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A More Preliminaries

In this section, we expand on the preliminaries provided in Section 3.

A.1 Aggregation Strategies for Stochastic Classifiers

As the stochastic classifier f✓ returns varied outputs even for a fixed input, it needs to determine the
final prediction by aggregating n independent inferences with a particular strategy.

Majority Vote. The most commonly used strategy is majority vote, which can be formulated as

F vote
✓ (x) := argmax

y2Y

nX

i=1

⇢
F✓i(x) = y

�
, (9)

where {✓i}ni=1
iid⇠ ⇥ are sampled parameters. We adopt this strategy when the defended classifier

computes its prediction. But when attacking a defended classifier, we use the gradient obtained from
the original stochastic classifier f✓ .

Match All. A more restricted strategy is match all, which requires all predictions to be identical:

F all
✓ (x) := y, s.t.

nX

i=1

⇢
F✓i(x) = y

�
= n, (10)

where {✓i}ni=1
iid⇠ ⇥ are sampled parameters. This strategy rejects the input if the condition is not

satisfied, which can be used as a strict setting for targeted attacks. We do not choose this strategy in
our work because it is overly strict and is hard to satisfy, even for benign inputs.

Averaged Logits. One may also determine the label from averaged logits over multiple inferences:

F logits
✓ (x) := argmax

y2Y

1

n

nX

i=1

f✓i,y(x), (11)

where {✓i}ni=1
iid⇠ ⇥ are sampled parameters. Sitawarin et al. [34] leverage this strategy to design

adaptive attacks against the BaRT [28] defense. Still, we do not use this strategy because our main
objective is not to break defenses but to analyze their fundamental weaknesses. We only apply the
prediction strategy when using a stochastic classifier to evaluate a given set of inputs.

The Choice of Prediction Times. The choice of n typically depends on the stochastic classifier’s
variance to its randomness. In our setting, the randomness comes from the applied pre-processing
defense t✓ with random variable ✓ drawn from the randomization space ⇥. When the randomization
space is small, it suffices to set n = 1 for most such defenses [12, 42]. For defenses with a slightly
larger randomization space, they can set n = 30, for example for randomized cropping [12]. Finally,
defenses with even larger randomization spaces set n = 500 or more [6, 28]. We fix n = 500 in our
main experiments in Section 6 for consistency.

A.2 Formulation of Projected Gradient Descent

In this paper, we mainly use PGD [24] to evaluate the robustness of a stochastically defended model.
Given a benign example x0 and its ground-truth label y, each iteration of the untargeted PGD attack
with `1 norm budget ✏ can be formulated as

xi+1  xi + ↵ · sgn
�
rL
�
f✓(x

i), y
� 

, (12)
where ↵ is the step size, L is the loss function, and each iteration is projected to the `1 ball around
x0 of radius ✏. As for targeted PGD attacks with a target label y0, the above iteration becomes

xi+1  xi � ↵ · sgn
�
rL
�
f✓(x

i), y0
� 

, (13)
where we switch the optimizing direction and the label for computing the loss.

Similarly, the untargeted attack with `2 norm budget ✏ is formulated as
xi+1  xi + ↵ ·

��rL
�
f✓(x

i), y
���

2
, (14)

where each iteration is projected to the `2 norm ball around x0 of radius ✏, and the targeted attack
xi+1  xi � ↵ ·

��rL
�
f✓(x

i), y0
���

2
. (15)
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A.3 Quantifying the Strength of White-box Attacks

In this work, we consider attacks with different combinations of PGD steps and EOT samples, denoted
by PGD-k and EOT-m. For evaluations of deterministic defenses, quantifying the strength of PGD
attacks by the number of steps k is valid. However, this quantification is not informative enough
when the evaluated defense is stochastic and involves EOT. For example, it is hard to tell whether
PGD-1 with EOT-100 or PGD-100 with EOT-1 has more strength in terms of the number of steps. For
a fair comparison between such attacks, we quantify their strength by the total number of gradient

computations, defined as
strength(PGD-k,EOT-m) := k ⇥m. (16)

This concept is similar to the query budget in the black-box setting. Although we do not constrain
white-box attacks like this, it allows for a fair comparison between attacks with different settings. For
example, we can now argue that the two attacks above have the same strength due to k ⇥m = 100.

Moreover, the above quantification has realistic implications for the white-box attack’s computational
cost under finite computing resources (w.r.t. the number of evaluated samples). In such a case, the
computation of EOT is not parallelizable by batching the EOT samples. For example, when attacking
B samples with a maximally possible batch size of B, the attacker has to compute the gradients for
k ⇥m batches. Only when the maximally possible batch size becomes m ⇥ B, the attacker can
parallelize the EOT samples and only needs to compute gradients for k batches.

Potential Optimality Analysis. Although we evaluate various combinations of PGD-k and EOT-m,
we are not interested in finding a heuristic for the best combination for two reasons. Firstly, this
discussion is beyond the scope of the question that we want to answer in Section 6.2. Secondly,
white-box attackers in the real world have sufficient incentive to adopt a sufficiently large value of k
and m (to make sure their attack converges), regardless of the potential optimal choice.

However, it is still possible to correlate the choice of k and m with the convergence rate of stochastic
gradient descent (SGD). For example, it is well-known that the convergence rate of SGD can be
affected by the estimated gradient’s variance [11], and this variance is again affected by the number
of EOT samples m we choose due to the central limit theorem. As a result, one can analyze the
attack’s convergence behavior with different choices of PGD-k and EOT-m. Still, this discussion is
beyond the scope of this work and is more beneficial in the context of black-box attacks.

B Experiment Setup: Most Stochastic Defenses Lack Sufficient Randomness

In Section 4, we replicate the evaluation of five previous stochastic defenses from Athalye et al. [2]5

and Tramèr et al. [38]6 without applying EOT. Here, we provide more details of these defenses and
their evaluation settings.

Case Study: Random Rotation. In this case study, we evaluate this defense on 1,000 randomly
chosen ImageNet images and a pre-trained ResNet-50 model. The settings are consistent with our
main evaluation described later in Appendix D.

B.1 Randomized Image Cropping [12]

Defense Details. This defense randomly crops m = 30 patches of size 90 ⇥ 90 from each input
image of size 299⇥ 299. These patches are sent to the classifier, and the final prediction is a majority
vote over the predictions of these patches.

Original Evaluation. Athalye et al. [2] evaluate this defense with an `2-bounded adversary under the
root-mean-square perturbation budget of 0.05. Their attack decreases the classification loss (averaged
over m patches) using gradient descent with 1,000 iterations and a learning rate 0.1. They decrease
the accuracy of an Inception-v3 [37] target model to 0% (i.e., 100% attack success rate) on 1,000
randomly sampled ImageNet [30] images.

Our Ablation Study. We replicate this evaluation by setting m = 1 when running the attack (the
final defense still uses m = 30 patches). This means that we only attack a randomly cropped small

5https://github.com/anishathalye/obfuscated-gradients
6https://github.com/wielandbrendel/adaptive_attacks_paper
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patch from the entire image at each iteration. We then change the learning rate from 0.1 to 0.001 and
are able to achieve 99.0% attack success rate.

B.2 Randomized Image Rescaling [42]

Defense Details. This defense randomly rescales the input image of size 299⇥ 299 to r ⇥ r, where
r 2 [200, 331) is chosen uniformly at random, and then randomly pads the image with zeros to size
331⇥ 331. The resulting padded image is sent to the classifier for one-time prediction.

Original Evaluation. Athalye et al. [2] evaluate this defense with an `1-bounded adversary under
the perturbation budget of 8/255. They generate adversarial examples using PGD-1000 with a step
size of 0.1, where each step applies EOT-30 to compute the gradients averaged over 30 samples
processed from the evaluated input image. They decrease the accuracy of an Inception-v3 [37] target
model to 0% (i.e., 100% attack success rate) on 1,000 randomly sampled ImageNet [30] images.

Our Ablation Study. We replicate this evaluation with PGD-200 and EOT-1, with all the other
parameters unchanged. We are still able to achieve a 100% attack success rate in this case.

B.3 Randomized Activation Pruning [8]

Defense Details. This defense randomly drops (zeros out) some neurons of each layer with probability
proportional to their absolute value. The defense considers several levels of probability, and we use
the setting used by Athalye et al. [2].

Original Evaluation. Athalye et al. [2] evaluate this defense with an `1-bounded adversary under
the perturbation budget of 8/255. They decrease the margin between the correct label’s logit and the
wrong label’s logit with gradient descent using the Adam [15] optimizer. The attack runs for 500
steps with a learning rate 0.1, where each iteration averages the gradient over 10 samples. The attack
achieves 100% success rate on an Inception-v3 [37] target model and the CIFAR-10 [16] dataset.

Our Ablation Study. We replicate this evaluation by simply setting the number of EOT samples to 1
and are still able to obtain 100% success rate.

B.4 Discontinuous Activation [40]

Defense Details. This defense replaces the standard ReLU activation function inside the neural
network with a discontinuous function, so that only the k largest elements are preserved. Although
this defense is not stochastic by itself, we evaluate it because the existing evaluation relies heavily on
the application of EOT.

Original Evaluation. Tramèr et al. [38] evaluate this defense with several techniques that approxi-
mate the correct gradient. For each input, they estimate the average local gradient with m = 20, 000
random perturbations drawn from a standard normal distribution with standard deviation ✏ = 8/255.
Given this estimated gradient, they consider an `1-bounded adversary with perturbation budget 8/255
and run the PGD attack with 100 steps with step size 0.01. Their evaluation code uses a fine-grained
choice of m, which is set to 100, 1K, and 20K at the 1st, 20th, and 40th iterations, respectively. We
report 1K in the main paper.

As a result, their attack achieves 100% attack success rate on a ResNet-18 [40] model from the
original defense and the CIFAR-10 [16] dataset.

Our Ablation Study. We replicate this evaluation by moving all gradient computations from the
estimation side m to the attack’s iteration side k. That is, instead of running PGD-100 with EOT-1K
(100K gradient computations), we run PGD-40K and EOT-1 (40K gradient computations). This
setting achieves 98.4% success rate on the same model and dataset. In Appendix E.1, we discuss an
interesting observation when evaluating this defense; it shows that PGD may capture randomness as
well as EOT with a carefully fine-tuned learning rate.

B.5 Statistical Detection [29]

Defense Details. This defense is a statistical test for detecting adversarial examples. It checks if a
given input image is overly robust under Gaussian noise, which is a property of adversarial examples
generated by PGD [24] and C&W [5]; benign images are sensitive to such noise.
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(a) Undefended

less vulnerable
data points

(b) Defended (Lack of Invariance)

back to
undefended

(c) Defended (Trained Invariance)

Figure 6: Illustration of the binary classification task we consider. The curves are the probability
density function of two classes of data. Shadowed area denotes correct classification. Dotted area
denotes robustly correct classification under the `1-bounded adversary with perturbation budget ✏.

Original Evaluation. Tramèr et al. [38] evaluate this defense with logit matching. Specifically, they
generate adversarial examples with a logit that matches a given target image’s logit in terms of (1)
low mean squared error (MSE) distance and (2) similar robustness under the Gaussian noise. Their
attack combines the above two objectives and runs for 100 steps with a learning rate 0.2/255, where
the robustness under the Gaussian noise is measured under m = 40 samples. The resulting PGD-100
and EOT-40 attack achieves 100% success rate on a target ResNet [13] model and 1,000 randomly
sampled ImageNet [30] images.

Our Ablation Study. We replicate the evaluation by moving all EOT samples to PGD steps. That
is, we run PGD-4K and EOT-1 with a learning rate 0.1/255. As a result, our attack achieves 96.1%
success rate, only 3.9% lower than the attack using EOT. We did not tune the step size further.

C Theoretical Analysis: Trade-off between Robustness and Invariance

We consider a class-balanced dataset D consisting of input-label pairs (x, y) with y 2 {�1,+1}
and x|y ⇠ N (y, 1), where N (µ,�2) is a normal distribution with mean µ and variance �2. An `1-
bounded adversary perturbs the input with a small � to fool the classifier for k�k1  ✏. We quantify
the classifier’s robustness by its robust accuracy, i.e., the ratio of correctly classified samples that
remain correct after being perturbed by the adversary. We also consider a stochastic pre-processing
defense t✓(x) := x+ ✓, where ✓ ⇠ N (1,�2) is the random variable parameterizing the defense.

We formalize our assumptions as follows. Assumptions 1 to 3 characterize the standard behavior
of classifiers that employ the pre-processing defense, and Assumption 4 specifies a set of hyper-
parameters to simplify the analysis without loss of generality.

Assumption 1 (pre-processing defense). The classifier only employs a pre-processing defense of the

form t✓(x) := x+ ✓. As such, the defended classifier is defined as F✓(x) := sgn(x+ ✓ � k), where

k is the decision boundary it wants to optimize.

Assumption 2 (trained invariance). The defended classifier controls its invariance to the defense’s

transformation through trained invariance, i.e., shifting the decision boundary k.

Assumption 3 (majority vote). The defended classifier employs majority vote (for higher invariance)

only after it improves the trained invariance. We only consider a sufficiently large number of votes.

Assumption 4 (hyper-parameters). For simplicity, we assume that the defender applies ✓ ⇠ N (1, 1)
and the adversary is reasonably strong with a perturbation budget ✏ = 1. Note that ✏ = 1 allows the

adversary to shift half of the data across the decision boundary in the undefended scenario.

Disambiguation of Notations. We use x + � to denote the perturbed input passed to a classifier,
such as F (x + �), but its actual value can be any value chosen from [x � ✏, x + ✏]. We use ' and
� to denote the PDF and CDF of the standard normal distribution N (0, 1), respectively. We use '0

and �0 to denote the PDF and CDF for non-standard normal distributions, whose parameters will be
specified in the context.

C.1 Detailed Analysis of the Binary Classification Task

We outline the detailed computations of Section 5 below.
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C.1.1 Undefended Classification

The Bayes optimal linear classifier F (x) = sgn(x) without any defense is illustrated in Figure 6a.
This classifier has benign accuracy (i.e., shadowed area):

Pr[F (x) = y] =
1

2

⇣
Pr[F (x) = y | y = �1] + Pr[F (x) = y | y = +1]

⌘

=
1

2

⇣
Pr[x < 0 | y = �1] + Pr[x > 0 | y = +1]

⌘

=
1

2

⇣
Pr[N (�1, 1) < 0] + Pr[N (+1, 1) > 0]

⌘

=
1

2

⇣
�(1) + 1� �(�1)

⌘

= �(1). (17)

We then compute its probability of making robustly correct predictions (i.e., dotted area)

Pr[F (x+ �) = y ^ F (x) = y]

=
1

2

⇣
Pr[F (x+ �) = y ^ F (x) = y | y = �1] + Pr[F (x+ �) = y ^ F (x) = y | y = +1]

⌘

=
1

2

⇣
Pr[x+ ✏ < 0 ^ x < 0 | y = �1] + Pr[x� ✏ > 0 ^ x > 0 | y = +1]

⌘

(where we use x� ✏ when y = +1 because the correctly classified sample must lie on the right)

=
1

2

⇣
Pr[x < �✏ | y = �1] + Pr[x > ✏ | y = +1]

⌘

=
1

2

⇣
Pr[N (�1, 1) < �✏] + Pr[N (+1, 1) > ✏]

⌘

=
1

2

⇣
�(1� ✏) + 1� �(✏� 1)

⌘

= �(1� ✏),
(18)

which shows that this classifier has robust accuracy (i.e., dotted area over shadowed area)

Pr[F (x+ �) = y | F (x) = y] =
Pr[F (x+ �) = y ^ F (x) = y]

F (x) = y
=

�(1� ✏)

�(1)
, (19)

which verifies the computation in Equation (4).

C.1.2 Defended Classification

The defended classifier F✓(x) = sgn(x+ ✓) is illustrated in Figure 6b, with benign accuracy

Pr[F✓(x) = y] =
1

2

⇣
Pr[F✓(x) = y | y = �1] + Pr[F✓(x) = y | y = +1]

⌘

=
1

2

⇣
Pr[x+ ✓ < 0 | y = �1] + Pr[x+ ✓ > 0 | y = +1]

⌘

=
1

2

⇣
Pr[N (0, 1 + �2) < 0] + Pr[N (2, 1 + �2) > 0]

⌘

=
1

2

⇣
�0(0) + �0(2)

⌘

(20)

where �0(x) := �(x/
p
1 + �2) is the cumulative distribution function of N (0, 1 + �2).
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We then compute its probability of making robustly correct predictions (i.e., dotted area)

Pr[F✓(x+ �) = y ^ F✓(x) = y]

=
1

2

⇣
Pr[F✓(x+ �) = y ^ F✓(x) = y | y = �1] + Pr[F✓(x+ �) = y ^ F✓(x) = y | y = +1]

⌘

=
1

2

⇣
Pr[x+ ✓ + ✏ < 0 ^ x+ ✓ < 0 | y = �1] + Pr[x+ ✓ � ✏ > 0 ^ x+ ✓ > 0 | y = +1]

⌘

(where we use x+ ✓ � ✏ when y = +1 because the correctly classified sample must lie on the right)

=
1

2

⇣
Pr[x+ ✓ < �✏ | y = �1] + Pr[x+ ✓ > ✏ | y = +1]

⌘

=
1

2

⇣
Pr[N (0, 1 + �2) < �✏] + Pr[N (2, 1 + �2) > ✏]

⌘

=
1

2

⇣
�0(�✏) + �0(2� ✏)

⌘
,

(21)
where �0(x) := �(x/

p
1 + �2) is the cumulative distribution function of N (0, 1 + �2).

It shows that this classifier has robust accuracy (i.e., dotted area over shadowed area)

Pr[F✓(x+ �) = y | F✓(x) = y] =
Pr[F✓(x+ �) = y ^ F✓(x) = y]

F✓(x) = y
=

�0(�✏) + �0(2� ✏)

�0(0) + �0(2)
,

(22)
where �0(x) := �(x/

p
1 + �2) is the cumulative distribution function of N (0, 1+�2). This verifies

the computation in Equation (5).

Here, we can make a quick observation under Assumption 4, where we assume � = 1 and ✏ = 1
for simplicity. It shows that the stochastic pre-processing defense in our setting explicitly reduces
invariance and utility to gain robustness. The general case is proven in Theorem 1.

Observation 1. The defended classifier F✓(x) = sgn(x+ ✓) has higher robust accuracy (67.7% vs.

59.4%) yet lower benign accuracy (71.1% vs. 84.1%) than the undefended classifier F (x) = sgn(x).

C.1.3 Defended Classification (Trained Invariance)

One critical step of stochastic pre-processing defenses is to preserve the defended model’s utility by
minimizing the risk over processed data t✓(x), which leads to a new defended classifier F+

✓ (x) =
sgn(x+ ✓� 1) that is optimal on transformed data, as illustrated in Figure 6c. It has benign accuracy

Pr[F+
✓ (x) = y] =

1

2

⇣
Pr[F+

✓ (x) = y | y = �1] + Pr[F+
✓ (x) = y | y = +1]

⌘

=
1

2

⇣
Pr[x+ ✓ � 1 < 0 | y = �1] + Pr[x+ ✓ � 1 > 0 | y = +1]

⌘

=
1

2

⇣
Pr[N (0, 1 + �2) < 1] + Pr[N (2, 1 + �2) > 1]

⌘

=
1

2

⇣
�0(1) + 1� �0(�1)

⌘

= �0(1), (23)

where �0(x) := �(x/
p
1 + �2) is the cumulative distribution function of N (0, 1 + �2).
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We then compute its probability of making robustly correct predictions (i.e., dotted area)

Pr[F+
✓ (x+ �) = y ^ F+

✓ (x) = y]

=
1

2

⇣
Pr[F+

✓ (x+ �) = y ^ F+
✓ (x) = y | y = �1] + Pr[F+

✓ (x+ �) = y ^ F+
✓ (x) = y | y = +1]

⌘

=
1

2

⇣
Pr[x+ ✓ � 1 + ✏ < 0 ^ x+ ✓ � 1 < 0 | y = �1] + Pr[x+ ✓ � 1� ✏ > 0 ^ x+ ✓ � 1 > 0 | y = +1]

⌘

(where we use x+ ✓ � 1� ✏ when y = +1 because the correctly classified sample must lie on the right)

=
1

2

⇣
Pr[x+ ✓ < 1� ✏ | y = �1] + Pr[x+ ✓ > 1 + ✏ | y = +1]

⌘

=
1

2

⇣
Pr[N (0, 1 + �2) < 1� ✏] + Pr[N (2, 1 + �2) > 1 + ✏]

⌘

=
1

2

⇣
�0(1� ✏) + 1� �0(✏� 1)

⌘

= �0(1� ✏),
(24)

where �0(x) := �(x/
p
1 + �2) is the cumulative distribution function of N (0, 1 + �2).

It shows that this classifier has robust accuracy (i.e., dotted area over shadowed area)

Pr[F+
✓ (x+ �) = y | F+

✓ (x) = y] =
Pr[F+

✓ (x+ �) = y ^ F+
✓ (x) = y]

F+
✓ (x) = y

=
�0(1� ✏)

�0(1)
, (25)

where �0(x) := �(x/
p
1 + �2) is the cumulative distribution function of N (0, 1+�2). This verifies

the computation in Equation (6).

Here, we can make the following two observations under Assumption 4, where we assume � = 1 and
✏ = 1 for simplicity. They show that the defense has to increase the invariance, which was previously
reduced to gain robustness, to recover utility. The general case is proven in Theorem 1.
Observation 2. The defended classifier with trained invariance F+

✓ (x) = sgn(x + ✓ � 1) is less

robust (65.8% vs. 70.4%) than the defended classifier F✓(x) = sgn(x+✓) without trained invariance.

Observation 3. The defended classifier with trained invariance F+
✓ (x) = sgn(x+ ✓ � 1) is more

robust (65.8% vs. 59.4%) than the original undefended classifier F (x) = sgn(x) at the cost of utility

(76.0% vs. 84.1%).

C.1.4 Defended Classification (Perfect Invariance)

Furthermore, these defenses usually leverage majority vote to obtain stable predictions, which finally
produces a perfectly invariant defended classifier:

F ⇤
✓ (x) = argmax

y2{�1,+1}

nX

i=1

�
F+
✓i
(x) = y

 

= sgn

 
1

n

nX

i=1
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where the last equality holds because N (x,�2) has more probability on the positive side if and only
if x > 0 and has more probability on the negative side if and only if x < 0. As we can observe,
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the defended classifier with trained invariance and majority vote reduces to the original undefended
classifier F (x) = sgn(x), which verifies Equation (7).

C.2 Theorem: Trade-off between Robustness and Invariance

In this section, we extend the above coupling between robustness and invariance to a general trade-off,
where we can control the invariance through shifting decision boundary and employing majority vote.

Recall that x|y ⇠ N (y, 1) and ✓ ⇠ N (1,�2), we denote their density functions by

'x =

⇢
'(x+ 1), y = �1
'(x� 1), y = +1

,�x =

⇢
�(x+ 1), y = �1
�(x� 1), y = +1

,'✓ = '

✓
✓ � 1

�

◆
,�✓ = �

✓
✓ � 1

�

◆
,

(27)
where ' and � are the probability and cumulative density functions of N (0, 1), respectively.

Rate of Invariance. To facilitate our analysis, given the theoretical setting and assumptions specified
in Appendix C.1, we define the rate of invariance for a defended classifier F✓(x) as

R(k) := Pr[F✓(x) = F (x)], (28)
where F✓(x) = sgn(x+ ✓ � k), and F (x) = sgn(x) is the undefended classifier.

We formalize the trade-off between robustness and invariance in the following theorem proven in
Appendix C.3.4. It shows that stochastic pre-processing defenses provide robustness by intentionally
reducing the model’s invariance to added randomized transformations.
Theorem 1 (Trade-off between Robustness and Invariance). Given the above theoretical setting

and assumptions, when the defended classifier F✓(x) achieves higher invariance R(k) under the

defense’s randomization space to preserve utility, the adversarial robustness provided by the defense

strictly decreases.

We prove this theorem by characterizing the (strictly opposite) monotonic behavior of invariance
and robustness as the defended classifier shifts its decision boundary towards the optimal decision
boundary k = 1 on transformed data (see Appendix C.1.3) and applies majority vote at the end. We
formalize such characterizations in the following lemmas and corollaries.

First, we show in Lemma 1 that the defended classifier’s rate of invariance strictly increases as the
decision boundary shifts towards the optima; applying majority vote further yields perfect invariance,
as we show in Corollary 1. We prove them in Appendix C.3.1.
Lemma 1 (Strictly Increasing Invariance). The defended classifier’s invariance R(k) strictly in-

creases as the decision boundary approaches k = 1 without applying majority vote.

Corollary 1 (Perfect Invariance by Majority Vote). When the defended classifier maximizes trained

invariance at k = 1, employing majority vote further improves the rate of invariance R(k) to one.

Second, we show in Lemma 2 that the defended classifier’s robust accuracy strictly decreases as the
decision boundary shifts towards the optima. When the trained invariance is approximated, we show
in Corollary 2 that applying majority vote strictly decreases the robust accuracy further. We prove
them in Appendix C.3.2.
Lemma 2 (Strictly Decreasing Robustness). The defended classifier’s robust accuracy strictly

decreases as the decision boundary approaches k = 1 without applying majority vote.

Corollary 2 (Strictly Decreasing Robustness by Majority Vote). When the defended classifier

approximates the trained invariance by shifting its decision boundary to k 2 [0, 2], applying majority

vote strictly decreases its robust accuracy.

Finally, we show in Lemma 3 that the defended classifier indeed preserves its utility by shifting the
decision boundary towards the optima, and applying majority vote recovers the full utility as we show
in Corollary 3. We prove them in Appendix C.3.3.
Lemma 3 (Strictly Increasing Accuracy). The defended classifier’s benign accuracy strictly increases

as the decision boundary approaches k = 1 without applying majority vote.

Corollary 3 (Strictly Increasing Accuracy by Majority Vote). When the defended classifier approxi-

mates the trained invariance by shifting its decision boundary to k 2 [0, 2], applying majority vote

strictly increases its accuracy.
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C.3 Proofs

We provide complete proofs for the theorems, lemmas, and corollaries that we present above.

C.3.1 Strictly Increasing Invariance

Lemma 1 (Strictly Increasing Invariance). The defended classifier’s invariance R(k) strictly in-

creases as the decision boundary approaches k = 1 without applying majority vote.

Proof. We directly compute the rate of invariance R(k) as

R(k) = Pr[F✓(x) = F (x)]

= Pr[sgn(x+ ✓ � k) = sgn(x)]

= Pr[sgn(x+ ✓ � k) = sgn(x) ^ x < 0] + Pr[sgn(x+ ✓ � k) = sgn(x) ^ x > 0]

= Pr[✓ < k � x ^ x < 0] + Pr[✓ > k � x ^ x > 0]

=

Z 0
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0
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Z 1

0
'x(x) · �✓(k � x) dx+

Z 1

0
'x(x) dx, (29)

whose gradient with respect to k is

@
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From calculus and the error function erf we have
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where we have assumed ✓ ⇠ N (1, 1) to simplify the analysis by Assumption 4.

It shows that the gradient in Equation (30) is
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(32)

Notice that G(k) := @
@kR(k) is a symmetric function with respect to the point (1, 0):

G(1 + z) +G(1� z) = 0, 8z 2 R, (33)

which shows that G(k) attains zero at k = 1.

Since both exp and erf are strictly increasing functions, for k < 1, we have
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(34)
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which shows that G(k) > 0 when k < 1, and G(k) < 0 when k > 1 by symmetry.

Therefore, the rate of invariance R(k) strictly increases for k < 1 and strictly decreases for k > 1.

Corollary 1 (Perfect Invariance by Majority Vote). When the defended classifier maximizes trained

invariance at k = 1, employing majority vote further improves the rate of invariance R(k) to one.

Proof. We showed in Appendix C.1.4 that the defended classifier F✓(x) = sgn(x+ ✓� 1) converges
to the optimal classifier F✓(x) = sgn(x) if given a sufficiently large number of votes.

In such a case, it is straightforward to show that the rate of invariance converges to one:

R(k = 1) = Pr[F✓(x) = F (x)]! Pr[sgn(x) = sgn(x)] = 1. (35)

C.3.2 Strictly Decreasing Robustness

Lemma 2 (Strictly Decreasing Robustness). The defended classifier’s robust accuracy strictly

decreases as the decision boundary approaches k = 1 without applying majority vote.

Proof. We directly compute the robust accuracy of the defended classifier F✓(x) = sgn(x+ ✓ � k)
and characterize its monotonic behavior. Recall that x+ ✓ ⇠ N (y + 1, 2).

We first compute the defended classifier’s benign accuracy:

Pr[F✓(x) = y]

= Pr[sgn(x+ ✓ � k) = y]

= Pr[x+ ✓ < k | y = �1] · Pr[y = �1] + Pr[x+ ✓ > k | y = +1] · Pr[y = +1]

= Pr[N (0, 2) < k] · Pr[y = �1] + Pr[N (2, 2) > k] · Pr[y = +1]

=
1

2

⇣
�0(k) + �0(2� k)

⌘
, (36)

where �0 denotes the cumulative density function of N (0, 2).

We then compute the probability of robustly correct predictions, where we use x+ � to denote the
adversarial example that actually can take any value from [x� ✏, x+ ✏] to change the prediction:

Pr[F✓(x+ �) = y ^ F✓(x) = y]
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(where we use �✏ when y = +1 because the correctly classified sample must lie on the right)
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(37)
where �0 denotes the cumulative density function of N (0, 2).

Now we can compute the robust accuracy at decision boundary k as

Pr[F✓(x+ �) = y |F✓(x) = y] =
Pr[F✓(x+ �) = y ^ F✓(x) = y]

Pr[F✓(x) = y]
=

�0(k � ✏) + �0(2� k � ✏)

�0(k) + �0(2� k)
.

(38)
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While the argument holds for any fixed ✏, we will show a simple example and assume a reasonably
strong adversary with ✏ = 1 (Assumption 4), which initializes the robust accuracy to:

Rob(k) :=
�0(k � 1) + �0(1� k)

�0(k) + �0(2� k)
, (39)

where �0 denotes the cumulative density function of N (0, 2). Its gradient with respect to k is

G(k) :=
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2
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which shows that G(k) < 0 when k < 1, G(k) > 0 when k > 1, and G(k) = 0 when k = 1.

Therefore, the robust accuracy Rob(k) strictly decreases as k approaches k = 1 from either side.

Corollary 2 (Strictly Decreasing Robustness by Majority Vote). When the defended classifier

approximates the trained invariance by shifting its decision boundary to k 2 [0, 2], applying majority

vote strictly decreases its robust accuracy.

Proof. For this proof, we assume the applied defense adopts ✓ ⇠ N (1,�2), which reformulates the
robust accuracy in Equation (39) as

Rob(k) :=
�0(k � 1) + �0(1� k)

�0(k) + �0(2� k)
= 2

✓
2 + erf

✓
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2
p
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◆
+ erf

✓
kp

2
p
1 + �2

◆◆�1

,

(41)
where �0 is the cumulative density function of N (0, 1 + �2).

For k 2 [0, 2], where the argument for erf is non-negative, decreasing � will also decrease the robust
accuracy (the erf function is strictly increasing). Given that majority vote effectively reduces the
noise’s variance, having a larger number of votes will strictly decrease the robust accuracy.

C.3.3 Strictly Increasing Accuracy

Lemma 3 (Strictly Increasing Accuracy). The defended classifier’s benign accuracy strictly increases

as the decision boundary approaches k = 1 without applying majority vote.

Proof. In Equation (36), we showed that the defended classifier F✓(x) = sgn(x+ ✓ � k) has benign
accuracy

Acc(k) := Pr[F✓(x) = y] =
1

2

⇣
�0(k) + �0(2� k)

⌘
, (42)

where �0 denotes the cumulative density function of N (0, 2).

Its gradient with respect to k is

G(k) :=
@
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which shows that G(k) > 0 when k < 1, G(k) < 0 when k > 1, and G(k) = 0 when k = 1.

Therefore, the benign accuracy Acc(k) strictly increases as k approaches k = 1 from either side.

Corollary 3 (Strictly Increasing Accuracy by Majority Vote). When the defended classifier approxi-

mates the trained invariance by shifting its decision boundary to k 2 [0, 2], applying majority vote

strictly increases its accuracy.

Proof. For this proof, we assume the applied defense adopts ✓ ⇠ N (1,�2), which reformulates the
benign accuracy in Equation (42) as

Acc(k) :=
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2
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where �0 denotes the cumulative density function of N (0, 1 + �2).
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For k 2 [0, 2], where the argument for erf is non-negative, decreasing � will also decrease the robust
accuracy (the erf function is strictly increasing). Given that majority vote effectively reduces the
noise’s variance, having a larger number of votes will strictly increase the robust accuracy.

As a special case, when k = 1 and � ! 0, we have

Acc(k) =
1

2

⇣
�0(k) + �0(2� k)

⌘
=
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2

✓
�

✓
kp
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✓
2� kp
1 + �2

◆◆
! �(1), (45)

which recovers the full utility of the undefended classifier in Equation (17).

C.3.4 Trade-off between Robustness and Invariance

Theorem 1 (Trade-off between Robustness and Invariance). Given the above theoretical setting

and assumptions, when the defended classifier F✓(x) achieves higher invariance R(k) under the

defense’s randomization space to preserve utility, the adversarial robustness provided by the defense

strictly decreases.

Proof. The proof follows by directly combining the lemmas and corollaries proven above.

By Lemma 3 and Corollary 3, when the defended classifier F✓(x) = x + ✓ � k shifts its decision
boundary towards k = 1, its benign accuracy strictly increases and is maximized at k = 1 with the
application of majority vote. This verifies that the defended classifier in our setting indeed preserves
utility by shifting the decision boundary towards k = 1.

By Lemma 1 and Corollary 1, when the defended classifier shifts the decision boundary towards
k = 1 to preserve utility, its rate of invariance strictly increases and is maximized at k = 1 with the
application of majority vote. This verifies that the defended classifier in our setting strictly controls
its invariance by shifting the decision boundary.

By Lemma 2 and Corollary 2, when the defended classifier shifts the decision boundary towards
k = 1 to acquire more invariance, the adversarial robustness strictly decreases and is minimized at
k = 1 with the application of majority vote.

The above arguments show that the defended classifier strictly improves its invariance by approaching
k = 1, yet the adversarial robustness strictly decreases during this process. When perfect invariance
is achieved, the utility and robustness go back to those of the undefended classifier, nullifying the
initially applied stochastic pre-processing defense.

D Experiment Setup: Main Evaluation

In this section, we provide more details of our main evaluation.

D.1 Datasets

We conduct all experiments on the public ImageNet [30] and ImageNette [9] datasets.

For ImageNet, our test data consists of 1,000 images randomly sampled from the validation set.
These images are only sampled once and are fixed for all experiments. We did not train models on
the ImageNet training data in our experiments.

ImageNette is a ten-class subset of ImageNet. Its original training set and validation set have 9,469
and 3,925 images, respectively. We randomly split its original training set into our 90% and 10%
training and validation data, and adopt 1,000 images randomly sampled from its original validation
set as our test data. The data split and test images are only sampled once and fixed for all experiments.
We use the high-resolution version of ImageNette, where all images are larger than 320⇥ 320.

Because some of our experiments require fine-tuning models on processed training data, we switch to
ImageNette to reduce the training cost. We evaluate on ImageNet only when (1) model fine-tuning is
not needed, or (2) model fine-tuning is needed but a pre-trained model is publicly available.
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D.2 Models

We adopt various ResNet [13] models mainly depending on the examined defense. All models make
the prediction with majority vote over n = 500 samples if a stochastic defense is applied.

For defenses with low randomness, which require no model fine-tuning, we evaluate them on
ImageNet with a ResNet-50 model pre-trained by TorchVision7, which attains 76.13% Top-1 accuracy
and 92.86% Top-5 accuracy on ImageNet.

For defenses with higher randomness, which require model fine-tuning, we evaluate them on Ima-
geNette with our own ResNet-34 models, detailed as follows.

To first obtain a baseline model for ImageNette, we adopt a ResNet-34 model pre-trained by TorchVi-
sion, which attains 73.31% Top-1 accuracy and 91.42% Top-5 accuracy on ImageNet. We fine-tune
this model on ImageNette’s training set with gradient descent for 70 epochs using the AdamW [21]
optimizer and the Cosine Annealing [20] learning rate scheduler, where we use batch size 256, initial
learning rate 0.001, and weight decay 0.01. We choose the model that performs best on the validation
set, which attains 96.9% Top-1 accuracy on the test set.

We then fine-tune the above baseline ResNet-34 model on training data pre-processed by the defense
we examine in each experiment. We adopt the same training configs as those used to train the baseline
model but reduce the number of epochs to 30.

As a special case, when we evaluate randomized smoothing in Section 6.2, which requires model
fine-tuning with data perturbed by Gaussian noise, we adopt the ResNet-50 models pre-trained on
such perturbed ImageNet from Cohen et al. [6]. These models attain 67% and 57% Top-1 accuracy
when the input is perturbed with Gaussian noise of standard deviation 0.25 and 0.50, respectively.

D.3 Defenses

Our main evaluation focuses on two stochastic defenses, detailed as follows.

BaRT [28]. The original BaRT defense considers a randomization space of 25 diverse input trans-
formations, and the parameters of each transformation are further randomized. At each inference, it
randomly samples  randomized transformations, composites them together in a random order, and
applies the composited transformation to the input image.

Since our evaluation only aims to examine the limitations of BaRT but not to break it, it suffices to
analyze a subset of transformations. Specifically, we consider a randomization space of   6 input
transformations and composite all  transformations in a random order to pre-process the input image
before feeding it to the classifier. We outline the chosen randomized transformations below and refer
to Raff et al. [28] for more details. Our implementation is available in the code.

• Noise Injection. This transformation perturbs the input image with noise of distributions and
parameters chosen uniformly at random. The set of candidate noise distributions includes Gaussian,
Poisson, Salt, Pepper, Salt and Pepper, and Speckle.

• Gaussian Blur. This transformation blurs the input image using a Gaussian filter with the kernel
size randomly chosen from [2, 14] and the standard deviation randomly chosen from [0.1, 3.1].

• Median Blur. This transformation blurs the input image using a median filter with the kernel size
randomly chosen from [2, 14].

• Swirl Transformation. This transformation applies the swirl transformation8, a non-linear image
deformation that creates a whirlpool effect. Its strength, radius, and location are chosen uniformly
at random from [0.1, 2.0], [10, 200], and [1, 200], respectively. We adopt BPDA [2] with the identity
function to handle the non-differentiable problem.

• Quantization. This transformation quantizes the input image’s pixel values within [0, 1] to a limited
number of bins, where the number of bins is chosen uniformly at random from [8, 200]. For example,
if the number of bins is set to 4, all pixels will be quantized to {0.00, 0.25, 0.50, 0.75, 1.00}.

7https://pytorch.org/vision/stable/models.html
8https://scikit-image.org/docs/stable/auto_examples/transform/plot_swirl.html
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• FFT Perturbation. This transformation perturbs the 2D FFT of each channel of the input image.
For each channel in the frequency domain, it randomly zeros out a fraction of coefficients. The
fraction is chosen uniformly at random from [0.00, 0.95].

In our setting, we form the randomization space by compositing the first  transformations in random
order. While increasing the space of transformations typically leads to a more effective defense,
randomly compositing transformations may not always lead to stronger defenses. For example, the
quantization may decrease the effectiveness of other transformations. However, this drawback does

not affect our evaluation, as our main objective is to compare the defense’s performance before and
after the defended model achieves higher invariance. Rigorous comparisons between the defense’s
performance before and after increasing the randomness are largely orthogonal to our work.

Randomized Smoothing [6]. Randomized smoothing adds Gaussian noise to the input image
and makes predictions with majority vote over a large number of samples. This defense was
initially proposed for certifiable adversarial robustness. In our evaluation, we adopt this defense
to examine (1) how randomness affects the effectiveness of applying EOT and (2) how invariance
affects the robustness provided by the defense. Specifically, we control the level of randomness by
varying the added Gaussian noise’s standard deviation �. For evaluation on ImageNet, we choose
� 2 {0.25, 0.50} as models pre-trained on data perturbed by such noise are available from Cohen
et al. [6]. For evaluation on ImageNette, we are able to scale the evaluation for � from 0.10 to 0.50
with a step size of 0.05. We ignore the abstain output in the original defense, as we do not study the
certification.

D.4 Attacks

We evaluate defenses with standard PGD combined with EOT and focus on the `1-bounded adversary
with a perturbation budget ✏ = 8/255 in both untargeted and targeted settings. We do not introduce
any techniques other than EOT to explicitly handle the randomness, such as random restarts [7] and
momentum-based optimizers [34]. We also utilize AutoPGD [7] to avoid selecting the best step size
when it is computationally expensive to repeat some experiments. More importantly, we only conduct
adaptive evaluations, where the defense is always included in the attack loop with non-differentiable
components approximated by the identity function [2]. For targeted attacks, we choose the last class
of each dataset as the target label: ImageNet (999) and ImageNette (9).

We adopt various attack settings depending on the experiment, as detailed below.

In Section 6.2, we aim to evaluate the benefits of applying EOT under different settings. For this end,
we apply the standard PGD attack of k 2 {10, 20, 50, 100, 200, 500, 1000} steps and combine them
with EOT of m 2 {1, 5, 10, 20} samples. For each combination, we further test several step sizes
chosen from ↵ 2 {0.5/255, 1/255, 2/255, 4/255} and report their best performance.

In Section 6.3, we aim to evaluate the trade-off between the defense’s robustness and the model’s
invariance to the added randomness. For this end, we evaluate the defense’s performance when it
applies to models of different levels of invariance. Since it is computationally expensive to repeat
the attack for multiple step sizes, we utilize AutoPGD [7] to tune the step size automatically. In this
experiment, we evaluate all defenses with AutoPGD of 200 steps and disable all techniques designed
to capture the randomness, including EOT.

We make this choice due to three considerations. First, disabling EOT effectively reduces the
computational cost. Second, we already showed in Section 6.2 that PGD attacks can already assess
the robustness of stochastic defenses without applying EOT. Last but not least, our objective is to
evaluate the defense’s performance when it applies to different models under the same attack. Under
this setting, we can observe that the same attack (regardless of its strength) that hardly works for the
defense (before fine-tuning & low invariance) now becomes more effective (after fine-tuning & high
invariance). We can surely run each attack for more iterations and samples, but the current setting
suffices to show that the defense provides robustness by explicitly reducing invariance.

Computing Resources. All experiments are conducted on two Linux workstations, each with 48 Intel
Xeon CPUs and 8 GeForce RTX 2080 Ti GPUs. We only train ResNet-34 models on ImageNette
without the distributed setting. Standard training (70 epochs) takes 35 minutes. Training with data
processed by Gaussian noise (30 epochs) takes 15 minutes. Training with data processed by BaRT
(30 epochs) takes 18 minutes for  2 {1, 2}, 70 minutes for  2 {3, 4, 5}, and 3 hours for  2 {6}.
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(a) step size = 0.5/255 (b) step size = 1.0/255

(c) step size = 2.0/255 (d) step size = 4.0/255

Figure 7: Evaluation of randomized smoothing on ImageNet (targeted attacks, � = 0.25).

The training time for  � 3 is higher due to CPU-bounded transformations; implementing such
transformations using native PyTorch operations on GPUs should decrease the training cost.

E More Experiment Results

In this section, we provide more experiment results that strengthen discussions in the main paper.

E.1 PGD Captures Randomness with Fine-grained Learning Rates

During our evaluation, we recognize that the effectiveness of PGD attacks, when combined with EOT,
is sensitive to the choice of step size (i.e., learning rate). Here, we provide the full results of four
different choices of step size when evaluating the randomized smoothing defense. The results with
step size chosen from ↵ 2 {0.5/255, 1.0/255, 2.0/255, 4.0/255} are shown in Figure 7.

As we can observe, standard PGD without EOT achieves better performance when the step size is
small, yet the application of EOT requires larger step sizes to perform better. We conjecture that this
is because EOT reduces the variance of gradients so the attack algorithm can take a larger step, yet
standalone PGD only gets noisy gradients and is only “confident” to take a small step.

However, this may not always prevent PGD from converging to a competitive solution. For example,
we evaluate the discontinuous activation [40] defense with different attack settings, where the attack
adds Gaussian noise around the input to estimate the correct gradient. The convergence curves of
different settings are demonstrated in Figure 8.

When we examine the convergence in terms of PGD steps in Figure 8a, applying EOT obtains better
gradients and quickly decreases the defended model’s accuracy to zero. However, when we examine
the convergence in terms of the total number of gradient queries in Figure 8b, we observe that (1)
PGD without EOT given a smaller learning rate and (2) PGD with EOT given a larger learning rate
have almost the same convergence behavior. This interesting observation suggests that standard PGD
attacks may be sufficient in some cases if using a carefully fine-tuned learning rate. For example,
Sitawarin et al. [34] showed that PGD attacks could be significantly improved by applying the
AggMo [22] optimizer, which leverages multiple momentum terms.

E.2 Inability to Remove Invariance that Does Not Hurt the Utility

Some recent works also suggest that one could gain robustness by removing invariance that does
not hurt the utility [33]. However, this may not be the case for defenses with a larger randomization
space. For example, we evaluate the performance of BaRT when it applies to models during the
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(a) Accuracy under Attack (view by PGD Steps) (b) Accuracy under Attack (view by Gradient Queries)

Figure 8: Evaluation of the discontinuous activation [40] defense with EOT-m and step size ↵.

(a) No Attacks (b) Targeted Attacks (c) Untargeted Attacks

Figure 9: Performance of the BaRT defense on ImageNette and models during fine-tuning.

fine-tuning process (same experiment as in Section 6.3). As shown in Figure 9, the robustness has
already dropped significantly before the model achieves invariance that preserves most of the utility.

E.3 Visualization of Adversarial Perturbation

Figures 10 and 11 show the adversarial perturbation created by PGD attacks with and without EOT.

Settings. When given C gradient queries in total, we run PGD for (1) C steps without EOT and
(2) C/10 steps with EOT of 10 samples. All attacks use `1-norm budget ✏ = 8/255 and step size
↵ = 1/255. The target model is a ResNet-50 defended by randomized smoothing with Gaussian
noise � 2 {0.25, 0.50, 1.00}. We adopt pre-trained models from Cohen et al. [6].

Visualization. We randomly choose an image (id 5000) from the ImageNet validation set. For the
benign image x and its adversarial example x0, the perturbation is written as � := x0 � x 2 [�✏, ✏].
We normalize it to �0 := �/(2✏) + 0.5 2 [0, 1] and multiply it by 0.95 for better visualization.

Compare PGD with and without EOT. For models of the same noise level, applying EOT leads to
slightly smoother (or less noisy) adversarial perturbation. This observation shows that EOT computes
more stable gradients. Besides, the above effect becomes more significant when (1) the model has a
higher level of randomness (i.e., large �), or (2) the attack runs in the targeted mode. These are the
scenarios where applying EOT benefits more, which correspond to our findings in Section 6.2.

Compare PGD on models with different degrees of randomness. If we compare the visualization
across different models, we can observe that models with a higher level of randomness produce
smoother adversarial perturbation (even without applying EOT). While this observation seems
counterintuitive, we note that these models are all fine-tuned on noisy data. As a result, making the
model invariant to randomness also smoothes out the gradient, which removes the expected robustness

32



EOT = 1 EOT = 10

To
ta

l =
 1

00
To

ta
l =

 5
00

To
ta

l =
 1

00
0

(a) � = 0.25

EOT = 1 EOT = 10

(b) � = 0.50

EOT = 1 EOT = 10

(c) � = 1.00

Figure 10: Adversarial perturbation created by untargeted PGD attacks with and without EOT.
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Figure 11: Adversarial perturbation created by targeted PGD attacks with and without EOT.

provided by randomness. This observation corresponds to our theoretical model in Section 5 and
empirical findings in Section 6.3.

E.4 Additional Experiments on CIFAR10

In Table 2, we evaluate a few defenses on CIFAR10, including randomized activation pruning [8] and
discontinuous activation [40]. Such defenses cannot defend against standard PGD attacks without
applying EOT. This shows that our findings hold on small and large input spaces.

In this section, we add an experiment to show that our findings in Section 6.3 also hold on CIFAR10.
To this end, we evaluate the randomized smoothing defense [6] on CIFAR10 with the more challenging
targeted attack. Specifically, we run the standard PGD attack for 100 steps, with budget ✏ = 8/255,
step size ↵ = 1/255, target label 9, and EOT of m = 20 samples. The target models are ResNet-
110 pre-trained on noisy data by Cohen et al. [6]. We evaluate four different noise levels � 2
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{0.12, 0.25, 0.50, 1.00}. For each noise level, we run the same attack on models before and after
fine-tuning on data perturbed by such noise. The results are shown in Tables 3 and 4.

For all noise levels, fine-tuning models to obtain invariance improves the benign accuracy as ex-
pected. During this procedure, however, we can observe that the defense becomes less effec-
tive when the model recovers more invariance. In particular, the attack is nearly ineffective for
� 2 {0.25, 0.50, 1.00} when the model has low invariance, yet starts to work as the model recovers
invariance. This observation is consistent with our findings on ImageNet in Section 6.3.

Table 3: Benign accuracy of models with low and high invariance to the defense’s randomness.
� = 0.12 � = 0.25 � = 0.50 � = 1.00

Before Fine-tuning (Low Invariance) 23.4% 14.7% 12.3% 10.1%
After Fine-tuning (High Invariance) 83.6% 77.9% 71.1% 56.7%

Table 4: Attack success rate on models with low and high invariance to the defense’s randomness.
� = 0.12 � = 0.25 � = 0.50 � = 1.00

Before Fine-tuning (Low Invariance) 52.1% 1.1% 0.0% 0.0%
After Fine-tuning (High Invariance) 63.1% 29.5% 18.1% 12.3%

F More Discussions

F.1 Discussions about DiffPure [25]

In parallel to our work, DiffPure [25] adopts a complicated stochastic diffusion process to purify the
input images. This defense belongs to an existing line of research that leverages generative models to
pre-process input images and hence removing the potential adversarial perturbation [19, 32, 35]. In
this section, we elaborate on the implications of our work for DiffPure.

Firstly, DiffPure is the defense that our work expects to avoid. As we indicated in Section 1, a
thorough evaluation of stochastic pre-processing defenses typically requires significant modeling and
computational efforts. DiffPure is a new example of such defenses — it has a complicated solver
of stochastic differential equations (SDE) and requires “high-end NVIDIA GPUs with 32 GB of
memory9.” Our initial experiment shows that it takes several hours to attack even one batch of 8
CIFAR10 images on an Nvidia RTX 2080 Ti GPU with 11 GB of memory, and we received an
out-of-memory error when attempting ImageNet with batch size 1. Because of these complications
and computational costs, fully understanding its robustness requires substantially more effort than a
previous stochastic pre-processing defense BaRT [28].

Given this challenging arms race between attacks and defenses, our work provides empirical and
theoretical evidence to show that stochastic pre-processing defenses are fundamentally flawed. They
cannot provide inherent robustness (like that from adversarial training) to prevent the existence of
adversarial examples. Hence, future attacks may break it. As a result of these findings, future research
should look for new ways of using randomness, such as those discussed in Section 7.

Secondly, DiffPure matches our theoretical model. DiffPure has two consecutive steps:

1. Forward SDE adds noise to the image to decrease invariance like Equation (5). The model
becomes more robust because the input distribution is shifted.

2. Reverse SDE removes noise from the image to recover invariance like Equation (6). The
model becomes less robust because the shifted input distribution is recovered.

These two steps are consistent with our characterization of stochastic pre-processing defenses in
Section 5. While our work mainly focuses on trained invariance (through model fine-tuning), an
auxiliary denoiser (like Reverse SDE) can achieve a similar notion of invariance. Hence, we expect
our arguments about the robustness-invariance trade-off to hold here as well.

9https://github.com/NVlabs/DiffPure
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Finally, Our findings raise concerns with the way DiffPure claims to obtain robustness. The above
discussion finds no evident difference between DiffPure and our model in Section 5. When the
Reverse SDE is perfect, we should achieve full invariance in Equation (7) and expect no improved
robustness — attacking the whole procedure is equivalent to attacking the original model (if non-
differentiable and randomized components are handled correctly). Hence, our findings raise concerns
with the way DiffPure claims to obtain robustness.

Driven by the above concerns, we carefully review DiffPure’s evaluation and identify red flags:

1. They only used 100 PGD steps and 20–30 EOT samples in AutoAttack [7]. This setting
is potentially inadequate based on our empirical results in Table 2. Even breaking a less
complicated defense requires far more steps and samples.

2. Previous purification defenses cannot prevent adversarial examples on the manifold of their
underlying generative model or denoiser [2]. However, DiffPure did not discuss this attack,
i.e., whether it is possible to find an adversarial example of the diffusion model such that it
remains adversarial (to the classifier) after the diffusion process. This strategy is different
from its current evaluation, which attacks the whole pipeline with BPDA and EOT.

These red flags suggest that there is still room for improving DiffPure’s evaluation.

Summary. DiffPure matches our theoretical characterization of previous stochastic pre-processing
defense. Thus, we expect our findings to hold here as well. Unfortunately, we cannot finish the
evaluation of the above discussions due to their high computational costs. However, this challenge
is exactly what our work aims to mitigate — we can identify concerns with the way robustness is
achieved without needing to design adaptive attacks, and our findings have motivated us to identify
red flags in their evaluation. We hope our work can increase the confidence of future research towards
understanding the robustness of defenses sharing a similar assumption.

F.2 Insights for Designing Attacks and Defenses Regarding Randomness

While systematic guidance for designing defenses (and their attacks) remains an open question, we
attempt to summarize some critical insights for this direction as follows.

Guidance for Attacks.

1. Attackers aiming to evaluate defenses (i.e., not merely breaking them) should start with
standard attacks before resorting to more involved attack strategies like EOT. This helps
form a better understanding of the defense’s fundamental weakness.

2. Stochastic pre-processors cannot provide inherent robustness, so an effective attack should
exist. Although there has not been a systematic way to design or find such attacks, our work
provides general guidelines to help with this task.

3. Stochastic pre-processors provide robustness by invariance, so attackers can examine the
model invariance to check the room for improvements.

Guidance for Defenses.

1. The current use of randomness is not promising. Defenses should decouple robustness and
invariance; otherwise, future attacks may break them.

2. Defenses should look for new ways of using randomness, such as those below or beyond the
input space. Below-input randomness divides the input into orthogonal components, like
modalities [43] and independent patches [18]. Beyond-input randomness routes the input to
separate components, like non-transferable models [45].

3. Randomness should force the attack to target all possible (independent) subproblems, where
the model performs well on each (independent and) non-transferable subproblem. In this
case, defenses can decouple robustness and invariance, hence avoiding the pitfall of previous
randomized defenses.

4. Randomness alone does not provide robustness. Defenses must combine randomness with
other inherently robust concepts to improve robustness.
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F.3 Limitations and Potential Negative Societal Impacts

Finally, we discuss the limitations and potential negative societal impacts of this work.

Limitations. This paper mainly focuses on stochastic pre-processing defenses, thus we cannot
comment on the effectiveness of stochastic defenses that are not based on input transformations.
However, we do evaluate a few such defenses in Table 2 and observe similar results for our own
interests, such as randomized activation pruning [8] and discontinued activation [40]. Given this ob-
servation, we believe our findings on stochastic pre-processing defenses are potentially generalizable
to all stochastic defenses. We leave this exploration to future work.

Due to the limitation of computing resources, we are unable to evaluate the full BaRT [28] defense on
ImageNet. To mitigate this problem, we evaluate a subset of BaRT on the smaller ImageNette dataset.
Since the primary objective of this work is to study the limitations of such defenses but not to break
them, we believe the limitations that we observe on a subset of BaRT are reasonably generalizable to
the full set of BaRT. Other work studying this defense made a similar choice [34].

We are unable to evaluate the parallel defense DiffPure [25] due to its significantly high computational
requirements. Given this limitation, we provide a thorough discussion in Appendix F.1 and explain
that DiffPure is consistent with our model, hence we expect our findings to hold here as well.

Potential Negative Societal Impacts. This paper investigates the limitations of stochastic pre-
processing defenses against adversarial examples. While the publication of this research may be
used by attackers to create stronger attacks, we argue such considerations are out-weighted by the
benefits of enabling defenders to understand the weaknesses of existing defenses. Moreover, our
evaluation mainly involves existing attacks and previously broken defenses, thus we do not observe
novel negative societal impacts. Our main objective is to uncover the fundamental weaknesses of
such defenses, both empirically and theoretically, thereby raising the awareness of how to design
proper stochastic defenses that avoid inadvertently weak evaluations and overestimated security.
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