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 2052–2062, Long Beach,
California, 2019.

[13] Cameron Voloshin, Hoang Minh Le, Nan Jiang, et al. Empirical study of off-policy policy
evaluation for reinforcement learning. CoRR, abs/1911.06854, 2019.

[14] Tom Le Paine, Cosmin Paduraru, Andrea Michi, et al. Hyperparameter selection for offline
reinforcement learning. CoRR, abs/2007.09055, 2020.

[15] Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning.
In Proceedings of the 33nd International Conference on Machine Learning, New York City,
NY, 2016.

[16] Aviral Kumar, Justin Fu, Matthew Soh, et al. Stabilizing off-policy Q-learning via bootstrapping
error reduction. In Advances in Neural Information Processing Systems 32, pages 11761–11771,
Vancouver, BC, Canada, 2019.

[17] Ziyu Wang, Alexander Novikov, Konrad Zolna, et al. Critic regularized regression. In Advances
in Neural Information Processing Systems 33, pages 7768–7778, virtual, 2020.

[18] Wenxuan Zhou, Sujay Bajracharya, and David Held. PLAS: Latent action space for offline
reinforcement learning. CoRR, abs/2011.07213, 2020.

[19] Doina Precup, Richard S. Sutton, and Satinder P. Singh. Eligibility traces for off-policy policy
evaluation. In Proceedings of the Seventeenth International Conference on Machine Learning,
Stanford University, Stanford, CA, pages 759–766, 2000.

[20] Scott Fujimoto, Edoardo Conti, Mohammad Ghavamzadeh, et al. Benchmarking batch deep
reinforcement learning algorithms. CoRR, abs/1910.01708, 2019.

[21] Yuval Tassa, Yotam Doron, Alistair Muldal, et al. DeepMind control suite. CoRR,
abs/1801.00690, 2018.

[22] Abhishek Gupta, Vikash Kumar, Corey Lynch, et al. Relay policy learning: Solving long-
horizon tasks via imitation and reinforcement learning. In Proceedings of 3rd Annual Conference
on Robot Learning, pages 1025–1037, Osaka, Japan, 2019.

[23] Alexey Dosovitskiy, Germán Ros, Felipe Codevilla, et al. CARLA: An open urban driving
simulator. In Proceedings of the 1st Annual Conference on Robot Learning, Mountain View,
California, 2017.

[24] Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz, et al. An empirical investigation of
the challenges of real-world reinforcement learning. CoRR, abs/2003.11881, 2020.

10



[25] Sergey Levine, Aviral Kumar, George Tucker, et al. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[26] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. CoRR, abs/1911.11361, 2019.

[27] Tianhe Yu, Garrett Thomas, Lantao Yu, et al. MOPO: Model-based offline policy optimization.
In Advances in Neural Information Processing Systems 33, Virtual Conference, 2020.

[28] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, et al. MOReL: Model-based offline
reinforcement learning. In Advances in Neural Information Processing Systems 33, Virtual
Conference, 2020.

[29] Romain Laroche and Merwan Barlier. Transfer reinforcement learning with shared dynamics.
In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco,
California, 2017.

[30] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In Proceedings of the 34th International Conference on Machine
Learning, pages 1126–1135, Sydney, NSW, Australia, 2017.

[31] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, et al. Soft Actor-Critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th
International Conference on Machine Learning, pages 1856–1865, Stockholm, Sweden, 2018.

[32] Daniel Hein, Stefan Depeweg, Michel Tokic, et al. A benchmark environment motivated by
industrial control problems. In 2017 IEEE Symposium Series on Computational Intelligence
(SSCI), pages 1–8, 2017.

[33] Xiao-Yang Liu, Hongyang Yang, Qian Chen, et al. FinRL: A deep reinforcement learning
library for automated stock trading in quantitative finance. arXiv preprint arXiv:2011.09607,
2020.

[34] José R. Vázquez-Canteli, Jérôme Kämpf, Gregor Henze, et al. CityLearn v1.0: An OpenAI
Gym environment for demand response with deep reinforcement learning. In Proceedings of
the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and
Transportation, pages 356–357, 2019.

[35] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033, Vilamoura, Algarve, Portugal, 2012.

[36] Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, et al. Deployment-efficient reinforce-
ment learning via model-based offline optimization. In International Conference on Learning
Representations, 2021.

[37] Hoang Minh Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints.
In Proceedings of the 36th International Conference on Machine Learning, pages 3703–3712,
Long Beach, California, 2019.

[38] Daphne Koller and Nir Friedman. Probabilistic Graphical Models - Principles and Techniques.
MIT Press, 2009.

[39] J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research, (7):1—-30, 2006.

[40] Adith Swaminathan and Thorsten Joachims. Counterfactual risk minimization: Learning from
logged bandit feedback. In Proceedings of the 32nd International Conference on Machine
Learning, volume 37, pages 814–823, Lille, France, 2015.

[41] Kurtland Chua, Roberto Calandra, Rowan McAllister, et al. Deep reinforcement learning in
a handful of trials using probabilistic dynamics models. In Advances in Neural Information
Processing Systems 31, pages 4759–4770, Montréal, Canada, 2018.

11



[42] Tian Xu, Ziniu Li, and Yang Yu. Error bounds of imitating policies and environments. In
Advances in Neural Information Processing Systems 33, Virtual Conference, 2020.

[43] Wenjie Shang, Yang Yu, Qingyang Li, et al. Environment reconstruction with hidden con-
founders for reinforcement learning based recommendation. In Proceedings of the 25th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’19), Anchorage, AL,
2019.

[44] Jing-Cheng Shi, Yang Yu, Qing Da, et al. Virtual-Taobao: Virtualizing real-world online
retail environment for reinforcement learning. In Proceedings of the 33rd AAAI Conference on
Artificial Intelligence, Honolulu, HI, 2019.

[45] Leland McInnes, John Healy, Nathaniel Saul, et al. UMAP: uniform manifold approximation
and projection. Journal of Open Source Software, 3(29):861, 2018.

[46] Xinyue Chen, Zijian Zhou, Zheng Wang, et al. BAIL: best-action imitation learning for batch
deep reinforcement learning. In Advances in Neural Information Processing Systems 33, virtual,
2020.

[47] Noah Y. Siegel, Jost Tobias Springenberg, Felix Berkenkamp, et al. Keep doing what worked:
Behavior modelling priors for offline reinforcement learning. In 8th International Conference
on Learning Representations, virtual, 2020.

[48] Michael Janner, Justin Fu, Marvin Zhang, et al. When to trust your model: Model-based policy
optimization. In Advances in Neural Information Processing Systems 32, pages 12498–12509,
Vancouver, BC, Canada, 2019.

[49] Thanard Kurutach, Ignasi Clavera, Yan Duan, et al. Model-ensemble trust-region policy
optimization. In 6th International Conference on Learning Representations, Vancouver, BC,
Canada, 2018.

[50] John Schulman, Sergey Levine, Pieter Abbeel, et al. Trust region policy optimization. In
Proceedings of the 32nd International Conference on Machine Learning, July 2015, pages
1889–1897, Lille, France, 2015.

[51] Ilya Kostrikov and Ofir Nachum. Statistical bootstrapping for uncertainty estimation in off-
policy evaluation. arXiv preprint arXiv:2007.13609, 2020.

12



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No] We do not

spot any potential negative societal impacts yet.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Code, data and
instructions are in the URL.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] They can be found in Section 4 of the main text and in the
Appendix F and G.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] It can be found in the Appendix E.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] The datasets we use do not contain personally
identifiable information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13


